Exploring the Impact of Policies to Improve Geographic and Economic Access to Vegetables among Low-Income, Predominantly Latino Urban Residents: An Agent-Based Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Context: Food Insecurity in Central Texas
2.2. The FRESH-Austin Study (Parent Study)
2.3. Agent-Based Model to Assess the Impact of Food Environment Policies on Vegetable Intake in Low-Income, Diverse Communities
2.3.1. Agent-Based Modeling: An Under-Utilized Tool for Informing Public Health Policy
2.3.2. Model Development
2.3.3. Modeled Environment
2.3.4. Food Stores and Restaurants (Food Environment)
2.3.5. Agents
2.3.6. Agents’ Decision-Making Process
2.3.7. Model Assessment
2.3.8. Policy Scenarios and Outcome of Interest
Business-as-Usual Scenarios
Fresh for Less Policy Expansion Scenarios
Reduced Cost of Vegetables in Supermarkets and Small Grocers Scenarios
3. Results
3.1. Model Calibration Results
3.2. Fresh for Less Policy Scenarios
3.3. Improving Economic Access to Vegetables via Traditional Food Stores Policy Scenario
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bailey, Z.D.; Krieger, N.; Agénor, M.; Graves, J.; Linos, N.; Bassett, M.T. Structural racism and health inequities in the USA: Evidence and interventions. Lancet 2017, 389, 1453–1463. [Google Scholar] [CrossRef]
- Payne-Sturges, D.; Gee, G.C. National environmental health measures for minority and low-income populations: Tracking social disparities in environmental health. Environ. Res. 2006, 102, 154–171. [Google Scholar] [CrossRef]
- Fiscella, K.; Williams, D.R. Health disparities based on socioeconomic inequities: Implications for urban health care. Acad. Med. 2004, 79, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Falkner, B.; Cossrow, N.D. Prevalence of metabolic syndrome and obesity-associated hypertension in the racial ethnic minorities of the United States. Curr. Hypertens. Rep. 2014, 16, 449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Beydoun, M.A. The obesity epidemic in the United States—Gender, age, socioeconomic, racial/ethnic, and geographic characteristics: A systematic review and meta-regression analysis. Epidemiol. Rev. 2007, 29, 6–28. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, Y.; Huang, E.S. Changes in racial/ethnic disparities in the prevalence of Type 2 diabetes by obesity level among US adults. Ethn. Health 2009, 14, 439–457. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Malarcher, A.M.; Giles, W.H.; Myers, G. Racial, ethnic and socioeconomic disparities in the clustering of cardiovascular disease risk factors. Ethn. Dis. 2004, 14, 43–48. [Google Scholar]
- August, K.J.; Sorkin, D.H. Racial/ethnic disparities in exercise and dietary behaviors of middle-aged and older adults. J. Gen. Intern. Med. 2011, 26, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Zavala, V.A.; Bracci, P.M.; Carethers, J.M.; Carvajal-Carmona, L.; Coggins, N.B.; Cruz-Correa, M.R.; Davis, M.; de Smith, A.J.; Dutil, J.; Figueiredo, J.C. Cancer health disparities in racial/ethnic minorities in the United States. Br. J. Cancer 2021, 124, 315–332. [Google Scholar] [CrossRef]
- Willett, W.C.; Koplan, J.P.; Nugent, R.; Dusenbury, C.; Puska, P.; Gaziano, T.A. Prevention of chronic disease by means of diet and lifestyle changes. In Disease Control Priorities in Developing Countries, 2nd ed.; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Jacques, P.F.; Tucker, K.L. Are Dietary Patterns Useful for Understanding the Role of Diet in Chronic Disease; The American journal of clinical nutrition, Oxford University Press: New York, NY, USA, 2001; Volume 73, pp. 1–2. [Google Scholar]
- U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025. Available online: https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf (accessed on 10 December 2021).
- Richardson, A.S.; Arsenault, J.E.; Cates, S.C.; Muth, M.K. Perceived stress, unhealthy eating behaviors, and severe obesity in low-income women. Nutr. J. 2015, 14, 122. [Google Scholar] [CrossRef] [Green Version]
- Lucan, S.C.; Barg, F.K.; Karasz, A.; Palmer, C.S.; Long, J.A. Concepts of healthy diet among urban, low-income, African Americans. J. Community Health 2012, 37, 754–762. [Google Scholar] [CrossRef]
- Ayala, G.X.; Baquero, B.; Klinger, S. A systematic review of the relationship between acculturation and diet among Latinos in the United States: Implications for future research. J. Am. Diet. Assoc. 2008, 108, 1330–1344. [Google Scholar] [CrossRef] [Green Version]
- Storey, M.; Anderson, P. Income and race/ethnicity influence dietary fiber intake and vegetable consumption. Nutr. Res. 2014, 34, 844–850. [Google Scholar] [CrossRef] [Green Version]
- Lee-Kwan, S.H.; Moore, L.V.; Blanck, H.M.; Harris, D.M.; Galuska, D. Disparities in state-specific adult fruit and vegetable consumption—United States, 2015. MMWR. Morb. Mortal. Wkly. Rep. 2017, 66, 1241. [Google Scholar] [CrossRef]
- Breslin, P.A. An evolutionary perspective on food and human taste. Curr. Biol. 2013, 23, R409–R418. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, R.; Fonseca, E.; Simon, S.A. The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity. Cell. Mol. Life Sci. 2020, 77, 3469–3502. [Google Scholar] [CrossRef]
- El-Sohemy, A.; Stewart, L.; Khataan, L.; Fontaine-Bisson, B.; Kwong, P.; Ozsungur, S.; Cornelis, M.C. Nutrigenomics of taste–impact on food preferences and food production. Nutr. Oppor. Asia 2007, 60, 176–182. [Google Scholar]
- Negri, R.; Di Feola, M.; Di Domenico, S.; Scala, M.G.; Artesi, G.; Valente, S.; Smarrazzo, A.; Turco, F.; Morini, G.; Greco, L. Taste perception and food choices. J. Pediatric Gastroenterol. Nutr. 2012, 54, 624–629. [Google Scholar] [CrossRef] [Green Version]
- Pollard, J.; Kirk, S.L.; Cade, J.E. Factors affecting food choice in relation to fruit and vegetable intake: A review. Nutr. Res. Rev. 2002, 15, 373–387. [Google Scholar] [CrossRef] [Green Version]
- Fish, C.A.; Brown, J.R.; Quandt, S.A. African American and Latino low income families’ food shopping behaviors: Promoting fruit and vegetable consumption and use of alternative healthy food options. J. Immigr. Minority Health 2015, 17, 498–505. [Google Scholar] [CrossRef]
- Ko, L.K.; Rodriguez, E.; Yoon, J.; Ravindran, R.; Copeland, W.K. A brief community-based nutrition education intervention combined with food baskets can increase fruit and vegetable consumption among low-income Latinos. J. Nutr. Educ. Behav. 2016, 48, 609–617.e601. [Google Scholar] [CrossRef]
- Control, C.F.D. Adult Obesity Facts. Available online: https://www.cdc.gov/obesity/data/adult.html#:~:text=The%20US%20obesity%20prevalence%20was,from%204.7%25%20to%209.2%25 (accessed on 27 December 2021).
- Bowen, D.J.; Barrington, W.E.; Beresford, S.A. Identifying the effects of environmental and policy change interventions on healthy eating. Annu. Rev. Public Health 2015, 36, 289–306. [Google Scholar] [CrossRef] [Green Version]
- Lyn, R.; Aytur, S.; Davis, T.A.; Eyler, A.A.; Evenson, K.R.; Chriqui, J.F.; Cradock, A.L.; Goins, K.V.; Litt, J.; Brownson, R.C. Policy, systems, and environmental approaches for obesity prevention: A framework to inform local and state action. J. Public Health Manag. Pract. JPHMP 2013, 19, S23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Story, M.; Kaphingst, K.M.; Robinson-O’Brien, R.; Glanz, K. Creating healthy food and eating environments: Policy and environmental approaches. Annu. Rev. Public Health 2008, 29, 253–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mah, C.L.; Luongo, G.; Hasdell, R.; Taylor, N.G.; Lo, B.K. A systematic review of the effect of retail food environment interventions on diet and health with a focus on the enabling role of public policies. Curr. Nutr. Rep. 2019, 8, 411–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkins, E.; Radley, D.; Morris, M.; Hobbs, M.; Christensen, A.; Marwa, W.L.; Morrin, A.; Griffiths, C. A systematic review employing the GeoFERN framework to examine methods, reporting quality and associations between the retail food environment and obesity. Health Place 2019, 57, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Cobb, L.K.; Appel, L.J.; Franco, M.; Jones-Smith, J.C.; Nur, A.; Anderson, C.A. The relationship of the local food environment with obesity: A systematic review of methods, study quality, and results. Obesity 2015, 23, 1331–1344. [Google Scholar] [CrossRef] [Green Version]
- Janda, K.M.; Ranjit, N.; Salvo, D.; Nielsen, A.; Akhavan, N.; Diaz, M.; Lemoine, P.; Casnovsky, J.; van den Berg, A. A Multi-Pronged Evaluation of a Healthy Food Access Initiative in Central Texas: Study Design, Methods, and Baseline Findings of the FRESH-Austin Evaluation Study. Int. J. Environ. Res. Public Health 2021, 18, 10834. [Google Scholar] [CrossRef]
- US Census Bureau. Quick Facts: Austin, Texas. Available online: https://www.census.gov/quickfacts/fact/table/austincitytexas/LND110210 (accessed on 17 January 2022).
- City of Austin Office of Sustainability. Food Access in Austin. Available online: https://www.arcgis.com/apps/Cascade/index.html?appid=ddf4807ce0ad4304a8fef38f769ab14b (accessed on 18 December 2020).
- U.S. Bureau of the Census. 2013–2017 American Community Survey 5-Year Estimates; American Community Surve: Washington, DC, USA, 2018.
- Texas Hunger Initiative and Texas Food Bank Initiative. Hunger in Travis County. Available online: http://www.austintexas.gov/edims/document.cfm?id=157974 (accessed on 14 October 2021).
- United Way for Greater Austin. 2019 Community Needs & Trends Report; United Way for Greater Austin: Austin, TX, USA, 2019. [Google Scholar]
- City of Austin. Fresh for Less. Available online: https://www.austintexas.gov/department/fresh-less (accessed on 17 July 2021).
- The Food Trust. Healthy Corner Store Initiative—Overview. 2014. Available online: http://thefoodtrust.org/uploads/media_items/healthy-corner-store-overview.original.pdf (accessed on 28 December 2021).
- Giabbanelli, P.J.; Crutzen, R. Using agent-based models to develop public policy about food behaviours: Future directions and recommendations. Comput. Math. Methods Med. 2017, 2017, 5742629. [Google Scholar] [CrossRef] [Green Version]
- Maglio, P.P.; Mabry, P.L. Agent-based models and systems science approaches to public health. Am. J. Prev. Med. 2011, 40, 392–394. [Google Scholar] [CrossRef] [Green Version]
- Badham, J.; Chattoe-Brown, E.; Gilbert, N.; Chalabi, Z.; Kee, F.; Hunter, R.F. Developing agent-based models of complex health behaviour. Health Place 2018, 54, 170–177. [Google Scholar] [CrossRef]
- Salvo, D.; Garcia, L.; Reis, R.S.; Stankov, I.; Goel, R.; Schipperijn, J.; Hallal, P.C.; Ding, D.; Pratt, M. Physical activity promotion and the United Nations Sustainable Development Goals: Building synergies to maximize impact. J. Phys. Act. Health 2021, 1, 1–18. [Google Scholar] [CrossRef]
- Reis, R.S.; Salvo, D.; Ogilvie, D.; Lambert, E.V.; Goenka, S.; Brownson, R.C.; Committee, L.P.A.S.E. Scaling up physical activity interventions worldwide: Stepping up to larger and smarter approaches to get people moving. Lancet 2016, 388, 1337–1348. [Google Scholar] [CrossRef] [Green Version]
- U.S. Bureau of Economic Analysis. Gross Domestic Product by Metropolitan Area. 2017. Available online: https://www.bea.gov/news/2018/gross-domestic-product-metropolitan-area-2017 (accessed on 17 January 2022).
- Sun, Z.; Lorscheid, I.; Millington, J.D.; Lauf, S.; Magliocca, N.R.; Groeneveld, J.; Balbi, S.; Nolzen, H.; Müller, B.; Schulze, J. Simple or complicated agent-based models? A complicated issue. Environ. Model. Softw. 2016, 86, 56–67. [Google Scholar] [CrossRef] [Green Version]
- Cocores, J.A.; Gold, M.S. The Salted Food Addiction Hypothesis may explain overeating and the obesity epidemic. Med. Hypotheses 2009, 73, 892–899. [Google Scholar] [CrossRef]
- Filgueiras, A.R.; de Almeida, V.B.P.; Nogueira, P.C.K.; Domene, S.M.A.; da Silva, C.E.; Sesso, R.; Sawaya, A.L. Exploring the consumption of ultra-processed foods and its association with food addiction in overweight children. Appetite 2019, 135, 137–145. [Google Scholar] [CrossRef]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the healthy eating index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, A.; Salvo, D.; Ranjit, N.; Janda, K.; Zhang, Y.; van den Berg, A. Sociodemographic factors associated with economic-, food security-and health-related concerns during COVID-19 among adults from low-income, majority-minority urban areas. In Proceedings of the APHA 2021 Annual Meeting and Expo, Austin, TX, USA, 25 October 2021. [Google Scholar]
- Van den Berg, A.; Nielsen, A.; Akhavan, N.; Pulido, C.L.; Basu, S.; Hussaini, A.; Jovanovic, C.; Janda, K.; Denis, L.; Ranjit, N. Design and evaluation of a coalition-led obesity initiative to promote healthy eating and physical activity in low-income, ethnically diverse communities: The Go! Austin/Vamos! Austin initiative. Arch. Public Health 2019, 77, 25. [Google Scholar] [CrossRef] [Green Version]
- Chiva, M. Cultural aspects of meals and meal frequency. Br. J. Nutr. 1997, 77, S21–S28. [Google Scholar] [CrossRef] [Green Version]
- Post, R.C. A new approach to Dietary Guidelines communications: Make MyPlate, your plate. Child. Obes. (Former. Obes. Weight Manag.) 2011, 7, 349–351. [Google Scholar] [CrossRef]
- Young, C.R.; Aquilante, J.L.; Solomon, S.; Colby, L.; Kawinzi, M.A.; Uy, N.; Mallya, G. Improving fruit and vegetable consumption among low-income customers at farmers markets: Philly Food Bucks, Philadelphia, Pennsylvania, 2011. Prev. Chronic Dis. 2013, 10, E166. [Google Scholar] [CrossRef] [Green Version]
- Polacsek, M.; Moran, A.; Thorndike, A.N.; Boulos, R.; Franckle, R.L.; Greene, J.C.; Blue, D.J.; Block, J.P.; Rimm, E.B. A supermarket double-dollar incentive program increases purchases of fresh fruits and vegetables among low-income families with children: The Healthy Double Study. J. Nutr. Educ. Behav. 2018, 50, 217–228.e211. [Google Scholar] [CrossRef]
- Durward, C.M.; Savoie-Roskos, M.; Atoloye, A.; Isabella, P.; Jewkes, M.D.; Ralls, B.; Riggs, K.; LeBlanc, H. Double Up Food Bucks participation is associated with increased fruit and vegetable consumption and food security among low-income adults. J. Nutr. Educ. Behav. 2019, 51, 342–347. [Google Scholar] [CrossRef]
- Fair Food Network. Double up Food Bucks: Growing Better Access to Better Food. Available online: https://fairfoodnetwork.org/projects/double-up-food-bucks/ (accessed on 8 December 2021).
- Pitts, S.B.J.; Bringolf, K.R.; Lloyd, C.L.; McGuirt, J.T.; Lawton, K.K.; Morgan, J. Peer reviewed: Formative evaluation for a healthy corner store initiative in pitt county, North Carolina: Engaging stakeholders for a healthy corner store initiative, part 2. Prev. Chronic Dis. 2013, 10, E120. [Google Scholar]
- Wensel, C.; Trude, A.; Poirier, L.; Alghamdi, R.; Trujillo, A.; Anderson Steeves, E.; Paige, D.; Gittelsohn, J. B’more Healthy Corner Stores for Moms and Kids: Identifying Optimal Behavioral Economic Strategies to Increase WIC Redemptions in Small Urban Corner Stores. Int. J. Environ. Res. Public Health 2019, 16, 64. [Google Scholar] [CrossRef] [Green Version]
- Gittelsohn, J.; Rowan, M.; Gadhoke, P. Interventions in small food stores to change the food environment, improve diet, and reduce risk of chronic disease. Prev. Chronic Dis. 2012, 9, E59. [Google Scholar] [CrossRef] [Green Version]
- Lent, M.R.; Vander Veur, S.S.; McCoy, T.A.; Wojtanowski, A.C.; Sandoval, B.; Sherman, S.; Komaroff, E.; Foster, G.D. A randomized controlled study of a healthy corner store initiative on the purchases of urban, low-income youth. Obesity 2014, 22, 2494–2500. [Google Scholar] [CrossRef] [Green Version]
- Blakely, T.; Cleghorn, C.; Mizdrak, A.; Waterlander, W.; Nghiem, N.; Swinburn, B.; Wilson, N.; Mhurchu, C.N. The effect of food taxes and subsidies on population health and health costs: A modelling study. Lancet Public Health 2020, 5, e404–e413. [Google Scholar] [CrossRef]
- Choi, S.E.; Seligman, H.; Basu, S. Cost effectiveness of subsidizing fruit and vegetable purchases through the Supplemental Nutrition Assistance Program. Am. J. Prev. Med. 2017, 52, e147–e155. [Google Scholar] [CrossRef] [Green Version]
- Waterlander, W.E.; de Boer, M.R.; Schuit, A.J.; Seidell, J.C.; Steenhuis, I.H. Price discounts significantly enhance fruit and vegetable purchases when combined with nutrition education: A randomized controlled supermarket trial. Am. J. Clin. Nutr. 2013, 97, 886–895. [Google Scholar] [CrossRef] [Green Version]
- Toft, U.; Winkler, L.; Mikkelsen, B.; Bloch, P.; Glümer, C. Discounts on fruit and vegetables combined with a space management intervention increased sales in supermarkets. Eur. J. Clin. Nutr. 2017, 71, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Rummo, P.E.; Noriega, D.; Parret, A.; Harding, M.; Hesterman, O.; Elbel, B.E. Evaluating a USDA program that gives SNAP participants financial incentives to buy fresh produce in supermarkets. Health Aff. 2019, 38, 1816–1823. [Google Scholar] [CrossRef] [PubMed]
- Widener, M.J.; Metcalf, S.S.; Bar-Yam, Y. Agent-based modeling of policies to improve urban food access for low-income populations. Appl. Geogr. 2013, 40, 1–10. [Google Scholar] [CrossRef]
- Salvo, D.; Ranjit, N.; Nielsen, A.; Akhavan, N.; van den Berg, A. Characterizing micro-scale disparities in childhood obesity: Examining the influence of multilevel factors on 4-year changes in BMI, healthy eating, and physical activity, among a cohort of children residing in disadvantaged urban enclaves. Front. Public Health 2019, 7, 301. [Google Scholar] [CrossRef]
- Evans, A.E.; Jennings, R.; Smiley, A.W.; Medina, J.L.; Sharma, S.V.; Rutledge, R.; Stigler, M.H.; Hoelscher, D.M. Introduction of farm stands in low-income communities increases fruit and vegetable among community residents. Health Place 2012, 18, 1137–1143. [Google Scholar] [CrossRef]
- Ranjit, N.; Nielsen, A.; Akhavan, N.; Denis, L.; Janda, K.; Jovanovic, C.; Basu, S.; Hussaini, A.; van den Berg, A. Outcomes of a community-wide health intervention in a low-income, primarily Hispanic community: The Go! Austin/Vamos! Austin (GAVA) Initiative. Health Promot. Pract. 2020, 23, 1524839920961365. [Google Scholar] [CrossRef]
Variable | Strata/Category | %(n)/Mean [sd] |
---|---|---|
Total | 400 | |
Gender | Female | 70.50 (282) |
Male | 29.25 (117) | |
Age | 43.89 [13.66] | |
Race/Ethnicity | Hispanic/Latino | 54.41 (216) |
Black | 10.08 (40) | |
White/Other | 35.52 (141) | |
Yearly household Income | Under USD 25,000 | 23.04 (88) |
USD 25,001–USD 45,000 | 29.58 (113) | |
USD 45,001–USD 65,000 | 18.32 (70) | |
> USD 65,000 | 29.06 (111) | |
Educational attainment | <High school | 12.12 (48) |
High school or GED | 21.72 (86) | |
Some college | 21.21 (84) | |
Full college or more | 44.95 (178) | |
Food assistance | Food bank user | 12.00 (48) |
Free or reduced lunch user | 26.50 (106) | |
SNAP user | 17.50 (70) | |
WIC user | 9.25 (37) | |
Food insecurity | Sometimes or often | 39.60 (158) |
Never | 60.40 (241) | |
Food purchasing frequency | Less than once per week | 14.79 (59) |
Once per week | 42.36 (169) | |
More than once per week | 42.86 (171) | |
Shopping locations (non-mutually exclusive) | Supermarkets | 99.25 (397) |
Small grocer | 64.75 (259) | |
Convenience store | 22.25 (89) | |
Farmer’s market | 12.25 (49) | |
Mobile market | 15.25 (61) | |
Farm stand | 13.00 (52) | |
Most important factor when deciding where to shop for food | Quality of food | 52.63 (210) |
Cost | 25.96 (101) | |
Variety of food | 12.34 (48) | |
Quality of store | 4.88 (19) | |
Cultural variety | 2.83 (11) | |
Vegetable purchasing (pounds/capita/week) | 4.65 [3.93] | |
Vegetable intake (cups/day) | 2.01 [0.96] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvo, D.; Lemoine, P.; Janda, K.M.; Ranjit, N.; Nielsen, A.; van den Berg, A. Exploring the Impact of Policies to Improve Geographic and Economic Access to Vegetables among Low-Income, Predominantly Latino Urban Residents: An Agent-Based Model. Nutrients 2022, 14, 646. https://doi.org/10.3390/nu14030646
Salvo D, Lemoine P, Janda KM, Ranjit N, Nielsen A, van den Berg A. Exploring the Impact of Policies to Improve Geographic and Economic Access to Vegetables among Low-Income, Predominantly Latino Urban Residents: An Agent-Based Model. Nutrients. 2022; 14(3):646. https://doi.org/10.3390/nu14030646
Chicago/Turabian StyleSalvo, Deborah, Pablo Lemoine, Kathryn M. Janda, Nalini Ranjit, Aida Nielsen, and Alexandra van den Berg. 2022. "Exploring the Impact of Policies to Improve Geographic and Economic Access to Vegetables among Low-Income, Predominantly Latino Urban Residents: An Agent-Based Model" Nutrients 14, no. 3: 646. https://doi.org/10.3390/nu14030646
APA StyleSalvo, D., Lemoine, P., Janda, K. M., Ranjit, N., Nielsen, A., & van den Berg, A. (2022). Exploring the Impact of Policies to Improve Geographic and Economic Access to Vegetables among Low-Income, Predominantly Latino Urban Residents: An Agent-Based Model. Nutrients, 14(3), 646. https://doi.org/10.3390/nu14030646