Prenatal and Postnatal Choline Supplementation in Fetal Alcohol Spectrum Disorder
Abstract
:1. Introduction
2. Alcohol’s Effects on the Developing Brain and Cognition
2.1. Mechanisms of Alcohol Teratogenesis
2.2. Global Structural Abnormalities in Brain following PAE
2.3. PAE May Disproportionately Affect the Hippocampus and Memory
2.4. White Matter and Network Connectivity
3. An Overview of Choline and Its Role in Typical Neurodevelopment
Mechanisms of Choline’s Action in the Developing Brain
4. Preclinical Evidence Showing That Choline Augments Development following PAE
4.1. Brain Structure and Function
4.2. Working Memory and Learning
5. Human Studies Also Demonstrate Choline Benefits following PAE
5.1. Prenatal Choline Supplementation in Humans
5.2. Postnatal Choline Supplementation in Humans
Publication | Participants (n, Age, Diagnosis) | Choline (Dose, Duration, Form) | Design | Outcome Measures (Cognitive, Behavioral) | Main Findings |
---|---|---|---|---|---|
Wozniak et al. (2013) [162] | n= 20 2.5–4.9 years old with PAE | 500 mg choline or placebo 9 months Choline bitartrate | Phase 1 pilot study Double-blind, randomized placebo-controlled trial | Feasibility, adverse effects, tolerability, serum choline levels | Minimal adverse events in choline group, other than a fishy body odor Choline supplementation is feasible and highly tolerable. |
Wozniak et al. (2015) [163] | n= 60 2.5–5 years old with PAE | 513 mg choline or placebo 9 months Choline bitartrate | Double-blind, randomized, placebo-controlled trial. | IQ, elicited imitation (EI) task (i.e., sequential memory) | Improved sequential memory in younger participants (i.e., 2–3 years) who received choline |
Nguyen et al. (2016) [168] | n= 55 5–10 years old with heavy PAE | 29 children had 625 mg choline and 26 children had placebo 6 weeks Glycerophosphocholine | Multisite study Randomized, double-blind, placebo-controlled clinical trial | Memory, executive functioning, attention and hyperactivity | No effects of choline |
Wozniak et al. (2020) [167] | n= 31; 4 year follow-up after completion of prior Choline study [163] M = 8.6 years old with PAE | Participants had previously received 513 mg of choline 9 months Choline bitartrate | 4-year follow-up of randomized, double-blind, placebo-controlled trial | IQ, memory, executive functioning, behavioral and emotional functioning | Choline group: improvements in non-verbal intelligence, visual-spatial skills, working memory, verbal memory, and ADHD symptoms |
Smith et al. (2021) [166] | 52 children 2–5 years old with an FASD | Children had previously received 500 mg of choline or placebo 9 months Choline bitartrate | Current study was a retrospective analysis utilizing data from the randomized, double-blind trial | Genotyped participants for 384 choline-related single nucleotide polymorphisms (SNPs). Memory and cognition | 14-16 SNPs within the SLC44A1 gene largely associated with improved performance on the EI task |
6. Current Insights into Human Choline Supplementation for Neurodevelopment
Formulations and Delivered Choline
7. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hoyme, H.E.; Kalberg, W.O.; Elliott, A.J.; Blankenship, J.; Buckley, D.; Marais, A.S.; Manning, M.A.; Robinson, L.K.; Adam, M.P.; Abdul-Rahman, O.; et al. Updated Clinical Guidelines for Diagnosing Fetal Alcohol Spectrum Disorders. Pediatrics 2016, 138, e20154256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- May, P.A.; Chambers, C.D.; Kalberg, W.O.; Zellner, J.; Feldman, H.; Buckley, D.; Kopald, D.; Hasken, J.M.; Xu, R.; Honerkamp-Smith, G.; et al. Prevalence of Fetal Alcohol Spectrum Disorders in 4 US Communities. JAMA 2018, 319, 474–482. [Google Scholar] [CrossRef]
- Lange, S.; Probst, C.; Gmel, G.; Rehm, J.; Burd, L.; Popova, S. Global Prevalence of Fetal Alcohol Spectrum Disorder Among Children and Youth: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2017, 171, 948–956. [Google Scholar] [CrossRef] [PubMed]
- May, P.A.; Blankenship, J.; Marais, A.S.; Gossage, J.P.; Kalberg, W.O.; Barnard, R.; De Vries, M.; Robinson, L.K.; Adnams, C.M.; Buckley, D.; et al. Approaching the Prevalence of the Full Spectrum of Fetal Alcohol Spectrum Disorders in a South African Population-Based Study. Alcohol. Clin. Exp. Res. 2013, 37, 818–830. [Google Scholar] [CrossRef] [Green Version]
- May, P.A.; De Vries, M.M.; Marais, A.S.; Kalberg, W.O.; Buckley, D.; Adnams, C.M.; Hasken, J.M.; Tabachnick, B.; Robinson, L.K.; Manning, M.A.; et al. Replication of High Fetal Alcohol Spectrum Disorders Prevalence Rates, Child Characteristics, and Maternal Risk Factors in a Second Sample of Rural Communities in South Africa. Int. J. Environ. Res. Public Health 2017, 14, 522. [Google Scholar] [CrossRef] [Green Version]
- Manthey, J.; Shield, K.D.; Rylett, M.; Hasan, O.S.M.; Probst, C.; Rehm, J. Global Alcohol Exposure between 1990 and 2017 and Forecasts until 2030: A Modelling Study. Lancet 2019, 393, 2493–2502. [Google Scholar] [CrossRef]
- Castaldelli-Maia, J.M.; Segura, L.E.; Martins, S.S. The Concerning Increasing Trend of Alcohol Beverage Sales in the U.S. during the COVID-19 Pandemic. Alcohol 2021, 96, 37–42. [Google Scholar] [CrossRef]
- Petrenko, C.L.; Alto, M.E. Interventions in Fetal Alcohol Spectrum Disorders: An International Perspective. Eur. J. Med. Genet. 2017, 60, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Rangmar, J.; Hjern, A.; Vinnerljung, B.; Stromland, K.; Aronson, M.; Fahlke, C. Psychosocial Outcomes of Fetal Alcohol Syndrome in Adulthood. Pediatrics 2015, 135, e52–e58. [Google Scholar] [CrossRef] [PubMed]
- Chasnoff, I.J.; Wells, A.M.; King, L. Misdiagnosis and Missed Diagnoses in Foster and Adopted Children with Prenatal Alcohol Exposure. Pediatrics 2015, 135, 264–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLennan, J.D. Misattributions and Potential Consequences: The Case of Child Mental Health Problems and Fetal Alcohol Spectrum Disorders. Can. J. Psychiatry 2015, 60, 587–590. [Google Scholar] [CrossRef] [Green Version]
- Astley, S.J. Validation of the Fetal Alcohol Spectrum Disorder (FASD) 4-Digit Diagnostic Code. J. Popul. Ther. Clin. Pharmacol. 2013, 20, e416–e467. [Google Scholar]
- Hagan, J.F., Jr.; Balachova, T.; Bertrand, J.; Chasnoff, I.; Dang, E.; Fernandez-Baca, D.; Kable, J.; Kosofsky, B.; Senturias, Y.N.; Singh, N.; et al. Neurobehavioral Disorder Associated with Prenatal Alcohol Exposure. Pediatrics 2016, 138, e20151553. [Google Scholar] [CrossRef] [Green Version]
- Wozniak, J.R.; Riley, E.P.; Charness, M.E. Clinical Presentation, Diagnosis, and Management of Fetal Alcohol Spectrum Disorder. Lancet Neurol. 2019, 18, 760–770. [Google Scholar] [CrossRef]
- Panczakiewicz, A.L.; Glass, L.; Coles, C.D.; Kable, J.A.; Sowell, E.R.; Wozniak, J.R.; Jones, K.L.; Riley, E.P.; Mattson, S.N. Cifasd Neurobehavioral Deficits Consistent Across Age and Sex in Youth with Prenatal Alcohol Exposure. Alcohol. Clin. Exp. Res. 2016, 40, 1971–1981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, S.; Wilunda, C.; Kimura, T.; Takeuchi, M.; Kawakami, K. Prenatal Alcohol Exposure and Suspected Hearing Impairment Among Children: A Population-Based Retrospective Cohort Study. Alcohol Alcohol. 2018, 53, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Glass, L.; Ware, A.L.; Mattson, S.N. Neurobehavioral, Neurologic, and Neuroimaging Characteristics of Fetal Alcohol Spectrum Disorders. Handb. Clin. Neurol. 2014, 125, 435–462. [Google Scholar] [PubMed]
- Marcus, J.C. Neurological Findings in the Fetal Alcohol Syndrome. Neuropediatrics 1987, 18, 158–160. [Google Scholar] [CrossRef]
- Popova, S.; Lange, S.; Shield, K.; Mihic, A.; Chudley, A.E.; Mukherjee, R.A.S.; Bekmuradov, D.; Rehm, J. Comorbidity of Fetal Alcohol Spectrum Disorder: A Systematic Review and Meta-Analysis. Lancet 2016, 387, 978–987. [Google Scholar] [CrossRef]
- Weyrauch, D.; Schwartz, M.; Hart, B.; Klug, M.G.; Burd, L. Comorbid Mental Disorders in Fetal Alcohol Spectrum Disorders: A Systematic Review. J. Dev. Behav. Pediatr. 2017, 38, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.M.; Riley, E.P. What Happens When Children with Fetal Alcohol Spectrum Disorders Become Adults? Curr. Dev. Disord. Rep. 2015, 2, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Flannigan, K.; Coons-Harding, K.D.; Anderson, T.; Wolfson, L.; Campbell, A.; Mela, M.; Pei, J. A Systematic Review of Interventions to Improve Mental Health and Substance Use Outcomes for Individuals with Prenatal Alcohol Exposure and Fetal Alcohol Spectrum Disorder. Alcohol. Clin. Exp. Res. 2020, 44, 2401–2430. [Google Scholar] [CrossRef] [PubMed]
- Petrenko, C.L.M.; Davis, A.S. Neuropsychological Aspects of Prevention and Intervention for FASD: International Perspectives. J. Pediatric Neuropsychol. 2017, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Boseck, J.J.; Davis, A.S.; Cassady, J.C.; Finch, W.H.; Gelder, B.C. Cognitive and Adaptive Skill Profile Differences in Children with Attention-Deficit Hyperactivity Disorder with and without Comorbid Fetal Alcohol Spectrum Disorder. Appl. Neuropsychol. Child 2015, 4, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine; Food and Nutrition Board; Subcommittee on Upper Reference Levels of Nutrients. Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and Its Panel on Folate, Other B Vitamins, and Choline. In Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academies Press: Washington, DC, USA, 2000; ISBN 9780309064118. [Google Scholar]
- Zeisel, S.H.; Niculescu, M.D. Perinatal Choline Influences Brain Structure and Function. Nutr. Rev. 2006, 64, 197–203. [Google Scholar] [CrossRef]
- Almeida, L.; Andreu-Fernández, V.; Navarro-Tapia, E.; Aras-López, R.; Serra-Delgado, M.; Martínez, L.; García-Algar, O.; Gómez-Roig, M.D. Murine Models for the Study of Fetal Alcohol Spectrum Disorders: An Overview. Front. Pediatr. 2020, 8, 359. [Google Scholar] [CrossRef]
- Petrelli, B.; Weinberg, J.; Hicks, G.G. Effects of Prenatal Alcohol Exposure (PAE): Insights into FASD Using Mouse Models of PAE. Biochem. Cell Biol. 2018, 96, 131–147. [Google Scholar] [CrossRef]
- Guizzetti, M. Chapter 3—Fetal Alcohol Spectrum Disorders: Effects and Mechanisms of Ethanol on the Developing Brain. In Environmental Factors in Neurodevelopmental and Neurodegenerative Disorders; Aschner, M., Costa, L.G., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 45–65. ISBN 9780128002285. [Google Scholar]
- Goodlett, C.R.; Horn, K.H.; Zhou, F.C. Alcohol Teratogenesis: Mechanisms of Damage and Strategies for Intervention. Exp. Biol. Med. 2005, 230, 394–406. [Google Scholar] [CrossRef]
- Kaminen-Ahola, N. Fetal Alcohol Spectrum Disorders: Genetic and Epigenetic Mechanisms. Prenat. Diagn. 2020, 40, 1185–1192. [Google Scholar] [CrossRef]
- Wilhelm, C.J.; Guizzetti, M. Fetal Alcohol Spectrum Disorders: An Overview from the Glia Perspective. Front. Integr. Neurosci. 2015, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- Carter, R.C.; Wainwright, H.; Molteno, C.D.; Georgieff, M.K.; Dodge, N.C.; Warton, F.; Meintjes, E.M.; Jacobson, J.L.; Jacobson, S.W. Alcohol, Methamphetamine, and Marijuana Exposure Have Distinct Effects on the Human Placenta. Alcohol. Clin. Exp. Res. 2016, 40, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.W.; Roskams, A.J.I.; Connor, J.R. Iron Regulation in the Developing Rat Brain: Effect of In Utero Ethanol Exposure. J. Neurochem. 2002, 65, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Carter, R.C.; Colin Carter, R.; Georgieff, M.K.; Ennis, K.M.; Dodge, N.C.; Wainwright, H.; Meintjes, E.M.; Duggan, C.P.; Molteno, C.D.; Jacobson, J.L.; et al. Prenatal Alcohol-Related Alterations in Maternal, Placental, Neonatal, and Infant Iron Homeostasis. Am. J. Clin. Nutr. 2021, 114, 1107–1122. [Google Scholar] [CrossRef]
- Bastian, T.W.; von Hohenberg, W.C.; Mickelson, D.J.; Lanier, L.M.; Georgieff, M.K. Iron Deficiency Impairs Developing Hippocampal Neuron Gene Expression, Energy Metabolism, and Dendrite Complexity. Dev. Neurosci. 2016, 38, 264–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorgenson, L.A.; Wobken, J.D.; Georgieff, M.K. Perinatal Iron Deficiency Alters Apical Dendritic Growth in Hippocampal CA1 Pyramidal Neurons. Dev. Neurosci. 2003, 25, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Connor, J.R.; Menzies, S.L. Relationship of Iron to Oligodendrocytes and Myelination. Glia 1996, 17, 83–93. [Google Scholar] [CrossRef]
- Lebel, C.; Roussotte, F.; Sowell, E.R. Imaging the Impact of Prenatal Alcohol Exposure on the Structure of the Developing Human Brain. Neuropsychol. Rev. 2011, 21, 102–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, E.M.; Migliorini, R.; Infante, M.A.; Riley, E.P. Fetal Alcohol Spectrum Disorders: Recent Neuroimaging Findings. Curr. Dev. Disord. Rep. 2014, 1, 161–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebel, C.; Mattson, S.N.; Riley, E.P.; Jones, K.L.; Adnams, C.M.; May, P.A.; Bookheimer, S.Y.; O’Connor, M.J.; Narr, K.L.; Kan, E.; et al. A Longitudinal Study of the Long-Term Consequences of Drinking during Pregnancy: Heavy in Utero Alcohol Exposure Disrupts the Normal Processes of Brain Development. J. Neurosci. 2012, 32, 15243–15251. [Google Scholar] [CrossRef]
- Treit, S.; Lebel, C.; Baugh, L.; Rasmussen, C.; Andrew, G.; Beaulieu, C. Longitudinal MRI Reveals Altered Trajectory of Brain Development during Childhood and Adolescence in Fetal Alcohol Spectrum Disorders. J. Neurosci. 2013, 33, 10098–10109. [Google Scholar] [CrossRef] [Green Version]
- Gautam, P.; Lebel, C.; Narr, K.L.; Mattson, S.N.; May, P.A.; Adnams, C.M.; Riley, E.P.; Jones, K.L.; Kan, E.C.; Sowell, E.R. Volume Changes and Brain-Behavior Relationships in White Matter and Subcortical Gray Matter in Children with Prenatal Alcohol Exposure. Hum. Brain Mapp. 2015, 36, 2318–2329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendrickson, T.J.; Mueller, B.A.; Sowell, E.R.; Mattson, S.N.; Coles, C.D.; Kable, J.A.; Jones, K.L.; Boys, C.J.; Lee, S.; Lim, K.O.; et al. Two-Year Cortical Trajectories Are Abnormal in Children and Adolescents with Prenatal Alcohol Exposure. Dev. Cogn. Neurosci. 2018, 30, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, T.J.; Mueller, B.A.; Sowell, E.R.; Mattson, S.N.; Coles, C.D.; Kable, J.A.; Jones, K.L.; Boys, C.J.; Lim, K.O.; Riley, E.P.; et al. Cortical Gyrification Is Abnormal in Children with Prenatal Alcohol Exposure. Neuroimage Clin. 2017, 15, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Ware, A.L.; Long, X.; Lebel, C. Functional Connectivity of the Attention Networks Is Altered and Relates to Neuropsychological Outcomes in Children with Prenatal Alcohol Exposure. Dev. Cogn. Neurosci. 2021, 48, 100951. [Google Scholar] [CrossRef]
- Wozniak, J.R.; Mueller, B.A.; Mattson, S.N.; Coles, C.D.; Kable, J.A.; Jones, K.L.; Boys, C.J.; Lim, K.O.; Riley, E.P.; Sowell, E.R.; et al. Functional Connectivity Abnormalities and Associated Cognitive Deficits in Fetal Alcohol Spectrum Disorders (FASD). Brain Imaging Behav. 2017, 11, 1432–1445. [Google Scholar] [CrossRef] [PubMed]
- Gautam, P.; Nuñez, S.C.; Narr, K.L.; Kan, E.C.; Sowell, E.R. Effects of Prenatal Alcohol Exposure on the Development of White Matter Volume and Change in Executive Function. Neuroimage Clin. 2014, 5, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Sherbaf, F.G.; Aarabi, M.H.; Yazdi, M.H.; Haghshomar, M. White Matter Microstructure in Fetal Alcohol Spectrum Disorders: A Systematic Review of Diffusion Tensor Imaging Studies. Hum. Brain Mapp. 2019, 40, 1017–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattson, S.N.; Bernes, G.A.; Doyle, L.R. Fetal Alcohol Spectrum Disorders: A Review of the Neurobehavioral Deficits Associated with Prenatal Alcohol Exposure. Alcohol. Clin. Exp. Res. 2019, 43, 1046–1062. [Google Scholar] [CrossRef] [PubMed]
- de L Ferreira, V.K.; Cruz, M.S. Intelligence and Fetal Alcohol Spectrum Disorders: A Review. J. Popul. Ther. Clin. Pharmacol. 2017, 24, e1–e18. [Google Scholar]
- Doney, R.; Lucas, B.R.; Jones, T.; Howat, P.; Sauer, K.; Elliott, E.J. Fine Motor Skills in Children with Prenatal Alcohol Exposure or Fetal Alcohol Spectrum Disorder. J. Dev. Behav. Pediatr. 2014, 35, 598–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodituwakku, P.W. Neurocognitive Profile in Children with Fetal Alcohol Spectrum Disorders. Dev. Disabil. Res. Rev. 2009, 15, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Thorne, J.C. Accentuate the Negative: Grammatical Errors during Narrative Production as a Clinical Marker of Central Nervous System Abnormality in School-Aged Children with Fetal Alcohol Spectrum Disorders. J. Speech Lang. Hear. Res. 2017, 60, 3523–3537. [Google Scholar] [CrossRef] [PubMed]
- de Water, E.; Rockhold, M.N.; Roediger, D.J.; Krueger, A.M.; Mueller, B.A.; Boys, C.J.; Schumacher, M.J.; Mattson, S.N.; Jones, K.L.; Lim, K.O.; et al. Social Behaviors and Gray Matter Volumes of Brain Areas Supporting Social Cognition in Children and Adolescents with Prenatal Alcohol Exposure. Brain Res. 2021, 147388. [Google Scholar] [CrossRef]
- Ware, A.L.; Glass, L.; Crocker, N.; Deweese, B.N.; Coles, C.D.; Kable, J.A.; May, P.A.; Kalberg, W.O.; Sowell, E.R.; Jones, K.L.; et al. Effects of Prenatal Alcohol Exposure and Attention-Deficit/hyperactivity Disorder on Adaptive Functioning. Alcohol. Clin. Exp. Res. 2014, 38, 1439–1447. [Google Scholar] [CrossRef] [Green Version]
- de Water, E.; Krueger, A.M.; Lindgren, C.W.; Fuglestad, A.J.; Rockhold, M.N.; Sandness, K.E.; Eckerle, J.K.; Fink, B.A.; Boys, C.J.; Wozniak, J.R. Early Delay of Gratification Predicts Later Inhibitory Control and Academic Performance in Children with Prenatal Alcohol Exposure. Child Neuropsychol. 2021, 27, 109–124. [Google Scholar] [CrossRef]
- Rasmussen, C.; Tamana, S.; Baugh, L.; Andrew, G.; Tough, S.; Zwaigenbaum, L. Neuropsychological Impairments on the NEPSY-II among Children with FASD. Child Neuropsychol. 2013, 19, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, L.A.; Joshi, S.H.; O’Neill, J.; Kalender, G.; Dillon, A.; Best, K.M.; Narr, K.L.; Alger, J.R.; Levitt, J.G.; O’Connor, M.J. Cortical Gyrification in Children with Attention Deficit-Hyperactivity Disorder and Prenatal Alcohol Exposure. Drug Alcohol Depend. 2021, 225, 108817. [Google Scholar] [CrossRef] [PubMed]
- Roediger, D.J.; Krueger, A.M.; de Water, E.; Mueller, B.A.; Boys, C.A.; Hendrickson, T.J.; Schumacher, M.J.; Mattson, S.N.; Jones, K.L.; Lim, K.O.; et al. Hippocampal Subfield Abnormalities and Memory Functioning in Children with Fetal Alcohol Spectrum Disorders. Neurotoxicol. Teratol. 2021, 83, 106944. [Google Scholar] [CrossRef]
- Lewis, C.E.; Thomas, K.G.F.; Dodge, N.C.; Molteno, C.D.; Meintjes, E.M.; Jacobson, J.L.; Jacobson, S.W. Verbal Learning and Memory Impairment in Children with Fetal Alcohol Spectrum Disorders. Alcohol. Clin. Exp. Res. 2015, 39, 724–732. [Google Scholar] [CrossRef] [Green Version]
- Ho, B.T.; Fritchie, G.E.; Idänpään-Heikkilä, J.E.; McIsaac, W.M. Placental Transfer and Tissue Distribution of Ethanol-1-14C.; A Radioautographic Study in Monkeys and Hamsters. Q. J. Stud. Alcohol 1972, 33, 485–493. [Google Scholar] [CrossRef]
- Abel, E.L.; Dintcheff, B.A. Effects of Prenatal Alcohol Exposure on Growth and Development in Rats. J. Pharmacol. Exp. Ther. 1978, 207, 916–921. [Google Scholar]
- Shaywitz, S.E.; Cohen, D.J.; Shaywitz, B.A. Behavior and Learning Difficulties in Children of Normal Intelligence Born to Alcoholic Mothers. J. Pediatr. 1980, 96, 978–982. [Google Scholar] [CrossRef]
- Barnes, D.E.; Walker, D.W. Prenatal Ethanol Exposure Permanently Reduces the Number of Pyramidal Neurons in Rat Hippocampus. Brain Res. 1981, 227, 333–340. [Google Scholar] [CrossRef]
- Gibson, M.A.S.; Butters, N.S.; Reynolds, J.N.; Brien, J.F. Effects of Chronic Prenatal Ethanol Exposure on Locomotor Activity, and Hippocampal Weight, Neurons, and Nitric Oxide Synthase Activity of the Young Postnatal Guinea Pig. Neurotoxicol. Teratol. 2000, 22, 183–192. [Google Scholar] [CrossRef]
- Livy, D.J.; Miller, E.K.; Maier, S.E.; West, J.R. Fetal Alcohol Exposure and Temporal Vulnerability: Effects of Binge-like Alcohol Exposure on the Developing Rat Hippocampus. Neurotoxicol. Teratol. 2003, 25, 447–458. [Google Scholar] [CrossRef]
- McGoey, T.N.; Reynolds, J.N.; Brien, J.F. Chronic Prenatal Ethanol Exposure-Induced Decrease of Guinea Pig Hippocampal CA1 Pyramidal Cell and Cerebellar Purkinje Cell Density. Can. J. Physiol. Pharmacol. 2003, 81, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.W. Generation of Neurons in the Rat Dentate Gyrus and Hippocampus: Effects of Prenatal and Postnatal Treatment with Ethanol. Alcohol. Clin. Exp. Res. 1995, 19, 1500–1509. [Google Scholar] [CrossRef]
- Tran, T.D.; Kelly, S.J. Critical Periods for Ethanol-Induced Cell Loss in the Hippocampal Formation. Neurotoxicol. Teratol. 2003, 25, 519–528. [Google Scholar] [CrossRef]
- Wigal, S.B.E.; Amsel, A.; Wilcox, R.E. Fetal Ethanol Exposure Diminishes Hippocampal β-Adrenergic Receptor Density While Sparing Muscarinic Receptors during Development. Dev. Brain Res. 1990, 55, 161–169. [Google Scholar] [CrossRef]
- Bonthius, D.J.; West, J.R. Blood Alcohol Concentration and Microencephaly: A Dose-Response Study in the Neonatal Rat. Teratology 1988, 37, 223–231. [Google Scholar] [CrossRef]
- Miki, T.; Harris, S.J.; Wilce, P.A.; Takeuchi, Y.; Bedi, K.S. Effects of Alcohol Exposure during Early Life on Neuron Numbers in the Rat Hippocampus. I. Hilus Neurons and Granule Cells. Hippocampus 2003, 13, 388–398. [Google Scholar] [CrossRef]
- Boschen, K.E.; Klintsova, A.Y. Neurotrophins in the Brain: Interaction with Alcohol Exposure during Development. Vitam. Horm. 2017, 104, 197–242. [Google Scholar] [PubMed]
- Gil-Mohapel, J.; Boehme, F.; Kainer, L.; Christie, B.R. Hippocampal Cell Loss and Neurogenesis after Fetal Alcohol Exposure: Insights from Different Rodent Models. Brain Res. Rev. 2010, 64, 283–303. [Google Scholar] [CrossRef]
- Nardelli, A.; Lebel, C.; Rasmussen, C.; Andrew, G.; Beaulieu, C. Extensive Deep Gray Matter Volume Reductions in Children and Adolescents with Fetal Alcohol Spectrum Disorders. Alcohol. Clin. Exp. Res. 2011, 35, 1404–1417. [Google Scholar] [CrossRef]
- Willoughby, K.A.; Sheard, E.D.; Nash, K.; Rovet, J. Effects of Prenatal Alcohol Exposure on Hippocampal Volume, Verbal Learning, and Verbal and Spatial Recall in Late Childhood. J. Int. Neuropsychol. Soc. 2008, 14, 1022–1033. [Google Scholar] [CrossRef] [Green Version]
- Roussotte, F.F.; Sulik, K.K.; Mattson, S.N.; Riley, E.P.; Jones, K.L.; Adnams, C.M.; May, P.A.; O’Connor, M.J.; Narr, K.L.; Sowell, E.R. Regional Brain Volume Reductions Relate to Facial Dysmorphology and Neurocognitive Function in Fetal Alcohol Spectrum Disorders. Hum. Brain Mapp. 2012, 33, 920–937. [Google Scholar] [CrossRef] [Green Version]
- Astley, S.J.; Aylward, E.H.; Olson, H.C.; Kerns, K.; Brooks, A.; Coggins, T.E.; Davies, J.; Dorn, S.; Gendler, B.; Jirikowic, T.; et al. Magnetic Resonance Imaging Outcomes from a Comprehensive Magnetic Resonance Study of Children with Fetal Alcohol Spectrum Disorders. Alcohol. Clin. Exp. Res. 2009, 33, 1671–1689. [Google Scholar] [CrossRef]
- Coles, C.D.; Goldstein, F.C.; Lynch, M.E.; Chen, X.; Kable, J.A.; Johnson, K.C.; Hu, X. Memory and Brain Volume in Adults Prenatally Exposed to Alcohol. Brain Cogn. 2011, 75, 67–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.J.; Baxter, M.G. Multiple Brain-Memory Systems: The Whole Does Not Equal the Sum of Its Parts. Trends Neurosci. 2001, 24, 324–330. [Google Scholar] [CrossRef]
- White, N.M.; McDonald, R.J. Multiple Parallel Memory Systems in the Brain of the Rat. Neurobiol. Learn. Mem. 2002, 77, 125–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maller, J.J.; Welton, T.; Middione, M.; Callaghan, F.M.; Rosenfeld, J.V.; Grieve, S.M. Revealing the Hippocampal Connectome through Super-Resolution 1150-Direction Diffusion MRI. Sci. Rep. 2019, 9, 2418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ware, A.L.; Infante, M.A.; O’Brien, J.W.; Tapert, S.F.; Jones, K.L.; Riley, E.P.; Mattson, S.N. An fMRI Study of Behavioral Response Inhibition in Adolescents with and without Histories of Heavy Prenatal Alcohol Exposure. Behav. Brain Res. 2015, 278, 137–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, D.; Rasmussen, C.; Pei, J.; Andrew, G.; Reynolds, J.N.; Beaulieu, C. Preserved Cortical Asymmetry despite Thinner Cortex in Children and Adolescents with Prenatal Alcohol Exposure and Associated Conditions. Hum. Brain Mapp. 2018, 39, 72–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krueger, A.M.; Roediger, D.J.; Mueller, B.A.; Boys, C.A.; Hendrickson, T.J.; Schumacher, M.J.; Mattson, S.N.; Jones, K.L.; Riley, E.P.; Lim, K.O.; et al. Para-Limbic Structural Abnormalities Are Associated with Internalizing Symptoms in Children with Prenatal Alcohol Exposure. Alcohol. Clin. Exp. Res. 2020, 44, 1598–1608. [Google Scholar] [CrossRef]
- Cao, W.; Li, W.; Han, H.; O’Leary-Moore, S.K.; Sulik, K.K.; Allan Johnson, G.; Liu, C. Prenatal Alcohol Exposure Reduces Magnetic Susceptibility Contrast and Anisotropy in the White Matter of Mouse Brains. Neuroimage 2014, 102 Pt 2, 748–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebel, C.; Rasmussen, C.; Wyper, K.; Walker, L.; Andrew, G.; Yager, J.; Beaulieu, C. Brain Diffusion Abnormalities in Children with Fetal Alcohol Spectrum Disorder. Alcohol. Clin. Exp. Res. 2008, 32, 1732–1740. [Google Scholar] [CrossRef]
- Riley, E.P.; Mattson, S.N.; Sowell, E.R.; Jernigan, T.L.; Sobel, D.F.; Jones, K.L. Abnormalities of the Corpus Callosum in Children Prenatally Exposed to Alcohol. Alcohol. Clin. Exp. Res. 1995, 19, 1198–1202. [Google Scholar] [CrossRef] [Green Version]
- Kar, P.; Reynolds, J.E.; Grohs, M.N.; Gibbard, W.B.; McMorris, C.; Tortorelli, C.; Lebel, C. White Matter Alterations in Young Children with Prenatal Alcohol Exposure. Dev. Neurobiol. 2021, 81, 400–410. [Google Scholar] [CrossRef]
- Fan, J.; Meintjes, E.M.; Molteno, C.D.; Spottiswoode, B.S.; Dodge, N.C.; Alhamud, A.A.; Stanton, M.E.; Peterson, B.S.; Jacobson, J.L.; Jacobson, S.W. White Matter Integrity of the Cerebellar Peduncles as a Mediator of Effects of Prenatal Alcohol Exposure on Eyeblink Conditioning. Hum. Brain Mapp. 2015, 36, 2470–2482. [Google Scholar] [CrossRef] [Green Version]
- Wozniak, J.R.; Muetzel, R.L.; Mueller, B.A.; McGee, C.L.; Freerks, M.A.; Ward, E.E.; Nelson, M.L.; Chang, P.-N.; Lim, K.O. Microstructural Corpus Callosum Anomalies in Children with Prenatal Alcohol Exposure: An Extension of Previous Diffusion Tensor Imaging Findings. Alcohol. Clin. Exp. Res. 2009, 33, 1825–1835. [Google Scholar] [CrossRef] [PubMed]
- Lebel, C.; Rasmussen, C.; Wyper, K.; Andrew, G.; Beaulieu, C. Brain Microstructure Is Related to Math Ability in Children with Fetal Alcohol Spectrum Disorder. Alcohol. Clin. Exp. Res. 2010, 34, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, J.R.; Mueller, B.A.; Muetzel, R.L.; Bell, C.J.; Hoecker, H.L.; Nelson, M.L.; Chang, P.-N.; Lim, K.O. Inter-Hemispheric Functional Connectivity Disruption in Children with Prenatal Alcohol Exposure. Alcohol. Clin. Exp. Res. 2011, 35, 849–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wozniak, J.R.; Mueller, B.A.; Bell, C.J.; Muetzel, R.L.; Hoecker, H.L.; Boys, C.J.; Lim, K.O. Global Functional Connectivity Abnormalities in Children with Fetal Alcohol Spectrum Disorders. Alcohol. Clin. Exp. Res. 2013, 37, 748–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eme, R.; Millard, E. Fetal Alcohol Spectrum Disorders: A Literature Review with Screening Recommendations. Sch. Psychol. 2012, 66, 12–20. [Google Scholar]
- Holmes-McNary, M.Q.; Loy, R.; Mar, M.H.; Albright, C.D.; Zeisel, S.H. Apoptosis Is Induced by Choline Deficiency in Fetal Brain and in PC12 Cells. Brain Res. Dev. Brain Res. 1997, 101, 9–16. [Google Scholar] [CrossRef]
- Zeisel, S.H. Choline: Essential for Brain Development and Function. Adv. Pediatr. 1997, 44, 263–295. [Google Scholar]
- Posse de Chaves, E.; Vance, D.E.; Campenot, R.B.; Vance, J.E. Axonal Synthesis of Phosphatidylcholine Is Required for Normal Axonal Growth in Rat Sympathetic Neurons. J. Cell Biol. 1995, 128, 913–918. [Google Scholar] [CrossRef]
- Blusztajn, J.K.; Wurtman, R.J. Choline and Cholinergic Neurons. Science 1983, 221, 614–620. [Google Scholar] [CrossRef] [Green Version]
- Zeisel, S.H. Importance of Methyl Donors during Reproduction. Am. J. Clin. Nutr. 2009, 89, 673S–677S. [Google Scholar] [CrossRef]
- Smithells, R.W.; Sheppard, S.; Schorah, C.J. Vitamin Dificiencies and Neural Tube Defects. Arch. Dis. Child. 1976, 51, 944–950. [Google Scholar] [CrossRef] [Green Version]
- Shaw, G.M.; Carmichael, S.L.; Yang, W.; Selvin, S.; Schaffer, D.M. Periconceptional Dietary Intake of Choline and Betaine and Neural Tube Defects in Offspring. Am. J. Epidemiol. 2004, 160, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Guo-Ross, S.; Lewis, D.V.; Turner, D.; White, A.M.; Wilson, W.A.; Swartzwelder, H.S. Dietary Prenatal Choline Supplementation Alters Postnatal Hippocampal Structure and Function. J. Neurophysiol. 2004, 91, 1545–1555. [Google Scholar] [CrossRef] [PubMed]
- Pyapali, G.K.; Turner, D.A.; Williams, C.L.; Meck, W.H.; Swartzwelder, H.S. Prenatal Dietary Choline Supplementation Decreases the Threshold for Induction of Long-Term Potentiation in Young Adult Rats. J. Neurophysiol. 1998, 79, 1790–1796. [Google Scholar] [CrossRef]
- Jones, J.P.; Meck, W.H.; Williams, C.L.; Wilson, W.A.; Swartzwelder, H.S. Choline Availability to the Developing Rat Fetus Alters Adult Hippocampal Long-Term Potentiation. Brain Res. Dev. Brain Res. 1999, 118, 159–167. [Google Scholar] [CrossRef]
- Mellott, T.J.; Williams, C.L.; Meck, W.H.; Blusztajn, J.K. Prenatal Choline Supplementation Advances Hippocampal Development and Enhances MAPK and CREB Activation. FASEB J. 2004, 18, 545–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albright, C.D.; Friedrich, C.B.; Brown, E.C.; Mar, M.H.; Zeisel, S.H. Maternal Dietary Choline Availability Alters Mitosis, Apoptosis and the Localization of TOAD-64 Protein in the Developing Fetal Rat Septum. Brain Res. Dev. Brain Res. 1999, 115, 123–129. [Google Scholar] [CrossRef]
- Albright, C.D.; Tsai, A.Y.; Friedrich, C.B.; Mar, M.H.; Zeisel, S.H. Choline Availability Alters Embryonic Development of the Hippocampus and Septum in the Rat. Brain Res. Dev. Brain Res. 1999, 113, 13–20. [Google Scholar] [CrossRef]
- Zeisel, S.H. The Fetal Origins of Memory: The Role of Dietary Choline in Optimal Brain Development. J. Pediatr. 2006, 149, S131–S136. [Google Scholar] [CrossRef] [Green Version]
- Meck, W.H.; Smith, R.A.; Williams, C.L. Organizational Changes in Cholinergic Activity and Enhanced Visuospatial Memory as a Function of Choline Administered Prenatally or Postnatally or Both. Behav. Neurosci. 1989, 103, 1234–1241. [Google Scholar] [CrossRef]
- Williams, C.L.; Meck, W.H.; Heyer, D.D.; Loy, R. Hypertrophy of Basal Forebrain Neurons and Enhanced Visuospatial Memory in Perinatally Choline-Supplemented Rats. Brain Res. 1998, 794, 225–238. [Google Scholar] [CrossRef]
- Williams, C.L. Food for Thought: Brain, Genes, and Nutrition. Brain Res. 2008, 1237, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Glenn, M.J.; Kirby, E.D.; Gibson, E.M.; Wong-Goodrich, S.J.; Mellott, T.J.; Blusztajn, J.K.; Williams, C.L. Age-Related Declines in Exploratory Behavior and Markers of Hippocampal Plasticity Are Attenuated by Prenatal Choline Supplementation in Rats. Brain Res. 2008, 1237, 110–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meck, W.H.; Williams, C.L. Metabolic Imprinting of Choline by Its Availability during Gestation: Implications for Memory and Attentional Processing across the Lifespan. Neurosci. Biobehav. Rev. 2003, 27, 385–399. [Google Scholar] [CrossRef]
- Poly, C.; Massaro, J.M.; Seshadri, S.; Wolf, P.A.; Cho, E.; Krall, E.; Jacques, P.F.; Au, R. The Relation of Dietary Choline to Cognitive Performance and White-Matter Hyperintensity in the Framingham Offspring Cohort. Am. J. Clin. Nutr. 2011, 94, 1584–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheatham, C.L.; Goldman, B.D.; Fischer, L.M.; da Costa, K.A.; Reznick, J.S.; Zeisel, S.H. Phosphatidylcholine Supplementation in Pregnant Women Consuming Moderate-Choline Diets Does Not Enhance Infant Cognitive Function: A Randomized, Double-Blind, Placebo-Controlled Trial. Am. J. Clin. Nutr. 2012, 96, 1465–1472. [Google Scholar] [CrossRef] [PubMed]
- Brunst, K.J.; Wright, R.O.; DiGioia, K.; Enlow, M.B.; Fernandez, H.; Wright, R.J.; Kannan, S. Racial/ethnic and Sociodemographic Factors Associated with Micronutrient Intakes and Inadequacies among Pregnant Women in an Urban US Population. Public Health Nutr. 2014, 17, 1960–1970. [Google Scholar] [CrossRef] [Green Version]
- Ross, R.G.; Hunter, S.K.; McCarthy, L.; Beuler, J.; Hutchison, A.K.; Wagner, B.D.; Leonard, S.; Stevens, K.E.; Freedman, R. Perinatal Choline Effects on Neonatal Pathophysiology Related to Later Schizophrenia Risk. Am. J. Psychiatry 2013, 170, 290–298. [Google Scholar] [CrossRef]
- Blusztajn, J.K.; Slack, B.E.; Mellott, T.J. Neuroprotective Actions of Dietary Choline. Nutrients 2017, 9, 815. [Google Scholar] [CrossRef] [Green Version]
- Akison, L.K.; Kuo, J.; Reid, N.; Boyd, R.N.; Moritz, K.M. Effect of Choline Supplementation on Neurological, Cognitive, and Behavioral Outcomes in Offspring Arising from Alcohol Exposure During Development: A Quantitative Systematic Review of Clinical and Preclinical Studies. Alcohol. Clin. Exp. Res. 2018, 42, 1591–1611. [Google Scholar] [CrossRef]
- Tran, P.V.; Kennedy, B.C.; Lien, Y.-C.; Simmons, R.A.; Georgieff, M.K. Fetal Iron Deficiency Induces Chromatin Remodeling at the Bdnf Locus in Adult Rat Hippocampus. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2015, 308, R276–R282. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, D.K.; Gangisetty, O.; Wozniak, J.R.; Eckerle, J.K.; Georgieff, M.K.; Foroud, T.M.; Wetherill, L.; Wertelecki, W.; Chambers, C.D.; Riley, E.; et al. Persistent Changes in Stress-Regulatory Genes in Pregnant Woman or a Child with Prenatal Alcohol Exposure. Alcohol. Clin. Exp. Res. 2019, 43, 1887–1897. [Google Scholar] [CrossRef]
- Bekdash, R.A.; Zhang, C.; Sarkar, D.K. Gestational Choline Supplementation Normalized Fetal Alcohol-Induced Alterations in Histone Modifications, DNA Methylation, and Proopiomelanocortin (POMC) Gene Expression in Beta-Endorphin-Producing POMC Neurons of the Hypothalamus. Alcohol. Clin. Exp. Res. 2013, 37, 1133–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, D.K. Circadian Genes, the Stress Axis, and Alcoholism. Alcohol Res. 2012, 34, 362–366. [Google Scholar] [PubMed]
- Magil, S.G.; Zeisel, S.H.; Wurtman, R.J. Effects of Ingesting Soy or Egg Lecithins on Serum Choline, Brain Choline and Brain Acetylcholine. J. Nutr. 1981, 111, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Conlay, L.A.; Zeisel, S.H. Neurotransmitter Precursors and Brain Function. Neurosurgery 1982, 10, 524–529. [Google Scholar] [CrossRef]
- Meck, W.H.; Smith, R.A.; Williams, C.L. Pre- and Postnatal Choline Supplementation Produces Long-Term Facilitation of Spatial Memory. Dev. Psychobiol. 1988, 21, 339–353. [Google Scholar] [CrossRef]
- Meck, W.H.; Williams, C.L. Characterization of the Facilitative Effects of Perinatal Choline Supplementation on Timing and Temporal Memory. Neuroreport 1997, 8, 2831–2835. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.K.; MacDonald, C.J.; Williams, C.L.; Meck, W.H. Prenatal Choline Supplementation Alters the Timing, Emotion, and Memory Performance (TEMP) of Adult Male and Female Rats as Indexed by Differential Reinforcement of Low-Rate Schedule Behavior. Learn. Mem. 2008, 15, 153–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekdash, R.A. Neuroprotective Effects of Choline and Other Methyl Donors. Nutrients 2019, 11, 2995. [Google Scholar] [CrossRef] [Green Version]
- Zeisel, S.H. The Supply of Choline Is Important for Fetal Progenitor Cells. Semin. Cell Dev. Biol. 2011, 22, 624–628. [Google Scholar] [CrossRef] [Green Version]
- Derbyshire, E.; Obeid, R. Choline, Neurological Development and Brain Function: A Systematic Review Focusing on the First 1000 Days. Nutrients 2020, 12, 1731. [Google Scholar] [CrossRef] [PubMed]
- Linderkamp, O.; Linderkamp-Skoruppa, D.B. Prenatal Structural Brain Development: Genetic and Environmental Determinants. In Handbook of Prenatal and Perinatal Psychology: Integrating Research and Practice; Evertz, K., Janus, L., Linder, R., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 19–32. ISBN 9783030417161. [Google Scholar]
- Utsunomiya, H.; Takano, K.; Okazaki, M.; Mitsudome, A. Development of the Temporal Lobe in Infants and Children: Analysis by MR-Based Volumetry. AJNR Am. J. Neuroradiol. 1999, 20, 717–723. [Google Scholar]
- Dani, S.U.; Hori, A.; Walter, G.F. Principals of Neural Aging; Elsevier: New York, NY, USA, 1997. [Google Scholar]
- Ryan, S.H.; Williams, J.K.; Thomas, J.D. Choline Supplementation Attenuates Learning Deficits Associated with Neonatal Alcohol Exposure in the Rat: Effects of Varying the Timing of Choline Administration. Brain Res. 2008, 1237, 91–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohler, E.G.; Meck, W.H.; Williams, C.L. Sustained Attention in Adult Mice Is Modulated by Prenatal Choline Availability. Int. J. Comp. Psychol. 2001, 14, 136–150. [Google Scholar]
- Barks, A.K.; Liu, S.X.; Georgieff, M.K.; Hallstrom, T.C.; Tran, P.V. Early-Life Iron Deficiency Anemia Programs the Hippocampal Epigenomic Landscape. Nutrients 2021, 13, 3857. [Google Scholar] [CrossRef]
- Georgieff, M.K.; Brunette, K.E.; Tran, P.V. Early Life Nutrition and Neural Plasticity. Dev. Psychopathol. 2015, 27, 411–423. [Google Scholar] [CrossRef] [Green Version]
- Tran, P.V.; Kennedy, B.C.; Pisansky, M.T.; Won, K.-J.; Gewirtz, J.C.; Simmons, R.A.; Georgieff, M.K. Prenatal Choline Supplementation Diminishes Early-Life Iron Deficiency-Induced Reprogramming of Molecular Networks Associated with Behavioral Abnormalities in the Adult Rat Hippocampus. J. Nutr. 2016, 146, 484–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, B.C.; Dimova, J.G.; Siddappa, A.J.M.; Tran, P.V.; Gewirtz, J.C.; Georgieff, M.K. Prenatal Choline Supplementation Ameliorates the Long-Term Neurobehavioral Effects of Fetal-Neonatal Iron Deficiency in Rats. J. Nutr. 2014, 144, 1858–1865. [Google Scholar] [CrossRef] [Green Version]
- Idrus, N.M.; Breit, K.R.; Thomas, J.D. Dietary Choline Levels Modify the Effects of Prenatal Alcohol Exposure in Rats. Neurotoxicol. Teratol. 2017, 59, 43–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawant, O.B.; Birch, S.M.; Goodlett, C.R.; Cudd, T.A.; Washburn, S.E. Maternal Choline Supplementation Mitigates Alcohol-Induced Fetal Cranio-Facial Abnormalities Detected Using an Ultrasonographic Examination in A Sheep Model. Alcohol 2019, 81, 31–38. [Google Scholar] [CrossRef]
- Balaraman, S.; Idrus, N.M.; Miranda, R.C.; Thomas, J.D. Postnatal Choline Supplementation Selectively Attenuates Hippocampal microRNA Alterations Associated with Developmental Alcohol Exposure. Alcohol 2017, 60, 159–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otero, N.K.H.; Thomas, J.D.; Saski, C.A.; Xia, X.; Kelly, S.J. Choline Supplementation and DNA Methylation in the Hippocampus and Prefrontal Cortex of Rats Exposed to Alcohol during Development. Alcohol. Clin. Exp. Res. 2012, 36, 1701–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, R.D.; Thomas, J.D. Adolescent Choline Supplementation Attenuates Working Memory Deficits in Rats Exposed to Alcohol during the Third Trimester Equivalent. Alcohol. Clin. Exp. Res. 2016, 40, 897–905. [Google Scholar] [CrossRef] [Green Version]
- Waddell, J.; Mooney, S.M. Choline and Working Memory Training Improve Cognitive Deficits Caused by Prenatal Exposure to Ethanol. Nutrients 2017, 9, 1080. [Google Scholar] [CrossRef] [PubMed]
- Berman, R.F.; Hannigan, J.H. Effects of Prenatal Alcohol Exposure on the Hippocampus: Spatial Behavior, Electrophysiology, and Neuroanatomy. Hippocampus 2000, 10, 94–110. [Google Scholar] [CrossRef]
- Mattson, S.N.; Crocker, N.; Nguyen, T.T. Fetal Alcohol Spectrum Disorders: Neuropsychological and Behavioral Features. Neuropsychol. Rev. 2011, 21, 81–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, J.D.; Biane, J.S.; O’Bryan, K.A.; O’Neill, T.M.; Dominguez, H.D. Choline Supplementation Following Third-Trimester-Equivalent Alcohol Exposure Attenuates Behavioral Alterations in Rats. Behav. Neurosci. 2007, 121, 120–130. [Google Scholar] [CrossRef]
- Thomas, J.D.; La Fiette, M.H.; Quinn, V.R.; Riley, E.P. Neonatal Choline Supplementation Ameliorates the Effects of Prenatal Alcohol Exposure on a Discrimination Learning Task in Rats. Neurotoxicol. Teratol. 2000, 22, 703–711. [Google Scholar] [CrossRef]
- Kable, J.A.; Coles, C.D.; Keen, C.L.; Uriu-Adams, J.Y.; Jones, K.L.; Yevtushok, L.; Kulikovsky, Y.; Wertelecki, W.; Pedersen, T.L.; Chambers, C.D.; et al. The Impact of Micronutrient Supplementation in Alcohol-Exposed Pregnancies on Information Processing Skills in Ukrainian Infants. Alcohol 2015, 49, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Coles, C.D.; Kable, J.A.; Keen, C.L.; Jones, K.L.; Wertelecki, W.; Granovska, I.V.; Pashtepa, A.O.; Chambers, C.D. CIFASD Dose and Timing of Prenatal Alcohol Exposure and Maternal Nutritional Supplements: Developmental Effects on 6-Month-Old Infants. Matern. Child Health J. 2015, 19, 2605–2614. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, S.W.; Carter, R.C.; Molteno, C.D.; Stanton, M.E.; Herbert, J.S.; Lindinger, N.M.; Lewis, C.E.; Dodge, N.C.; Hoyme, H.E.; Zeisel, S.H.; et al. Efficacy of Maternal Choline Supplementation during Pregnancy in Mitigating Adverse Effects of Prenatal Alcohol Exposure on Growth and Cognitive Function: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Alcohol. Clin. Exp. Res. 2018, 42, 1327–1341. [Google Scholar] [CrossRef] [PubMed]
- Warton, F.L.; Molteno, C.D.; Warton, C.M.R.; Wintermark, P.; Lindinger, N.M.; Dodge, N.C.; Zöllei, L.; Kouwe, A.J.W.; Colin Carter, R.; Jacobson, J.L.; et al. Maternal Choline Supplementation Mitigates Alcohol Exposure Effects on Neonatal Brain Volumes. Alcohol. Clin. Exp. Res. 2021, 45, 1762–1774. [Google Scholar] [CrossRef] [PubMed]
- Mesa, D.A.; Kable, J.A.; Coles, C.D.; Jones, K.L.; Yevtushok, L.; Kulikovsky, Y.; Wertelecki, W.; Coleman, T.P.; Chambers, C.D. CIFASD The Use of Cardiac Orienting Responses as an Early and Scalable Biomarker of Alcohol-Related Neurodevelopmental Impairment. Alcohol. Clin. Exp. Res. 2017, 41, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Zeisel, S.H. What Choline Metabolism Can Tell Us about the Underlying Mechanisms of Fetal Alcohol Spectrum Disorders. Mol. Neurobiol. 2011, 44, 185–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dozet, D.; Burd, L.; Popova, S. Screening for Alcohol Use in Pregnancy: A Review of Current Practices and Perspectives. Int. J. Ment. Health Addict. 2021. [Google Scholar] [CrossRef] [PubMed]
- Premji, S.; Benzies, K.; Serrett, K.; Hayden, K.A. Research-Based Interventions for Children and Youth with a Fetal Alcohol Spectrum Disorder: Revealing the Gap. Child Care Health Dev. 2007, 33, 389–397; discussion 398–400. [Google Scholar] [CrossRef]
- United Nations Children’s Fund, T.W.B.; World Health Organization. UNICEF-WHO-World Bank Joint Child Malnutrition Estimates. In Levels & Trends in Child Malnutrition; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- Wozniak, J.R.; Fuglestad, A.J.; Eckerle, J.K.; Kroupina, M.G.; Miller, N.C.; Boys, C.J.; Brearley, A.M.; Fink, B.A.; Hoecker, H.L.; Zeisel, S.H.; et al. Choline Supplementation in Children with Fetal Alcohol Spectrum Disorders Has High Feasibility and Tolerability. Nutr. Res. 2013, 33, 897–904. [Google Scholar] [CrossRef] [Green Version]
- Wozniak, J.R.; Fuglestad, A.J.; Eckerle, J.K.; Fink, B.A.; Hoecker, H.L.; Boys, C.J.; Radke, J.P.; Kroupina, M.G.; Miller, N.C.; Brearley, A.M.; et al. Choline Supplementation in Children with Fetal Alcohol Spectrum Disorders: A Randomized, Double-Blind, Placebo-Controlled Trial. Am. J. Clin. Nutr. 2015, 102, 1113–1125. [Google Scholar] [CrossRef] [Green Version]
- Riggins, T.; Miller, N.C.; Bauer, P.J.; Georgieff, M.K.; Nelson, C.A. Electrophysiological Indices of Memory for Temporal Order in Early Childhood: Implications for the Development of Recollection. Dev. Sci. 2009, 12, 209–219. [Google Scholar] [CrossRef]
- Riggins, T.; Cheatham, C.L.; Stark, E.; Bauer, P.J. Elicited Imitation Performance at 20 Months Predicts Memory Abilities in School-Aged Children. J. Cogn. Dev. 2013, 14, 593–606. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.M.; Virdee, M.S.; Eckerle, J.K.; Sandness, K.E.; Georgieff, M.K.; Boys, C.J.; Zeisel, S.H.; Wozniak, J.R. Polymorphisms in SLC44A1 Are Associated with Cognitive Improvement in Children Diagnosed with Fetal Alcohol Spectrum Disorder: An Exploratory Study of Oral Choline Supplementation. Am. J. Clin. Nutr. 2021, 114, 617–627. [Google Scholar] [CrossRef]
- Wozniak, J.R.; Fink, B.A.; Fuglestad, A.J.; Eckerle, J.K.; Boys, C.J.; Sandness, K.E.; Radke, J.P.; Miller, N.C.; Lindgren, C.; Brearley, A.M.; et al. Four-Year Follow-up of a Randomized Controlled Trial of Choline for Neurodevelopment in Fetal Alcohol Spectrum Disorder. J. Neurodev. Disord. 2020, 12, 9. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Risbud, R.D.; Mattson, S.N.; Chambers, C.D.; Thomas, J.D. Randomized, Double-Blind, Placebo-Controlled Clinical Trial of Choline Supplementation in School-Aged Children with Fetal Alcohol Spectrum Disorders. Am. J. Clin. Nutr. 2016, 104, 1683–1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombo, J.; Carlson, S.E.; Cheatham, C.L.; Shaddy, D.J.; Kerling, E.H.; Thodosoff, J.M.; Gustafson, K.M.; Brez, C. Long-Term Effects of LCPUFA Supplementation on Childhood Cognitive Outcomes. Am. J. Clin. Nutr. 2013, 98, 403–412. [Google Scholar] [CrossRef] [Green Version]
- Zeisel, S.H. Nutrition in Pregnancy: The Argument for Including a Source of Choline. Int. J. Womens Health 2013, 5, 193–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMahon, K.E.; Farrell, P.M. Measurement of Free Choline Concentrations in Maternal and Neonatal Blood by Micropyrolysis Gas Chromatography. Clin. Chim. Acta 1985, 149, 1–12. [Google Scholar] [CrossRef]
- Ilcol, Y.O.; Ozbek, R.; Hamurtekin, E.; Ulus, I.H. Choline Status in Newborns, Infants, Children, Breast-Feeding Women, Breast-Fed Infants and Human Breast Milk. J. Nutr. Biochem. 2005, 16, 489–499. [Google Scholar] [CrossRef]
- Guerrerio, A.L.; Mattis, L.; Conner, K.G.; Hampsey, J.; Stasinopoulos, D.M.; DeJong, R.; Boctor, E.M.; Sheth, S.; Hamper, U.M.; Scheimann, A.O. Oral Choline Supplementation in Children with Intestinal Failure. J. Pediatr. Gastroenterol. Nutr. 2011, 53, 115–119. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, Agricultural Research Service. Nutrient Intakes from Food and Beverages: Mean Amounts Consumed per Individual, by Gender and Age, What We Eat in America, NHANES 2013–2014; Department of Agriculture (USDA): Washington, DC, USA, 2016.
- Wiedeman, A.M.; Barr, S.I.; Green, T.J.; Xu, Z.; Innis, S.M.; Kitts, D.D. Dietary Choline Intake: Current State of Knowledge Across the Life Cycle. Nutrients 2018, 10, 1513. [Google Scholar] [CrossRef] [Green Version]
- Sebastiani, G.; Borrás-Novell, C.; Casanova, M.A.; Pascual Tutusaus, M.; Ferrero Martínez, S.; Gómez Roig, M.D.; García-Algar, O. The Effects of Alcohol and Drugs of Abuse on Maternal Nutritional Profile during Pregnancy. Nutrients 2018, 10, 1008. [Google Scholar] [CrossRef] [Green Version]
- Food and Nutrition Board-Institute of Medicine. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Panthotenic Acid, Biotin, and Choline; National Academy Press: Washington, DC, USA, 1998. [Google Scholar]
- Schwarzenberg, S.J.; Georgieff, M.K.; COMMITTEE ON NUTRITION. Advocacy for Improving Nutrition in the First 1000 Days to Support Childhood Development and Adult Health. Pediatrics 2018, 141. [Google Scholar] [CrossRef] [Green Version]
- Zeisel, S.H.; Mar, M.H.; Howe, J.C.; Holden, J.M. Concentrations of Choline-Containing Compounds and Betaine in Common Foods. J. Nutr. 2003, 133, 1302–1307. [Google Scholar] [CrossRef]
- Howe, J.C.; Williams, J.R.; Holden, J.M. USDA Database for the Choline Content of Common Foods; U.S. Department of Agriculture: Washington, DC, USA, 2004.
- Zeisel, S.H.; Corbin, K.D.; Erdman, J.W.K.; MacDonald, I. Present Knowledge in Nutrition; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; Dugar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.M.; et al. Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease. Nature 2011, 472, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal Microbiota Metabolism of L-Carnitine, a Nutrient in Red Meat, Promotes Atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.H.; Wang, Z.; Levison, B.S.; Koeth, R.A.; Britt, E.B.; Fu, X.; Wu, Y.; Hazen, S.L. Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk. N. Engl. J. Med. 2013, 368, 1575–1584. [Google Scholar] [CrossRef] [Green Version]
- Loscalzo, J. Gut Microbiota, the Genome, and Diet in Atherogenesis. N. Engl. J. Med. 2013, 368, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.C.; Canlet, C.; Delplanque, B.; Agnani, G.; Lairon, D.; Gottardi, G.; Bencharif, K.; Gripois, D.; Thaminy, A.; Paris, A. 1H NMR Metabonomics Can Differentiate the Early Atherogenic Effect of Dairy Products in Hyperlipidemic Hamsters. Atherosclerosis 2009, 206, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Zeisel, S.H.; DaCosta, K.A. Increase in Human Exposure to Methylamine Precursors of N-Nitrosamines after Eating Fish. Cancer Res. 1986, 46, 6136–6138. [Google Scholar] [PubMed]
- He, K.; Song, Y.; Daviglus, M.L.; Liu, K.; Van Horn, L.; Dyer, A.R.; Greenland, P. Accumulated Evidence on Fish Consumption and Coronary Heart Disease Mortality: A Meta-Analysis of Cohort Studies. Circulation 2004, 109, 2705–2711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, C.A.; Corbin, K.D.; da Costa, K.-A.; Zhang, S.; Zhao, X.; Galanko, J.A.; Blevins, T.; Bennett, B.J.; O’Connor, A.; Zeisel, S.H. Effect of Egg Ingestion on Trimethylamine-N-Oxide Production in Humans: A Randomized, Controlled, Dose-Response Study. Am. J. Clin. Nutr. 2014, 100, 778–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuglestad, A.J.; Fink, B.A.; Eckerle, J.K.; Boys, C.J.; Hoecker, H.L.; Kroupina, M.G.; Zeisel, S.H.; Georgieff, M.K.; Wozniak, J.R. Inadequate Intake of Nutrients Essential for Neurodevelopment in Children with Fetal Alcohol Spectrum Disorders (FASD). Neurotoxicol. Teratol. 2013, 39, 128–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amos-Kroohs, R.M.; Fink, B.A.; Smith, C.J.; Chin, L.; Van Calcar, S.C.; Wozniak, J.R.; Smith, S.M. Abnormal Eating Behaviors Are Common in Children with Fetal Alcohol Spectrum Disorder. J. Pediatr. 2016, 169, 194–200 e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lentjes, M.A.H. The Balance between Food and Dietary Supplements in the General Population. Proc. Nutr. Soc. 2019, 78, 97–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, W.-L.; Holmes-McNary, M.Q.; Mar, M.-H.; Lien, E.L.; Zeisel, S.H. Bioavailability of Choline and Choline Esters from Milk in Rat Pups. J. Nutr. Biochem. 1996, 7, 457–464. [Google Scholar] [CrossRef]
- Koc, H.; Mar, M.H.; Ranasinghe, A.; Swenberg, J.A.; Zeisel, S.H. Quantitation of Choline and Its Metabolites in Tissues and Foods by Liquid Chromatography/electrospray Ionization-Isotope Dilution Mass Spectrometry. Anal. Chem. 2002, 74, 4734–4740. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, J.H.; Knickmeyer, R.C.; Gao, W. Imaging Structural and Functional Brain Development in Early Childhood. Nat. Rev. Neurosci. 2018, 19, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Dubois, J.; Dehaene-Lambertz, G.; Kulikova, S.; Poupon, C.; Hüppi, P.S.; Hertz-Pannier, L. The Early Development of Brain White Matter: A Review of Imaging Studies in Fetuses, Newborns and Infants. Neuroscience 2014, 276, 48–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publication | Participants: (n, Age, Diagnosis) | Choline Supplementation (Type, Dose, and Form) | Study Design | Outcome Measures | Main Findings |
---|---|---|---|---|---|
Coles et al., 2015 [154] | n = 614 pregnant women (301 consumed alcohol, 313 non-drinking) n = 367 children aged 6 months | 750 mg choline + multi-vitamin vs. multi-vitamin vs. control 1st prenatal visit - birth | Randomized controlled trial | Cognitive and psychomotor development, orientation/engagement, emotional regulation, motor quality, and total behavior quality. | Higher cognitive development scores in multi-vitamin group, no effect of choline |
Kable et al., 2015 [153] | n =119 alcohol exposed infants, n = 136 controls | 750 mg choline + multi-vitamin vs. multi-vitamin vs. control 1st prenatal visit—birth | Randomized controlled trial | Cardiac orienting response to visual and auditory stimuli | Improved cardiac orienting response after choline supplementation Prenatal choline metabolite levels predicted cardiac orienting outcomes |
Jacobson et al., 2018 [155] | n = 69 heavy drinking pregnant women 62 infants (31 choline, 31 placebo) | 2 g of choline bitartrate or placebo mid-pregnancy—birth | Randomized, double-blind controlled trial | Infant growth, recognition memory Eyeblink conditioning (EBC) at 6.5 months; somatic growth at 6.5 and 12 months; recognition memory and processing speed at 6.5 and 12 months | Better EBC task performance and recognition memory in choline group at 12 months Improved infant growth in choline group at 6.5 and 12 months |
Warton et al., 2021 [156] | 52 infants 52 heavy-drinking women (28 choline; 24 placebo) | 2 g choline or placebo daily mid-pregnancy—birth | Randomized, double-blind (after 12-month assessment), choline intervention | Brain structure, recognition memory | Larger brain volumes in 6/12 regions in choline group, which correlated positively with recognition memory in some regions |
Age | Male | Female | Pregnancy | Lactation |
---|---|---|---|---|
<=6 months | 125 mg | 125 mg | ||
7–12 months | 150 mg | 150 mg | ||
1–3 years | 200 mg | 200 mg | ||
4–8 years | 250 mg | 250 mg | ||
9–13 years | 375 mg | 375 mg | ||
14–18 years | 550 mg | 400 mg | 450 mg | 550 mg |
>18 years | 550 mg | 425 mg | 450 mg | 550 mg |
Formulation | % Delivered by Weight | Example | Notes |
---|---|---|---|
Choline bitartrate | 41.1% | 1000 mg delivers 411 mg of choline | GRAS, USP monograph |
Choline chloride | 74.6% | 1000 mg delivers 746 mg of choline | GRAS, USP monograph |
Choline citrate | 35.3% | 1000 mg delivers 350 mg of choline | |
Citicholine or CDP-choline | 21.3% | 1000 mg delivers 180 mg of choline | USP monograph |
Glycerophosphocholine (Alpha-GPC) | 40.5% | 1000 mg delivers 400 mg of choline | Liquid formulations available, % choline variable in these |
Phosphatidylcholine | 13% | 1000 mg delivers 130 mg of choline | Mixture; % choline variable |
Lecithin | 2–3% | 1000 mg delivers 20 mg - 30 mg of choline | Poor source of choline |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ernst, A.M.; Gimbel, B.A.; de Water, E.; Eckerle, J.K.; Radke, J.P.; Georgieff, M.K.; Wozniak, J.R. Prenatal and Postnatal Choline Supplementation in Fetal Alcohol Spectrum Disorder. Nutrients 2022, 14, 688. https://doi.org/10.3390/nu14030688
Ernst AM, Gimbel BA, de Water E, Eckerle JK, Radke JP, Georgieff MK, Wozniak JR. Prenatal and Postnatal Choline Supplementation in Fetal Alcohol Spectrum Disorder. Nutrients. 2022; 14(3):688. https://doi.org/10.3390/nu14030688
Chicago/Turabian StyleErnst, Abigail M., Blake A. Gimbel, Erik de Water, Judith K. Eckerle, Joshua P. Radke, Michael K. Georgieff, and Jeffrey R. Wozniak. 2022. "Prenatal and Postnatal Choline Supplementation in Fetal Alcohol Spectrum Disorder" Nutrients 14, no. 3: 688. https://doi.org/10.3390/nu14030688
APA StyleErnst, A. M., Gimbel, B. A., de Water, E., Eckerle, J. K., Radke, J. P., Georgieff, M. K., & Wozniak, J. R. (2022). Prenatal and Postnatal Choline Supplementation in Fetal Alcohol Spectrum Disorder. Nutrients, 14(3), 688. https://doi.org/10.3390/nu14030688