Associations of Lipids and Lipid-Lowering Drugs with Risk of Vascular Dementia: A Mendelian Randomization Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Sources and Identifying Genetic Instruments
2.2.1. GWAS of VaD
2.2.2. GWAS of Lipid-Related Traits
2.2.3. eQTL Data
2.3. MR Analyses
2.3.1. MR Estimates Using uvMR
2.3.2. MR Estimates Using mvMR
2.3.3. SMR Analyses
3. Results
3.1. uvMR Analysis of Lipid-Related Traits on VaD Risks via Forward MR
3.2. Causal Effects of VaD on Lipid-Related Traits via Reverse MR Analyses
3.3. mvMR Analysis of Lipid-Related Traits in VaD Risk
3.4. SMR Analyses
3.5. Causal Effect of LDL-C Level Mediated by Target Genes on VaD via MR Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolters, F.J.; Ikram, M.A. Epidemiology of Vascular Dementia. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1542–1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, B.; Wu, S.; Wang, Z.; Song, W.; Zhu, J. Comparison of Cognitive Performance and Cardiac Function Between Three Different Rat Models of Vascular Dementia. Neuropsychiatr. Dis. Treat. 2022, 18, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Gorelick, P.B.; Scuteri, A.; Black, S.E.; Decarli, C.; Greenberg, S.M.; Iadecola, C.; Launer, L.J.; Laurent, S.; Lopez, O.L.; Nyenhuis, D.; et al. Vascular contributions to cognitive impairment and dementia: A statement for healthcare professionals from the american heart association/american stroke association. Stroke 2011, 42, 2672–2713. [Google Scholar] [CrossRef] [PubMed]
- Hasnain, M.; Vieweg, W.V. Possible role of vascular risk factors in Alzheimer’s disease and vascular dementia. Curr. Pharm. Des. 2014, 20, 6007–6013. [Google Scholar] [CrossRef]
- Dufouil, C.; Richard, F.; Fiévet, N.; Dartigues, J.F.; Ritchie, K.; Tzourio, C.; Amouyel, P.; Alpérovitch, A. APOE genotype, cholesterol level, lipid-lowering treatment, and dementia: The Three-City Study. Neurology 2005, 64, 1531–1538. [Google Scholar] [CrossRef]
- Shoji, T.; Hatsuda, S.; Tsuchikura, S.; Shinohara, K.; Kimoto, E.; Koyama, H.; Emoto, M.; Nishizawa, Y. Small dense low-density lipoprotein cholesterol concentration and carotid atherosclerosis. Atherosclerosis 2009, 202, 582–588. [Google Scholar] [CrossRef]
- Reitz, C.; Tang, M.X.; Luchsinger, J.; Mayeux, R. Relation of plasma lipids to Alzheimer disease and vascular dementia. Arch. Neurol. 2004, 61, 705–714. [Google Scholar] [CrossRef] [Green Version]
- Solomon, A.; Kivipelto, M.; Wolozin, B.; Zhou, J.; Whitmer, R.A. Midlife serum cholesterol and increased risk of Alzheimer’s and vascular dementia three decades later. Dement. Geriatr. Cogn. Disord. 2009, 28, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Raffaitin, C.; Gin, H.; Empana, J.P.; Helmer, C.; Berr, C.; Tzourio, C.; Portet, F.; Dartigues, J.F.; Alpérovitch, A.; Barberger-Gateau, P. Metabolic syndrome and risk for incident Alzheimer’s disease or vascular dementia: The Three-City Study. Diabetes Care 2009, 32, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Song, Z.; Mao, B.; Xu, G. Apolipoprotein A1-Related Proteins and Reverse Cholesterol Transport in Antiatherosclerosis Therapy: Recent Progress and Future Perspectives. Cardiovasc. Ther. 2022, 2022, 4610834. [Google Scholar] [CrossRef]
- Gatz, M.; Reynolds, C.A.; Finkel, D.; Pedersen, N.L.; Walters, E. Dementia in Swedish twins: Predicting incident cases. Behav. Genet. 2010, 40, 768–775. [Google Scholar] [CrossRef] [Green Version]
- Anstey, K.J.; Ashby-Mitchell, K.; Peters, R. Updating the Evidence on the Association between Serum Cholesterol and Risk of Late-Life Dementia: Review and Meta-Analysis. J. Alzheimer’s Dis. JAD 2017, 56, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Kosowski, M.; Smolarczyk-Kosowska, J.; Hachuła, M.; Maligłówka, M.; Basiak, M.; Machnik, G.; Pudlo, R.; Okopień, B. The Effects of Statins on Neurotransmission and Their Neuroprotective Role in Neurological and Psychiatric Disorders. Molecules 2021, 26, 2838. [Google Scholar] [CrossRef]
- Sinha, K.; Sun, C.; Kamari, R.; Bettermann, K. Current status and future prospects of pathophysiology-based neuroprotective drugs for the treatment of vascular dementia. Drug. Discov. Today 2020, 25, 793–799. [Google Scholar] [CrossRef]
- Istvan, E.S.; Deisenhofer, J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science 2001, 292, 1160–1164. [Google Scholar] [CrossRef] [Green Version]
- Sabatine, M.S.; Giugliano, R.P.; Wiviott, S.D.; Raal, F.J.; Blom, D.J.; Robinson, J.; Ballantyne, C.M.; Somaratne, R.; Legg, J.; Wasserman, S.M.; et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N. Engl. J. Med. 2015, 372, 1500–1509. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.M.; Finan, C.; Schmidt, A.F.; Burgess, S.; Hingorani, A.D. Lipid lowering and Alzheimer disease risk: A mendelian randomization study. Ann. Neurol. 2020, 87, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Astaneh, B.; Makhdami, N.; Astaneh, V.; Guyatt, G. The Effect of Mipomersen in the Management of Patients with Familial Hypercholesterolemia: A Systematic Review and Meta-Analysis of Clinical Trials. J. Cardiovasc. Dev. Dis. 2021, 8, 82. [Google Scholar] [CrossRef]
- Hingorani, A.; Humphries, S. Nature’s randomised trials. Lancet 2005, 366, 1906–1908. [Google Scholar] [CrossRef]
- Lawlor, D.A.; Harbord, R.M.; Sterne, J.A.; Timpson, N.; Davey Smith, G. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat. Med. 2008, 27, 1133–1163. [Google Scholar] [CrossRef]
- Davies, N.M.; Howe, L.J.; Brumpton, B.; Havdahl, A.; Evans, D.M.; Davey Smith, G. Within family Mendelian randomization studies. Hum. Mol. Genet. 2019, 28, R170–R179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgess, S.; Thompson, S.G. Multivariable Mendelian randomization: The use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol. 2015, 181, 251–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrivankova, V.W.; Richmond, R.C.; Woolf, B.A.R.; Yarmolinsky, J.; Davies, N.M.; Swanson, S.A.; VanderWeele, T.J.; Higgins, J.P.T.; Timpson, N.J.; Dimou, N.; et al. Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement. Jama 2021, 326, 1614–1621. [Google Scholar] [CrossRef] [PubMed]
- Lyon, M.S.; Andrews, S.J.; Elsworth, B.; Gaunt, T.R.; Hemani, G.; Marcora, E. The variant call format provides efficient and robust storage of GWAS summary statistics. Genome Biol. 2021, 22, 32. [Google Scholar] [CrossRef]
- Sinnott-Armstrong, N.; Tanigawa, Y.; Amar, D.; Mars, N.; Benner, C.; Aguirre, M.; Venkataraman, G.R.; Wainberg, M.; Ollila, H.M.; Kiiskinen, T.; et al. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat. Genet. 2021, 53, 185–194. [Google Scholar] [CrossRef]
- Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R.; et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 2018, 7, e34408. [Google Scholar] [CrossRef]
- Palmer, T.M.; Lawlor, D.A.; Harbord, R.M.; Sheehan, N.A.; Tobias, J.H.; Timpson, N.J.; Davey Smith, G.; Sterne, J.A. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat. Methods Med. Res. 2012, 21, 223–242. [Google Scholar] [CrossRef] [Green Version]
- Bowden, J.; Del Greco, M.F.; Minelli, C.; Davey Smith, G.; Sheehan, N.A.; Thompson, J.R. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: The role of the I2 statistic. Int. J. Epidemiol. 2016, 45, 1961–1974. [Google Scholar] [CrossRef] [Green Version]
- Burgess, S.; Small, D.S.; Thompson, S.G. A review of instrumental variable estimators for Mendelian randomization. Stat. Methods Med. Res. 2017, 26, 2333–2355. [Google Scholar] [CrossRef] [Green Version]
- Pierce, B.L.; Ahsan, H.; Vanderweele, T.J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int. J. Epidemiol. 2011, 40, 740–752. [Google Scholar] [CrossRef]
- Burgess, S.; Foley, C.N.; Zuber, V. Inferring Causal Relationships Between Risk Factors and Outcomes from Genome-Wide Association Study Data. Annu. Rev. Genom. Hum. Genet. 2018, 19, 303–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbanck, M.; Chen, C.Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef] [Green Version]
- Burgess, S.; Bowden, J.; Fall, T.; Ingelsson, E.; Thompson, S.G. Sensitivity Analyses for Robust Causal Inference from Mendelian Randomization Analyses with Multiple Genetic Variants. Epidemiology 2017, 28, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Rees, J.M.B.; Wood, A.M.; Burgess, S. Extending the MR-Egger method for multivariable Mendelian randomization to correct for both measured and unmeasured pleiotropy. Stat. Med. 2017, 36, 4705–4718. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Zhang, F.; Hu, H.; Bakshi, A.; Robinson, M.R.; Powell, J.E.; Montgomery, G.W.; Goddard, M.E.; Wray, N.R.; Visscher, P.M.; et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 2016, 48, 481–487. [Google Scholar] [CrossRef]
- Yoshitake, T.; Kiyohara, Y.; Kato, I.; Ohmura, T.; Iwamoto, H.; Nakayama, K.; Ohmori, S.; Nomiyama, K.; Kawano, H.; Ueda, K.; et al. Incidence and risk factors of vascular dementia and Alzheimer’s disease in a defined elderly Japanese population: The Hisayama Study. Neurology 1995, 45, 1161–1168. [Google Scholar] [CrossRef]
- Hayden, K.M.; Zandi, P.P.; Lyketsos, C.G.; Khachaturian, A.S.; Bastian, L.A.; Charoonruk, G.; Tschanz, J.T.; Norton, M.C.; Pieper, C.F.; Munger, R.G.; et al. Vascular risk factors for incident Alzheimer disease and vascular dementia: The Cache County study. Alzheimer Dis. Assoc. Disord. 2006, 20, 93–100. [Google Scholar] [CrossRef]
- Muller, M.; Tang, M.X.; Schupf, N.; Manly, J.J.; Mayeux, R.; Luchsinger, J.A. Metabolic syndrome and dementia risk in a multiethnic elderly cohort. Dement. Geriatr. Cogn. Disord. 2007, 24, 185–192. [Google Scholar] [CrossRef]
- Solfrizzi, V.; Scafato, E.; Capurso, C.; D’Introno, A.; Colacicco, A.M.; Frisardi, V.; Vendemiale, G.; Baldereschi, M.; Crepaldi, G.; Di Carlo, A.; et al. Metabolic syndrome and the risk of vascular dementia: The Italian Longitudinal Study on Ageing. J. Neurol. Neurosurg. Psychiatry 2010, 81, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Low LDL cholesterol, PCSK9 and HMGCR genetic variation, and risk of Alzheimer’s disease and Parkinson’s disease: Mendelian randomisation study. BMJ 2017, 357, j3170. [CrossRef] [Green Version]
- Strom, B.L.; Schinnar, R.; Karlawish, J.; Hennessy, S.; Teal, V.; Bilker, W.B. Statin Therapy and Risk of Acute Memory Impairment. JAMA Intern. Med. 2015, 175, 1399–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bettermann, K.; Arnold, A.M.; Williamson, J.; Rapp, S.; Sink, K.; Toole, J.F.; Carlson, M.C.; Yasar, S.; Dekosky, S.; Burke, G.L. Statins, risk of dementia, and cognitive function: Secondary analysis of the ginkgo evaluation of memory study. J. Stroke Cereb. Dis. 2012, 21, 436–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burns, A.; Iliffe, S. Dementia. BMJ 2009, 338, b75. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Kalaria, R.N.; Corbett, A.; Ballard, C. Update on Vascular Dementia. J. Geriatr. Psychiatry Neurol. 2016, 29, 281–301. [Google Scholar] [CrossRef]
- Kitamura, A.; Fujita, Y.; Oishi, N.; Kalaria, R.N.; Washida, K.; Maki, T.; Okamoto, Y.; Hase, Y.; Yamada, M.; Takahashi, J.; et al. Selective white matter abnormalities in a novel rat model of vascular dementia. Neurobiol. Aging 2012, 33, 1012.e25–1012.e35. [Google Scholar] [CrossRef]
Phenotype | IVs | OR (95% CI) | Beta (SE) | p | Q Statistic_p |
---|---|---|---|---|---|
HDL-C | |||||
IVW | 280 | 0.852 (0.623–1.166) | −0.160 (0.160) | 0.317 | 3.570 × 10−8 |
Weighted median | 280 | 0.848 (0.543–1.324) | −0.165 (0.227) | 0.468 | |
Penalised weighted median | 280 | 0.859 (0.555–1.328) | −0.152 (0.222) | 0.494 | |
MR-PRESSO (Outlier-corrected) | 280 | 0.019 (0.124) | 0.881 | ||
global test | <0.001 | ||||
MR-Egger | 280 | 0.774 (0.478–1.252) | −0.256 (0.245) | 0.297 | |
egger_intercept | 0.004 (0.007) | 0.605 | |||
LDL-C | |||||
IVW | 138 | 0.954 (0.700–1.301) | −0.047 (0.158) | 0.768 | 0.677 |
Weighted median | 138 | 0.836 (0.502–1.391) | −0.179 (0.260) | 0.491 | |
Penalised weighted median | 138 | 0.753 (0.455–1.245) | −0.284 (0.257) | 0.269 | |
MR-PRESSO | 138 | −0.018 (0.153) | 0.909 | ||
global test | 0.667 | ||||
MR-Egger | 138 | 1.270 (0.803–2.009) | 0.239 (0.234) | 0.308 | |
egger_intercept | −0.013 (0.008) | 0.100 | |||
TG | |||||
IVW | 241 | 1.254 (0.950–1.656) | 0.227 (0.142) | 0.110 | 0.0003 |
Weighted median | 241 | 1.143 (0.770–1.697) | 0.134 (0.202) | 0.506 | |
Penalised weighted median | 241 | 1.140 (0.770–1.686) | 0.131 (0.200) | 0.513 | |
MR-PRESSO (Outlier-corrected) | 241 | 0.035 (0.121) | 0.770 | ||
global test | <0.001 | ||||
MR-Egger | 241 | 1.191 (0.794–1.786) | 0.175 (0.207) | 0.399 | |
egger_intercept | 0.002(0.007) | 0.730 | |||
apoA-I | |||||
IVW | 235 | 0.721 (0.516–1.007) | −0.327 (0.170) | 0.055 | 5.845 × 10−9 |
Weighted median | 235 | 0.995 (0.630–1.571) | −0.005 (0.233) | 0.981 | |
Penalised weighted median | 235 | 1.042 (0.678–1.601) | 0.041 (0.219) | 0.852 | |
MR-PRESSO (Outlier-corrected) | 235 | −0.088 (0.134) | 0.513 | ||
global test | <0.001 | ||||
MR-Egger | 235 | 0.549 (0.322–0.935) | −0.600 (0.272) | 0.028 | |
egger_intercept | 0.010 (0.008) | 0.200 | |||
apoB | |||||
IVW | 154 | 1.213 (0.930–1.581) | 0.193 (0.135) | 0.154 | 0.564 |
Weighted median | 154 | 1.354 (0.847–2.164) | 0.303 (0.239) | 0.205 | |
Penalised weighted median | 154 | 1.049 (0.682–1.615) | 0.048 (0.220) | 0.827 | |
MR-PRESSO | 154 | 0.198 (0.134) | 0.140 | ||
global test | 0.500 | ||||
MR-Egger | 154 | 1.605 (1.130–2.281) | 0.473 (0.179) | 0.009 | |
egger_intercept | −0.016 (0.007) | 0.018 |
Gene | IVs | OR (95% CI) | Beta (SE) | p | Q Statistic_p |
---|---|---|---|---|---|
HMGCR | |||||
IVW | 7 | 18.381 (2.092–161.474) | 2.911 (1.109) | 0.009 | 0.916 |
Weighted median | 7 | 14.580 (0.949–223.977) | 2.680 (1.394) | 0.055 | |
Penalised weighted median | 7 | 14.580 (0.967–219.879) | 2.680 (1.384) | 0.053 | |
MR-PRESSO | 7 | 2.911 (0.646) | 0.004 | ||
global test | 0.942 | ||||
MR-Egger | 7 | 55.727 (0.112–27,641.808) | 4.020 (3.167) | 0.260 | |
egger_intercept | −0.027 (0.071) | 0.724 | |||
PCSK9 | |||||
IVW | 30 | 0.783 (0.466–1.316) | −0.245 (0.265) | 0.356 | 0.731 |
Weighted median | 30 | 0.651 (0.331–1.281) | −0.429 (0.345) | 0.214 | |
Penalised weighted median | 30 | 0.651 (0.320–1.326) | −0.429 (0.363) | 0.237 | |
MR-PRESSO | 30 | −0.245 (0.241) | 0.318 | ||
global test | 0.756 | ||||
MR-Egger | 30 | 0.679 (0.335–1.377) | −0.388 (0.361) | 0.292 | |
egger_intercept | 0.012 (0.021) | 0.565 | |||
NPC1L1 | |||||
IVW | 6 | 0.139 (0.019–1.017) | −1.971 (1.014) | 0.052 | 0.728 |
Weighted median | 6 | 0.115 (0.01–1.287) | −2.160 (1.231) | 0.079 | |
Penalised weighted median | 6 | 0.115 (0.011–1.225) | −2.160 (1.206) | 0.073 | |
MR-PRESSO | 6 | −1.971 (0.761) | 0.049 | ||
global test | 0.779 | ||||
MR-Egger | 6 | 1.239 (0.002–674.12) | 0.214 (3.214) | 0.950 | |
egger_intercept | −0.056 (0.078) | 0.513 | |||
APOB | |||||
IVW | 39 | 1.318 (0.767–2.264) | 0.276 (0.276) | 0.318 | 0.453 |
Weighted median | 39 | 0.995 (0.446–2.219) | −0.005 (0.409) | 0.989 | |
Penalised weighted median | 39 | 0.995 (0.435–2.277) | −0.005 (0.422) | 0.990 | |
MR-PRESSO | 39 | 0.276 (0.276) | 0.324 | ||
global test | 0.451 | ||||
MR-Egger | 39 | 1.309 (0.427–4.010) | 0.269 (0.571) | 0.640 | |
egger_intercept | 0.0003 (0.025) | 0.990 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Geng, T.; Li, N.; Wu, L.; Wang, Y.; Zheng, D.; Guo, B.; Wang, B. Associations of Lipids and Lipid-Lowering Drugs with Risk of Vascular Dementia: A Mendelian Randomization Study. Nutrients 2023, 15, 69. https://doi.org/10.3390/nu15010069
Zhang X, Geng T, Li N, Wu L, Wang Y, Zheng D, Guo B, Wang B. Associations of Lipids and Lipid-Lowering Drugs with Risk of Vascular Dementia: A Mendelian Randomization Study. Nutrients. 2023; 15(1):69. https://doi.org/10.3390/nu15010069
Chicago/Turabian StyleZhang, Xiaoyu, Tao Geng, Ning Li, Lijuan Wu, Youxin Wang, Deqiang Zheng, Bo Guo, and Baoguo Wang. 2023. "Associations of Lipids and Lipid-Lowering Drugs with Risk of Vascular Dementia: A Mendelian Randomization Study" Nutrients 15, no. 1: 69. https://doi.org/10.3390/nu15010069
APA StyleZhang, X., Geng, T., Li, N., Wu, L., Wang, Y., Zheng, D., Guo, B., & Wang, B. (2023). Associations of Lipids and Lipid-Lowering Drugs with Risk of Vascular Dementia: A Mendelian Randomization Study. Nutrients, 15(1), 69. https://doi.org/10.3390/nu15010069