Macronutrients and Micronutrients in Parenteral Nutrition for Preterm Newborns: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Energy Intake
3.2. Liquids
Electrolytes
3.3. Proteins
First Author | Type of Study | Sample Size (n) | Intervention | Outcomes |
---|---|---|---|---|
van Goudoever JB [22] 2018 | ESPGHAN/ESPEN/ESPR/CSPEN guidelines | starting dose of 1.5 g/kg/day with progressive daily increases up to 2.5–3.5 g/kg/day in the first week of life | ||
Roelants JA [23] 2018 | RCT | 32 | initiation of amino acids (2.4 g/kg/day) | improves the net amino acid balance |
Morgan C [24] 2014 | RCT | higher protein intakes | Improves brain growth and neurodevelopmental outcomes |
3.4. Carbohydrates
First Author | Type of Study | Sample Size (n) | Intervention | Outcomes |
---|---|---|---|---|
Hay WWJ [26] 2017 | Narrative review | preterm neonates may require up to 12 mg/kg/min | to maintain enough energy for their metabolism. | |
Ribed Sánchez A [27] 2013 | Observational study | 68 | aggressive nutrition (the use of high nutrient dosages starting in the first hours of life, in particular the administration of protein and energy at higher concentrations) than conventional parenteral nutrition | To decrease the frequency and severity of neonatal hyperglycemia by stimulating endogenous insulin secretion and promotes growth by stimulating Insulin-Growth Factors |
Angelika D [28] 2021 | Observational study | 97 | the GIR (glucose infusion rate) usage of <7 g/kg/day in PN in the first week of life for preterm neonates | To increase the risk of hypoglycemia while reducing the risk of sepsis |
Tottman AC [29] 2018 | Observational study | 457 | lower glucose administration (7 versus 8.4 mg/kg/min) | To reduce the risk of sepsis |
3.5. Lipids
First Author | Type of Study | Sample Size (n) | Intervention | Outcomes |
---|---|---|---|---|
Calkins KL [39] 2017 | RCT | 41 | high (3–3.5 g/kg/day) versus low (1 g/kg/day) target dose of lipids | no significant differences in terms of sepsis, cholestasis, mortality. Increased mean weight gain in the first 28 days |
Levit OL [40] 2016 | RCT | 127 | high (3–3.5 g/kg/day) versus low (1 g/kg/day) target dose of lipids | no significant differences were found in terms of sepsis, cholestasis, mortality and length of stay. Decreased rates of necrotizing enterocolitis and retinopathy or prematurity |
Lapillonne A [43] 2018 | LG ESPGHAN | target dosage of lipids of 3–4 g/kg/day at maximum | Safe and effective | |
NICE Guideline [42] 2020 | target dosage of lipids of 3–4 g/kg/day at maximum | Safe and effective | ||
Vlaardingerbroek [44] 2013 | RCT | 144 | comparing preterm babies started early (i.e., soon after birth) versus late (i.e., on day 2 of life) on lipid emulsions | no significant differences in anthropometric measures at discharge, late onset sepsis, necrotizing enterocolitis, retinopathy of prematurity and mortality rates |
3.6. Trace Elements
3.7. Zinc
3.8. Copper
3.9. Selenium
3.10. Iodine
3.11. Fluoride
3.12. Vitamins
- -
- the pharmacological addition of vitamins is not required, e.g., high doses of vitamins A and E are not proven as effective in minimizing oxidative phenomena or incidence and severity of chronic lung diseases, retinopathies and other diseases.
- -
- vitamins should be used in adequate doses to meet normal needs, avoiding both deficiencies and potentially harmful excesses.
3.13. Special Considerations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
EUGR | Extra-Uterine Growth Restriction |
PN | Parenteral Nutrition |
NICU | Neonatal Intensive Care Unit |
VLBW | Very Low Birth Weight |
ELBW | Extremely Low Birth Weight |
GIR | Glucose Infusion Rate |
References
- Horbar, J.D.; Ehrenkranz, R.A.; Badger, G.J.; Edwards, E.M.; Morrow, K.A.; Soll, R.F.; Buzas, J.S.; Bertino, E.; Gagliardi, L.; Bellù, R. Weight growth velocity and postnatal growth failure in infants 501 to 1500 Grams: 2000–2013. Pediatrics 2015, 136, e84–e92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, E.T.; Ashton, J.J.; Pearson, F.; Beattie, R.M.; Johnson, M.J. Early postnatal growth failure in preterm infants is not inevitable. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F235–F241. [Google Scholar] [CrossRef] [PubMed]
- Joosten, K.; Embleton, N.; Yan, W.; Senterre, T. ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Energy. Clin. Nutr. 2018, 37, 2309–2314. [Google Scholar] [CrossRef] [PubMed]
- Cooke, R.J. Postnatal Growth Monitoring in Preterm Infants. Neonatology 2018, 114, 181–183. [Google Scholar] [CrossRef] [PubMed]
- Boscarino, G.; Conti, M.G.; Gasparini, C.; Onestà, E.; Faccioli, F.; Dito, L.; Regoli, D.; Spalice, A.; Parisi, P.; Terrin, G. Neonatal Hyperglycemia Related to Parenteral Nutrition Affects Long-Term Neurodevelopment in Preterm Newborn: A Prospective Cohort Study. Nutrients 2021, 13, 1930. [Google Scholar] [CrossRef] [PubMed]
- Bonsante, F.; Gouyon, J.-B.; Robillard, P.-Y.; Gouyon, B.; Iacobelli, S. Early optimal parenteral nutrition and metabolic acidosis in very preterm infants. PLoS ONE 2017, 12, e0186936. [Google Scholar] [CrossRef] [Green Version]
- Darmaun, D.; Lapillonne, A.; Simeoni, U.; Picaud, J.-C.; Rozé, J.-C.; Saliba, E.; Bocquet, A.; Chouraqui, J.-P.; Dupont, C.; Feillet, F.; et al. Parenteral nutrition for preterm infants: Issues and strategy. Arch. Pediatr. 2018, 25, 286–294. [Google Scholar] [CrossRef]
- Bell, E.F.; Acarregui, M.J. Restricted versus liberal water intake for preventing morbidity and mortality in preterm infants. Cochrane Database Syst. Rev. 2014, 2014, CD000503. [Google Scholar] [CrossRef] [Green Version]
- Abbas, S.; Keir, A.K. In preterm infants, does fluid restriction, as opposed to liberal fluid prescription, reduce the risk of important morbidities and mortality? J. Paediatr. Child Health 2019, 55, 860–866. [Google Scholar] [CrossRef]
- Johnson, P.J. Review of macronutrients in parenteral nutrition for neonatal intensive care population. Neonatal Netw. 2014, 33, 29–34. [Google Scholar] [CrossRef]
- Baraton, L.; Ancel, P.Y.; Flamant, C.; Orsonneau, J.L.; Darmaun, D.; Rozé, J.C. Impact of changes in serum sodium levels on 2-year neurologic outcomes for very preterm neonates. Pediatrics 2009, 124, e655–e661. [Google Scholar] [CrossRef]
- Segar, J.L. A physiological approach to fluid and electrolyte management of the preterm infant: Review. J. Neonatal. Perinatal. Med. 2020, 13, 11–19. [Google Scholar] [CrossRef]
- Bolisetty, S.; Osborn, D.; Sinn, J.; Lui, K. Australasian Neonatal Parenteral Nutrition Consensus Group Standardised neonatal parenteral nutrition formulations—An Australasian group consensus 2012. BMC Pediatr. 2014, 14, 48. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, J.M.; Kleinman, L.I.; Markarian, K. Potassium metabolism in extremely low birth weight infants in the first week of life. J. Pediatr. 1997, 131, 81–86. [Google Scholar] [CrossRef]
- Bonilla-Félix, M. Potassium regulation in the neonate. Pediatr. Nephrol. 2017, 32, 2037–2049. [Google Scholar] [CrossRef]
- Baumgart, S. Acute Problems of Prematurity: Balancing Fluid Volume and Electrolyte Replacements in Very Low Birth Weight (VLBW) and Extremely Low Birth Weight (ELBW) Neonates. Nephrol. Fluid/Electrolyte Physiol. Neonatol. Quest. Controv. 2008, 161–183. [Google Scholar] [CrossRef]
- Bonsante, F.; Iacobelli, S.; Chantegret, C.; Martin, D.; Gouyon, J.-B. The effect of parenteral nitrogen and energy intake on electrolyte balance in the preterm infant. Eur. J. Clin. Nutr. 2011, 65, 1088–1093. [Google Scholar] [CrossRef] [Green Version]
- Mihatsch, W.; Fewtrell, M.; Goulet, O.; Molgaard, C.; Picaud, J.-C.; Senterre, T. ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Calcium, phosphorus and magnesium. Clin. Nutr. 2018, 37, 2360–2365. [Google Scholar] [CrossRef] [Green Version]
- van den Akker, C.H.P.; te Braake, F.W.J.; Weisglas-Kuperus, N.; van Goudoever, J.B. Observational outcome results following a randomized controlled trial of early amino acid administration in preterm infants. J. Pediatr. Gastroenterol. Nutr. 2014, 59, 714–719. [Google Scholar] [CrossRef]
- Kermorvant-Duchemin, E.; Iacobelli, S.; Eleni-Dit-Trolli, S.; Bonsante, F.; Kermorvant, C.; Sarfati, G.; Gouyon, J.-B.; Lapillonne, A. Early chloride intake does not parallel that of sodium in extremely-low-birth-weight infants and may impair neonatal outcomes. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 613–619. [Google Scholar] [CrossRef]
- Seifter, J.L. Integration of Acid–Base and Electrolyte Disorders. N. Engl. J. Med. 2014, 371, 1821–1831. [Google Scholar] [CrossRef] [Green Version]
- van Goudoever, J.B.; Carnielli, V.; Darmaun, D.; Sainz de Pipaon, M.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; Darmaun, D.; Decsi, T.; et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Amino acids. Clin. Nutr. 2018, 37, 2315–2323. [Google Scholar] [CrossRef] [Green Version]
- Roelants, J.A.; Vlaardingerbroek, H.; van den Akker, C.H.P.; de Jonge, R.C.J.; van Goudoever, J.B.; Vermeulen, M.J. Two-Year Follow-up of a Randomized Controlled Nutrition Intervention Trial in Very Low-Birth-Weight Infants. JPEN J. Parenter. Enteral Nutr. 2018, 42, 122–131. [Google Scholar] [CrossRef]
- Morgan, C.; McGowan, P.; Herwitker, S.; Hart, A.E.; Turner, M.A. Postnatal head growth in preterm infants: A randomized controlled parenteral nutrition study. Pediatrics 2014, 133, e120–e128. [Google Scholar] [CrossRef] [Green Version]
- Osborn, D.A.; Schindler, T.; Jones, L.J.; Sinn, J.K.; Bolisetty, S. Higher versus lower amino acid intake in parenteral nutrition for newborn infants. Cochrane Database Syst. Rev. 2018, 3, CD005949. [Google Scholar] [CrossRef]
- Hay, W.W.J. Optimizing nutrition of the preterm infant. Zhongguo Dang Dai Er Ke Za Zhi 2017, 19, 1–21. [Google Scholar] [CrossRef]
- Ribed Sánchez, A.; Romero Jiménez, M.R.; Carmen Sánchez Gómez de Orgaz, M.; Sánchez Luna, M.; Sanjurjo Sáez, M. Aggressive parenteral nutrition and growth velocity in preterm infants. Nutr. Hosp. 2013, 28, 2128–2134. [Google Scholar] [CrossRef]
- Angelika, D.; Etika, R.; Utomo, M.T.; Mirha, S.; Handayani, K.D.; Ugrasena, I.D.G. The glucose infusion rate of parenteral nutrition in the first week of life in preterm infants: An observational study. Ital. J. Pediatr. 2021, 47, 219. [Google Scholar] [CrossRef]
- Tottman, A.C.; Bloomfield, F.H.; Cormack, B.E.; Harding, J.E.; Mohd Slim, M.A.; Weston, A.F.; Alsweiler, J.M. Relationships between Early Nutrition and Blood Glucose Concentrations in Very Preterm Infants. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 960–966. [Google Scholar] [CrossRef]
- Stensvold, H.J.; Strommen, K.; Lang, A.M.; Abrahamsen, T.G.; Steen, E.K.; Pripp, A.H.; Ronnestad, A.E. Early Enhanced Parenteral Nutrition, Hyperglycemia, and Death among Extremely Low-Birth-Weight Infants. JAMA Pediatr. 2015, 169, 1003–1010. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-García, A.M.; Zaragoza-Martí, A.; Murcia-López, A.C.; Navarro-Ruiz, A.; Noreña-Peña, A. Adequacy of Parenteral Nutrition in Preterm Infants According to Current Recommendations: A Study in a Spanish Hospital. Int. J. Environ. Res. Public Health 2020, 17, 2131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, C.-C.; Tsai, M.-L.; Chen, C.-C.; Lin, H.-C. Early optimal nutrition improves neurodevelopmental outcomes for very preterm infants. Nutr. Rev. 2014, 72, 532–540. [Google Scholar] [CrossRef] [PubMed]
- ElHassan, N.O.; Kaiser, J.R. Parenteral Nutrition in the Neonatal Intensive Care Unit. Neoreviews 2011, 12, e130–e140. [Google Scholar] [CrossRef]
- Stark, J.; Simma, B.; Blassnig-Ezeh, A. Incidence of hypoglycemia in newborn infants identified as at risk. J. Matern. Fetal. Neonatal Med. 2020, 33, 3091–3096. [Google Scholar] [CrossRef] [PubMed]
- Mesotten, D.; Joosten, K.; van Kempen, A.; Verbruggen, S. ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Carbohydrates. Clin. Nutr. 2018, 37, 2337–2343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamkin, D.H.; Radmacher, P.G. Current trends and future challenges in neonatal parenteral nutrition. J. Neonatal. Perinatal. Med. 2014, 7, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Velaphi, S. Nutritional requirements and parenteral nutrition in preterm infants. S. Afr. J. Clin. Nutr. 2011, 24, 27–31. [Google Scholar] [CrossRef]
- Decaro, M.H.; Vain, N.E. Hyperglycaemia in preterm neonates: What to know, what to do. Early Hum. Dev. 2011, 87 (Suppl. S1), S19–S22. [Google Scholar] [CrossRef]
- Calkins, K.L.; Havranek, T.; Kelley-Quon, L.I.; Cerny, L.; Flores, M.; Grogan, T.; Shew, S.B. Low-Dose Parenteral Soybean Oil for the Prevention of Parenteral Nutrition-Associated Liver Disease in Neonates with Gastrointestinal Disorders. JPEN. J. Parenter. Enteral Nutr. 2017, 41, 404–411. [Google Scholar] [CrossRef] [Green Version]
- Levit, O.L.; Calkins, K.L.; Gibson, L.C.; Kelley-Quon, L.; Robinson, D.T.; Elashoff, D.A.; Grogan, T.R.; Li, N.; Bizzarro, M.J.; Ehrenkranz, R.A. Low-Dose Intravenous Soybean Oil Emulsion for Prevention of Cholestasis in Preterm Neonates. JPEN. J. Parenter. Enteral Nutr. 2016, 40, 374–382. [Google Scholar] [CrossRef] [Green Version]
- Shouman, B.; Abdel-Hady, H.; Badr, R.I.; Hammad, E.; Salama, M.F. Dose of intravenous lipids and rate of bacterial clearance in preterm infants with blood stream infections. Eur. J. Pediatr. 2012, 171, 811–816. [Google Scholar] [CrossRef]
- NICE Guideline. Neonatal Parenteral Nutrition. Lipids Neonatal Parenter. Nutr. Evid. Rev. 2020, D3, 2–5. [Google Scholar]
- Lapillonne, A.; Fidler Mis, N.; Goulet, O.; van den Akker, C.H.P.; Wu, J.; Koletzko, B. ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Lipids. Clin. Nutr. 2018, 37, 2324–2336. [Google Scholar] [CrossRef]
- Vlaardingerbroek, H.; Vermeulen, M.J.; Rook, D.; van den Akker, C.H.P.; Dorst, K.; Wattimena, J.L.; Vermes, A.; Schierbeek, H.; van Goudoever, J.B. Safety and efficacy of early parenteral lipid and high-dose amino acid administration to very low birth weight infants. J. Pediatr. 2013, 163, 638–644.e5. [Google Scholar] [CrossRef]
- Drenckpohl, D.; McConnell, C.; Gaffney, S.; Niehaus, M.; Macwan, K.S. Randomized trial of very low birth weight infants receiving higher rates of infusion of intravenous fat emulsions during the first week of life. Pediatrics 2008, 122, 743–751. [Google Scholar] [CrossRef]
- Kao, L.C.; Cheng, M.H.; Warburton, D. Triglycerides, free fatty acids, free fatty acids/albumin molar ratio, and cholesterol levels in serum of neonates receiving long-term lipid infusions: Controlled trial of continuous and intermittent regimens. J. Pediatr. 1984, 104, 429–435. [Google Scholar] [CrossRef]
- Wilson, D.C.; Cairns, P.; Halliday, H.L.; Reid, M.; McClure, G.; Dodge, J.A. Randomised controlled trial of an aggressive nutritional regimen in sick very low birthweight infants. Arch. Dis. Child. Fetal Neonatal Ed. 1997, 77, F4–F11. [Google Scholar] [CrossRef] [Green Version]
- Cairns, P.A.; Wilson, D.C.; Jenkins, J.; McMaster, D.; McClure, B.G. Tolerance of mixed lipid emulsion in neonates: Effect of concentration. Arch. Dis. Child. Fetal Neonatal Ed. 1996, 75, F113–F116. [Google Scholar] [CrossRef]
- Haumont, D.; Richelle, M.; Deckelbaum, R.J.; Coussaert, E.; Carpentier, Y.A. Effect of liposomal content of lipid emulsions on plasma lipid concentrations in low birth weight infants receiving parenteral nutrition. J. Pediatr. 1992, 121, 759–763. [Google Scholar] [CrossRef] [Green Version]
- Haumont, D.; Deckelbaum, R.J.; Richelle, M.; Dahlan, W.; Coussaert, E.; Bihain, B.E.; Carpentier, Y.A. Plasma lipid and plasma lipoprotein concentrations in low birth weight infants given parenteral nutrition with twenty or ten percent lipid emulsion. J. Pediatr. 1989, 115, 787–793. [Google Scholar] [CrossRef]
- Gohlke, B.C.; Fahnenstich, H.; Kowalewski, S. Serum lipids during parenteral nutrition with a 10% lipid emulsion with reduced phopholipid emulsifier content in premature infants. J. Pediatr. Endocrinol. Metab. 1997, 10, 505–509. [Google Scholar] [CrossRef]
- Berkow, S.E.; Spear, M.L.; Stahl, G.E.; Gutman, A.; Polin, R.A.; Pereira, G.R.; Olivecrona, T.; Hamosh, P.; Hamosh, M. Total parenteral nutrition with intralipid in premature infants receiving TPN with heparin: Effect on plasma lipolytic enzymes, lipids, and glucose. J. Pediatr. Gastroenterol. Nutr. 1987, 6, 581–588. [Google Scholar] [CrossRef]
- Long, C.S.; Haller, R.G.; Foster, D.W.; McGarry, J.D. Kinetics of carnitine-dependent fatty acid oxidation: Implications for human carnitine deficiency. Neurology 1982, 32, 663–666. [Google Scholar] [CrossRef]
- Cairns, P.A.; Stalker, D.J. Carnitine supplementation of parenterally fed neonates. Cochrane Database Syst. Rev. 2000, 2000, CD000950. [Google Scholar] [CrossRef]
- Sulkers, E.J.; Lafeber, H.N.; Degenhart, H.J.; Przyrembel, H.; Schlotzer, E.; Sauer, P.J. Effects of high carnitine supplementation on substrate utilization in low-birth-weight infants receiving total parenteral nutrition. Am. J. Clin. Nutr. 1990, 52, 889–894. [Google Scholar] [CrossRef] [Green Version]
- Yu, V.Y.; James, B.; Hendry, P.; MacMahon, R.A. Total parenteral nutrition in very low birthweight infants: A controlled trial. Arch. Dis. Child. 1979, 54, 653–661. [Google Scholar] [CrossRef]
- Thureen, P.J.; Hay, W.W. Intravenous nutrition and postnatal growth of the micropremie. Clin. Perinatol. 2000, 27, 197–219. [Google Scholar] [CrossRef]
- Cooke, R.W. Factors associated with chronic lung disease in preterm infants. Arch. Dis. Child. 1991, 66, 776–779. [Google Scholar] [CrossRef] [Green Version]
- Levene, M.I.; Batisti, O.; Wigglesworth, J.S.; Desai, R.; Meek, J.H.; Bulusu, S.; Hughes, E. A prospective study of intrapulmonary fat accumulation in the newborn lung following intralipid infusion. Acta Paediatr. Scand. 1984, 73, 454–460. [Google Scholar] [CrossRef]
- Pereira, G.R.; Fox, W.W.; Stanley, C.A.; Baker, L.; Schwartz, J.G. Decreased Oxygenation and Hyperlipemia During Intravenous Fat Infusions in Premature Infants. Pediatrics 1980, 66, 26–30. [Google Scholar] [CrossRef]
- Prasertsom, W.; Phillipos, E.Z.; Van Aerde, J.E.; Robertson, M. Pulmonary vascular resistance during lipid infusion in neonates. Arch. Dis. Child. Fetal Neonatal Ed. 1996, 74, F95–F98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrew, G.; Chan, G.; Schiff, D. Lipid metabolism in the neonate. J. Pediatr. 1976, 88, 279–284. [Google Scholar] [CrossRef]
- Gilbertson, N.; Kovar, I.Z.; Cox, D.J.; Crowe, L.; Palmer, N.T. Introduction of intravenous lipid administration on the first day of life in the very low birth weight neonate. J. Pediatr. 1991, 119, 615–623. [Google Scholar] [CrossRef]
- Adamkin, D.H.; Radmacher, P.G.; Klingbeil, R.L. Use of intravenous lipid and hyperbilirubinemia in the first week. J. Pediatr. Gastroenterol. Nutr. 1992, 14, 135–139. [Google Scholar] [CrossRef]
- Brans, Y.W.; Ritter, D.A.; Kenny, J.D.; Andrew, D.S.; Dutton, E.B.; Carrillo, D.W. Influence of intravenous fat emulsion on serum bilirubin in very low birthweight neonates. Arch. Dis. Child. 1987, 62, 156–160. [Google Scholar] [CrossRef]
- Helbock, H.J.; Motchnik, P.A.; Ames, B.N. Toxic hydroperoxides in intravenous lipid emulsions used in preterm infants. Pediatrics 1993, 91, 83–87. [Google Scholar] [CrossRef]
- Kljuchnikov, S.; Pitkänen, O.; Raivio, K.O.; Andersson, S. Haemolysis in adult and neonatal erythrocytes caused by autoxidation of lipid emulsion (Intralipid). Acta Paediatr. 1993, 82, 348–351. [Google Scholar] [CrossRef]
- Pitkänen, O.; Hallman, M.; Andersson, S. Generation of free radicals in lipid emulsion used in parenteral nutrition. Pediatr. Res. 1991, 29, 56–59. [Google Scholar] [CrossRef] [Green Version]
- Neuzil, J.; Darlow, B.A.; Inder, T.E.; Sluis, K.B.; Winterbourn, C.C.; Stocker, R. Oxidation of parenteral lipid emulsion by ambient and phototherapy lights: Potential toxicity of routine parenteral feeding. J. Pediatr. 1995, 126, 785–790. [Google Scholar] [CrossRef]
- Laborie, S.; Lavoie, J.C.; Chessex, P. Increased urinary peroxides in newborn infants receiving parenteral nutrition exposed to light. J. Pediatr. 2000, 136, 628–632. [Google Scholar] [CrossRef]
- Inder, T.E.; Darlow, B.A.; Sluis, K.B.; Winterbourn, C.C.; Graham, P.; Sanderson, K.J.; Taylor, B.J. The correlation of elevated levels of an index of lipid peroxidation (MDA-TBA) with adverse outcome in the very low birthweight infant. Acta Paediatr. 1996, 85, 1116–1122. [Google Scholar] [CrossRef]
- Domellöf, M.; Szitanyi, P.; Simchowitz, V.; Franz, A.; Mimouni, F. ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Iron and trace minerals. Clin. Nutr. 2018, 37, 2354–2359. [Google Scholar] [CrossRef] [Green Version]
- Domellöf, M. Nutritional care of premature infants: Microminerals. World Rev. Nutr. Diet. 2014, 110, 121–139. [Google Scholar] [CrossRef]
- Vanek, V.W.; Borum, P.; Buchman, A.; Fessler, T.A.; Howard, L.; Jeejeebhoy, K.; Kochevar, M.; Shenkin, A.; Valentine, C.J.; Novel Nutrient Task Force, Parenteral Multi-Vitamin and Multi–Trace Element Working Group; et al. ASPEN position paper: Recommendations for changes in commercially available parenteral multivitamin and multi-trace element products. Nutr. Clin. Pract. 2012, 27, 440–491. [Google Scholar] [CrossRef]
- Finch, C.W. Review of trace mineral requirements for preterm infants: What are the current recommendations for clinical practice? Nutr. Clin. Pract. 2015, 30, 44–58. [Google Scholar] [CrossRef]
- Vanek, V.W. Review of Trace Mineral Requirements for Preterm Infants: What Are the Current Recommendations for Clinical Practice? Nutr. Clin. Pract. 2015, 30, 720–721. [Google Scholar] [CrossRef]
- Gupta, K.; Wang, H.; Amin, S.B. Copper Supplementation in Premature Infants with Parenteral Nutrition-Associated Cholestasis. Nutr. Clin. Pract. 2018, 33, 718–724. [Google Scholar] [CrossRef]
- Wong, T. Parenteral trace elements in children: Clinical aspects and dosage recommendations. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 649–656. [Google Scholar] [CrossRef]
- Curiel, K.; Lim, J.; Peters, S.; Keeler, D. Iodine Deficiency in Parenteral Nutrition. JPEN. J. Parenter. Enteral Nutr. 2017, 41, 11. [Google Scholar] [CrossRef]
- Bronsky, J.; Campoy, C.; Braegger, C. ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Vitamins. Clin. Nutr. 2018, 37, 2366–2378. [Google Scholar] [CrossRef] [Green Version]
- Agostoni, C.; Buonocore, G.; Carnielli, V.; De Curtis, M.; Darmaun, D.; Decsi, T.; Domellöf, M.; Embleton, N.; Fusch, C.; Genzel-Boroviczeny, O.; et al. Enteral Nutrient Supply for Preterm Infants: Commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 85–91. [Google Scholar] [CrossRef]
- Greenberg, J.M.; Poindexter, B.B.; Shaw, P.A.; Bellamy, S.L.; Keller, R.L.; Moore, P.E.; McPherson, C.; Ryan, R.M. Respiratory medication use in extremely premature (<29 weeks) infants during initial NICU hospitalization: Results from the prematurity and respiratory outcomes program. Pediatr. Pulmonol. 2020, 55, 360–368. [Google Scholar] [CrossRef]
- Moltu, S.J.; Bronsky, J.; Embleton, N.; Gerasimidis, K.; Indrio, F.; Köglmeier, J.; de Koning, B.; Lapillonne, A.; Norsa, L.; Verduci, E.; et al. Nutritional Management of the Critically Ill Neonate: A Position Paper of the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2021, 73, 274–289. [Google Scholar] [CrossRef]
Vitamin A | 700–1500 IU/kg/die | Vitamin A plays an essential role in vision, normal differentiation and maintenance of epithelial cells, adequate immune function (T-cell function), reproduction, growth and development. |
Vitamin D | 200–1000 IU/die | The main function of vitamin D is the regulation of calcium and phosphate. It is essential for bone health. Other health effects of vitamin D, such as prevention of immune-related and infectious diseases, cardiovascular disease, and cancer, have been discussed. |
Vitamin E | 2.8–3.5 mg/kg/die | Vitamin E (tocopherol) is a lipid-soluble and powerful biological antioxidant which is present in most parenteral lipid emulsions |
Vitamin K | 10 μg/kg/die | Vitamin K (phylloquinone) regulates carboxylation of the coagulation factors II, VII, IX, X. Protein C and protein S are also vitamin K dependent. Vitamin K plays a role in the synthesis of osteocalcin, a marker of bone formation |
Vitamin C | 15–25 mg/kg/die | Vitamin C (ascorbic acid) is a cofactor for many enzymes and a strong antioxidant |
Thiamine | 0.35–0.50 mg/Kg/die | Thiamine pyrophosphate is involved in carbohydrate and lipid metabolism |
Riboflavin | 0.15–0.2 mg/kg/die | Riboflavin participates in energy metabolism. |
Pyridoxine | 0.15–0.2 mg/kg/die | Pyridoxine is necessary cofactor for over 100 enzymes that are mostly involved in glycolysis, gluconeogenesis and amino-acid (AA) metabolism, including transamination, deamination, decarboxylation of AA in neurotransmitters (dopamine, serotonin, glutamate, etc.) and the development of the immune system. It is also needed for the synthesis of sphingolipids, hemoglobin and gene expression |
Niacin | 4–6.8 mg/kg/die | Niacin is essential for the synthesis of nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate which serve as cofactors for electron transport and energy metabolism |
Vitamin B12 | 0.3 μg/kg/die | Vitamin B12 is an organometallic complex. It participates in metabolic reactions involving the synthesis of DNA nucleotides |
Folic acid | 56 mg/kg/die | FA is essential for humans and acts as a cofactor in certain biological reactions; it is needed in the biosynthesis of purines and pyrimidines, for mitotic cell division, in the metabolism of some amino acids and for histidine catabolism |
Pantothenic acid | 2.5 mg/kg/die | Pantothenic acid (vitamin B5) is required for the synthesis of coenzyme A and therefore essential for fatty acid metabolism. |
Biotin | 5–8 μg/kg/die |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzo, V.; Capozza, M.; Panza, R.; Laforgia, N.; Baldassarre, M.E. Macronutrients and Micronutrients in Parenteral Nutrition for Preterm Newborns: A Narrative Review. Nutrients 2022, 14, 1530. https://doi.org/10.3390/nu14071530
Rizzo V, Capozza M, Panza R, Laforgia N, Baldassarre ME. Macronutrients and Micronutrients in Parenteral Nutrition for Preterm Newborns: A Narrative Review. Nutrients. 2022; 14(7):1530. https://doi.org/10.3390/nu14071530
Chicago/Turabian StyleRizzo, Valentina, Manuela Capozza, Raffaella Panza, Nicola Laforgia, and Maria Elisabetta Baldassarre. 2022. "Macronutrients and Micronutrients in Parenteral Nutrition for Preterm Newborns: A Narrative Review" Nutrients 14, no. 7: 1530. https://doi.org/10.3390/nu14071530
APA StyleRizzo, V., Capozza, M., Panza, R., Laforgia, N., & Baldassarre, M. E. (2022). Macronutrients and Micronutrients in Parenteral Nutrition for Preterm Newborns: A Narrative Review. Nutrients, 14(7), 1530. https://doi.org/10.3390/nu14071530