The Role of Nutrition in Immune-Mediated, Inflammatory Skin Disease: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identify Keywords
2.2. Conduct Research
2.3. Review Abstract and Article
2.4. Document Results
3. Results
3.1. Psoriasis
3.2. Atopic Dermatitis
3.3. Hidradenitis Suppurativa
3.4. Bullous Diseases
3.4.1. Dermatitis Herpetiformis
3.4.2. Pemphigus
3.4.3. Bullous Pemphigoid
3.5. Vitiligo
3.6. Alopecia Areata
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gürtler, A.; Laurenz, S. The impact of clinical nutrition on inflammatory skin diseases. J. Dtsch. Dermatol. Ges. 2022. Online ahead of print. [Google Scholar] [CrossRef]
- Sardana, K.; Sachdeva, S. Role of nutritional supplements in selected dermatological disorders: A review. J. Cosmet. Dermatol. 2021, 21, 85–98. [Google Scholar] [CrossRef]
- Gasparyan, A.Y.; Ayvazyan, L.; Blackmore, H.; Kitas, G. Writing a narrative biomedical review: Considerations for authors, peer reviewers, and editors. Rheumatol. Int. 2011, 31, 1409–1417. [Google Scholar] [CrossRef]
- Gasparyan, A.Y.; Yessirkepov, M.; Voronov, A.A.; Gerasimov, A.N.; Kostyukova, E.I.; Kitas, G.D. Preserving the Integrity of Citations and References by All Stakeholders of Science Communication. J. Korean Med. Sci. 2015, 30, 1545–1552. [Google Scholar] [CrossRef] [Green Version]
- Boehncke, W.-H.; Schön, M.P. Psoriasis. Lancet 2015, 386, 983–994. [Google Scholar] [CrossRef]
- Lowes, M.A.; Suárez-Fariñas, M.; Krueger, J.G. Immunology of Psoriasis. Annu. Rev. Immunol. 2014, 32, 227–255. [Google Scholar] [CrossRef] [Green Version]
- Campanati, A.; Moroncini, G.; Ganzetti, G.; Pozniak, K.; Goteri, G.; Giuliano, A.; Martina, E.; Liberati, G.; Ricotti, F.; Gabrielli, A.; et al. Adalimumab Modulates Angiogenesis in Psoriatic Skin. Eur. J. Inflamm. 2013, 11, 489–498. [Google Scholar] [CrossRef]
- Hawkes, J.E.; Yan, B.Y.; Chan, T.C.; Krueger, J.G. Discovery of the IL-23/IL-17 Signaling Pathway and the Treatment of Psoriasis. J. Immunol. 2018, 201, 1605–1613. [Google Scholar] [CrossRef]
- Luchetti, M.M.; Benfaremo, D.; Campanati, A.; Molinelli, E.; Ciferri, M.; Cataldi, S.; Capeci, W.; Di Carlo, M.; Offidani, A.M.; Salaffi, F.; et al. Clinical outcomes and feasibility of the multidisciplinary management of patients with psoriatic arthritis: Two-year clinical experience of a dermo-rheumatologic clinic. Clin. Rheumatol. 2018, 37, 2741–2749. [Google Scholar] [CrossRef]
- Campanati, A.; Marani, A.; Martina, E.; Diotallevi, F.; Radi, G.; Offidani, A. Psoriasis as an Immune-Mediated and Inflammatory Systemic Disease: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines 2021, 9, 1511. [Google Scholar] [CrossRef]
- Takeshita, J.; Grewal, S.; Langan, S.; Mehta, N.N.; Ogdie, A.; Van Voorhees, A.S.; Gelfand, J. Psoriasis and comorbid diseases: Epidemiology. J. Am. Acad. Dermatol. 2017, 76, 377–390. [Google Scholar] [CrossRef] [Green Version]
- Kanda, N.; Hoashi, T.; Saeki, H. Nutrition and Psoriasis. Int. J. Mol. Sci. 2020, 21, 5405. [Google Scholar] [CrossRef]
- Ford, A.; Siegel, M.; Bagel, J.; Cordoro, K.; Garg, A.; Gottlieb, A.B.; Green, L.J.; Gudjonsson, J.E.; Koo, J.; Lebwohl, M.; et al. Dietary Recommendations for Adults with Psoriasis or Psoriatic Arthritis From the Medical Board of the National Psoriasis Foundation: A Systematic Review. JAMA Dermatol. 2018, 154, 934–950. [Google Scholar] [CrossRef]
- Al-Mutairi, N.; Nour, T. The effect of weight reduction on treatment outcomes in obese patients with psoriasis on biologic therapy: A randomized controlled prospective trial. Expert Opin. Biol. Ther. 2014, 14, 749–756. [Google Scholar] [CrossRef]
- Gisondi, P.; Del Giglio, M.; Di Francesco, V.; Zamboni, M.; Girolomoni, G. Weight loss improves the response of obese patients with moderate-tosevere chronic plaque psoriasis to low-dose cyclosporine therapy: A randomized, controlled, investigator-blinded clinical trial. Am. J. Clin. Nutr. 2008, 88, 1242–1247. [Google Scholar]
- Guida, B.; Napoleone, A.; Trio, R.; Nastasi, A.; Balato, N.; Laccetti, R.; Cataldi, M. Energy-restricted, n-3 polyunsaturated fatty acids-rich diet improves the clinical response to immuno-modulating drugs in obese patients with plaque-type psoriasis: A randomized control clinical trial. Clin. Nutr. 2014, 33, 399–405. [Google Scholar] [CrossRef]
- Naldi, L.; Conti, A.; Cazzaniga, S.; Patrizi, A.; Pazzaglia, M.; Lanzoni, A.; Veneziano, L.; Pellacani, G.; The Psoriasis Emilia Romagna Study Group. Diet and physical exercise in psoriasis: A randomized controlled trial. Br. J. Dermatol. 2014, 170, 634–642. [Google Scholar] [CrossRef]
- Jensen, P.; Zachariae, C.; Christensen, R.; Geiker, N.R.W.; Schaadt, B.K.; Stender, S.; Hansen, P.R.; Astrup, A.; Skov, L. Effect of weight loss on the severity of psoriasis: A randomized clinical study. JAMA Dermatol. 2013, 149, 795–801. [Google Scholar] [CrossRef] [Green Version]
- Kimball, A.; Alavian, C.; Alora-Palli, M.; Bagel, J. Weight loss in obese patients with psoriasis can be successfully achieved during a course of phototherapy. J. Eur. Acad. Dermatol. Venereol. 2011, 26, 1582–1584. [Google Scholar] [CrossRef]
- Radi, G.; Campanati, A.; Diotallevi, F.; Bianchelli, T.; Offidani, A. Novel Therapeutic Approaches and Targets for Treatment of Psoriasis. Curr. Pharm. Biotechnol. 2020, 22, 7–31. [Google Scholar] [CrossRef]
- Del Giglio, M.; Gisondi, P.; Tessari, G.; Girolomoni, G. Weight reduction alone may not be sufficient to maintain disease remission in obese patients with psoriasis: A randomized, investigator-blinded study. Dermatology 2012, 224, 31–37. [Google Scholar] [CrossRef]
- Phan, C.; Touvier, M.; Kesse-Guyot, E.; Adjibade, M.; Hercberg, S.; Wolkenstein, P.; Chosidow, O.; Ezzedine, K.; Sbidian, E. Association Between Mediterranean Anti-inflammatory Dietary Profile and Severity of Psoriasis: Results From the NutriNet-Santé Cohort. JAMA Dermatol. 2018, 154, 1017–1024. [Google Scholar] [CrossRef]
- Michaëlsson, G.; Gerdén, B.; Hagforsen, E.; Nilsson, B.; Pihl-Lundin, I.; Kraaz, W.; Hjelmquist, G.; Lööf, L. Psoriasis patients with antibodies to gliadin can be improved by a gluten-free diet. Br. J. Dermatol. 2000, 142, 44–51. [Google Scholar] [CrossRef]
- Hagforsen, E.; Michaëlsson, G.; Åhs, S.; Hammarström, I.; Lundin, I.P. Gluten-free Diet in Psoriasis Patients with Antibodies to Gliadin Results in Decreased Expression of Tissue Transglutaminase and Fewer Ki67+ Cells in the Dermis. Acta Derm. Venereol. 2003, 83, 425–429. [Google Scholar] [CrossRef] [Green Version]
- De Bastiani, R.; Gabrielli, M.; Lora, L.; Napoli, L.; Tosetti, C.; Pirrotta, E.; Ubaldi, E.; Bertolusso, L.; Zamparella, M.; De Polo, M.; et al. Association between Coeliac Disease and Psoriasis: Italian Primary Care Multicentre Study. Dermatology 2015, 230, 156–160. [Google Scholar] [CrossRef]
- Rubio-Tapia, A.; Hill, I.D.; Kelly, C.P.; Calderwood, A.H.; Murray, J.A.; American College of Gastroenterology. ACG Clinical Guidelines: Diagnosis and Management of Celiac Disease. Am. J. Gastroenterol. 2013, 108, 656–676. [Google Scholar] [CrossRef] [Green Version]
- Giannoni, M.; Consales, V.; Campanati, A.; Ganzetti, G.; Giuliodori, K.; Postacchini, V.; Liberati, G.; Azzaretto, L.; Vichi, S.; Guanciarossa, F.; et al. Homocysteine plasma levels in psoriasis patients: Our experience and review of the literature. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 1781–1785. [Google Scholar] [CrossRef]
- Ganzetti, G.; Campanati, A.; Scocco, V.; Brugia, M.; Tocchini, M.; Liberati, G.; Giuliodori, K.; Brisigotti, V.; Offidani, A. The Potential Effect of the Tumour Necrosis Factor-α Inhibitors on Vitamin D Status in Psoriatic Patients. Acta Derm. Venereol. 2014, 94, 715–717. [Google Scholar] [CrossRef] [Green Version]
- Campanati, A.; Molinelli, E.; Ganzetti, G.; Giuliodori, K.; Minetti, I.; Taus, M.; Catani, M.; Martina, E.; Conocchiari, L.; Offidani, A. The effect of low-carbohydrates calorie-restricted diet on visceral adipose tissue and metabolic status in psoriasis patients receiving TNF-alpha inhibitors: Results of an open label controlled, prospective, clinical study. J. Dermatol. Treat. 2016, 28, 206–212. [Google Scholar] [CrossRef]
- Campanati, A.; Ganzetti, G.; Giuliodori, K.; Marra, M.; Bonfigli, A.R.; Testa, R.; Offidani, A. Serum levels of adipocytokines in psoriasis patients receiving tumor necrosis factor-αinhibitors: Results of a retrospective analysis. Int. J. Dermatol. 2015, 54, 839–845. [Google Scholar] [CrossRef]
- Orciani, M.; Campanati, A.; Caffarini, M.; Ganzetti, G.; Consales, V.; Lucarini, G.; Offidani, A.; Di Primio, R. T helper (Th)1, Th17 and Th2 imbalance in mesenchymal stem cells of adult patients with atopic dermatitis: At the origin of the problem. Br. J. Dermatol. 2017, 176, 1569–1576. [Google Scholar] [CrossRef]
- Campanati, A.; Bianchelli, T.; Gesuita, R.; Foti, C.; Malara, G.; Micali, G.; Amerio, P.; Rongioletti, F.; Corazza, M.; Patrizi, A.; et al. Correction to: Comorbidities and treatment patterns in adult patients with atopic dermatitis: Results from a nationwide multicenter study. Arch. Dermatol. Res. 2021. Online ahead of print. [Google Scholar] [CrossRef]
- Finch, J.; Munhutu, M.; Whitaker-Worth, D.L. Atopic dermatitis and nutrition. Clin. Dermatol. 2010, 28, 605–614. [Google Scholar] [CrossRef]
- Low, D.; Jamil, A.; Nor, N.M.; Ibrahim, S.B.K.; Poh, B.K. Food restriction, nutrition status, and growth in toddlers with atopic dermatitis. Pediatr. Dermatol. 2019, 37, 69–77. [Google Scholar] [CrossRef]
- Mohajeri, S.; Newman, S.A. Review of evidence for dietary influences on atopic dermatitis. Skin Ther. Lett. 2014, 19, 5–7. [Google Scholar]
- Guibas, G.V.; Makris, M.; Chliva, C.; Gregoriou, S.; Rigopoulos, D. Atopic Dermatitis, food allergy and dietary interventions. A tale of controversy. An. Bras. Dermatol. 2013, 88, 839–841. [Google Scholar] [CrossRef]
- Anyfantakis, V.; Guillet, G.; Marie-Helene, G. Food allergen-free diet in severe atopic dermatitis related to food allergy. Indian J. Dermatol. Venereol. Leprol. 2011, 77, 332–333. [Google Scholar] [CrossRef]
- Olendzka-Rzepecka, E.; Kaczmarski, M.; Lebensztejn, D. Therapeutic effectiveness of treatment with an elimination diet in children with atopic dermatitis of different ages. Rocz. Akad. Med. Bialymst. 1995, 40, 8775313. [Google Scholar]
- Rokaitė, R.; Labanauskas, L.; Balčiūnaitė, S.; Vaidelienė, L. Significance of dietotherapy on the clinical course of atopic dermatitis. Medicina 2009, 45, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Silverberg, N.B.; Lee-Wong, M.; Yosipovitch, G. Diet and atopic dermatitis. Cutis 2016, 97, 227–232. [Google Scholar]
- Kim, M.J.; Kim, S.-N.; Lee, Y.W.; Choe, Y.B.; Ahn, K.J. Vitamin D Status and Efficacy of Vitamin D Supplementation in Atopic Dermatitis: A Systematic Review and Meta-Analysis. Nutrients 2016, 8, 789. [Google Scholar] [CrossRef] [PubMed]
- Buimer, M.G.; Wobbes, T.; Klinkenbijl, J.H. Hidradenitis suppurativa. Br. J. Surg. 2009, 96, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Saunte, D.M.L.; Jemec, G.B.E. Hidradenitis suppurativa: Advances in diagnosis and treatment. JAMA 2017, 318, 2019–2032. [Google Scholar] [CrossRef]
- Sabat, R.; Chanwangpong, A.; Schneider-Burrus, S.; Metternich, D.; Kokolakis, G.; Kurek, A.; Philipp, S.; Uribe, D.; Wolk, K.; Sterry, W. Increased Prevalence of Metabolic Syndrome in Patients with Acne Inversa. PLoS ONE 2012, 7, e31810. [Google Scholar] [CrossRef]
- Campanati, A.; Orciani, M.; Sorgentoni, G.; Consales, V.; Offidani, A.; Di Primio, R. Pathogenetic Characteristics of Mesenchymal Stem Cells in Hidradenitis Suppurativa. JAMA Dermatol. 2018, 154, 1184. [Google Scholar] [CrossRef]
- Silfvast-Kaiser, A.; Youssef, R.; Paek, S.Y. Diet in hidradenitis suppurativa: A review of published and lay literature. Int. J. Dermatol. 2019, 58, 1225–1230. [Google Scholar] [CrossRef]
- Campanati, A.; Martina, E.; Giuliodori, K.; Bobyr, I.; Consales, V.; Offidani, A. Two cases of Hidradenitis suppurativa and botulinum toxin type a therapy: A novel approach for a pathology that is still difficult to manage. Dermatol. Ther. 2019, 32, e12841. [Google Scholar] [CrossRef]
- Dempsey, A.; Butt, M.; Kirby, J.S. Prevalence and Impact of Dietary Avoidance among Individuals with Hidradenitis Suppurativa. Dermatology 2020, 236, 289–295. [Google Scholar] [CrossRef]
- Sivanand, A.; Gulliver, W.P.; Josan, C.K.; Alhusayen, R.; Fleming, P.J. Weight Loss and Dietary Interventions for Hidradenitis Suppurativa: A Systematic Review. J. Cutan. Med. Surg. 2019, 24, 64–72. [Google Scholar] [CrossRef]
- Fernandez, J.M.; Marr, K.D.; Hendricks, A.J.; Price, K.N.; Ludwig, C.M.; Maarouf, M.; Hsiao, J.L.; Shi, V.Y. Alleviating and exacerbating foods in hidradenitis suppurativa. Dermatol. Ther. 2020, 33, e14246. [Google Scholar] [CrossRef]
- Kromann, C.; Ibler, K.; Kristiansen, V.; Jemec, G. The Influence of Body Weight on the Prevalence and Severity of Hidradenitis Suppurativa. Acta Derm. Venereol. 2014, 94, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Miller, I.M.; Ellervik, C.; Vinding, G.R.; Zarchi, K.; Ibler, K.S.; Knudsen, K.M.; Jemec, G.B.E. Association of Metabolic Syndrome and Hidradenitis Suppurativa. JAMA Dermatol. 2014, 150, 1273–1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penno, C.A.; Jäger, P.; Laguerre, C.; Hasler, F.; Hofmann, A.; Gass, S.K.; Wettstein-Ling, B.; Schaefer, D.J.; Avrameas, A.; Raulf, F.; et al. Lipidomics Profiling of Hidradenitis Suppurativa Skin Lesions Reveals Lipoxygenase Pathway Dysregulation and Accumulation of Proinflammatory Leukotriene B4. J. Investig. Dermatol. 2020, 140, 2421–2432.e10. [Google Scholar] [CrossRef]
- Guillet, A.; Brocard, A.; Ngohou, K.B.; Graveline, N.; Leloup, A.-G.; Ali, D.; Nguyen, J.-M.; Loirat, M.-J.; Chevalier, C.; Khammari, A.; et al. Verneuil’s disease, innate immunity and vitamin D: A pilot study. J. Eur. Acad. Dermatol. Venereol. 2014, 29, 1347–1353. [Google Scholar] [CrossRef] [PubMed]
- Phan, K.; Charlton, O.; Smith, S.D. Hidradenitis suppurativa and diabetes mellitus: Updated systematic review and adjusted meta-analysis. Clin. Exp. Dermatol. 2019, 44, e126–e132. [Google Scholar] [CrossRef]
- Caproni, M.; Antiga, E.; Melani, L.; Fabbri, P.; The Italian Group for Cutaneous Immunopathology. Guidelines for the diagno-sis and treatment of dermatitis herpetiformis. J. Eur. Acad. Dermatol. Venereol. 2009, 23, 633–638. [Google Scholar] [CrossRef]
- Salmi, T.; Hervonen, K.; Kautiainen, H.; Collin, P.; Reunala, T. Prevalence and incidence of dermatitis herpetiformis: A 40-year prospective study from Finland. Br. J. Dermatol. 2011, 165, 354–359. [Google Scholar] [CrossRef]
- Nicolas, M.E.; Krause, P.K.; Gibson, L.E.; Murray, J.A. Dermatitis herpetiformis. Int. J. Dermatol. 2003, 42, 588–600. [Google Scholar] [CrossRef]
- Molinelli, E.; Paolinelli, M.; Campanati, A.; Brisigotti, V.; Offidani, A. Metabolic, pharmacokinetic, and toxicological issues surrounding dapsone. Expert Opin. Drug Metab. Toxicol. 2019, 15, 367–379. [Google Scholar] [CrossRef]
- Turchin, I.; Barankin, B. Dermatitis herpetiformis and gluten-free diet. Dermatol. Online J. 2005, 11, 6. [Google Scholar] [CrossRef]
- Comino, I.; Moreno, M.D.L.; Sousa, C. Role of oats in celiac disease. World J. Gastroenterol. 2015, 21, 11825–11831. [Google Scholar] [CrossRef]
- Hietikko, M.; Hervonen, K.; Salmi, T.; Ilus, T.; Zone, J.; Kaukinen, K.; Reunala, T.; Lindfors, K. Disappearance of epidermal transglutaminase and IgA deposits from the papillary dermis of patients with dermatitis herpetiformis after a long-term gluten-free diet. Br. J. Dermatol. 2018, 178, e198–e201. [Google Scholar] [CrossRef] [PubMed]
- Fric, P.; Gabrovska, D.; Nevoral, J. Celiac disease, gluten-free diet, and oats. Nutr. Rev. 2011, 69, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Mariani, P.; Viti, M.G.; Montouri, M.; La Vecchia, A.; Cipolletta, E.; Calvani, L.; Bonamico, M. The Gluten-Free Diet: A Nutritional Risk Factor for Adolescents with Celiac Disease? J. Pediatr. Gastroenterol. Nutr. 1998, 27, 519–523. [Google Scholar] [CrossRef]
- Caponio, F.; Summo, C.; Clodoveo, M.L.; Pasqualone, A. Evaluation of the nutritional quality of the lipid fraction of glu-ten-free biscuits. Eur. Food Res. Technol. 2008, 223, 135–139. [Google Scholar] [CrossRef]
- Larretxi, I.; Simon, E.; Benjumea, L.; Miranda, J.; Bustamante, M.A.; Lasa, A.; Eizaguirre, F.J.; Churruca, I. Glu-ten-Free-Rendered Products Contribute to Imbalanced Diets in Children and Adolescents with Celiac Disease. Eur. J. Nutr. 2019, 58, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Babio, N.; Alcázar, M.; Castillejo, G.; Recasens, M.; Martínez-Cerezo, F.; Gutiérrez-Pensado, V.; Masip, G.; Vaqué, C.; Vila-Martí, A.; Torres-Moreno, M.; et al. Patients with Celiac Disease Reported Higher Consumption of Added Sugar and Total Fat Than Healthy Individuals. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.Y.; Neal, B.; Trevena, H.; Crino, M.; Stuart-Smith, W.; Faulkner-Hogg, K.; Louie, J.C.Y.; Dunford, E. Are gluten-free foods healthier than non-gluten-free foods? An evaluation of supermarket products in Australia. Br. J. Nutr. 2015, 114, 448–454. [Google Scholar] [CrossRef] [Green Version]
- Case, S. The gluten-free diet: How to provide effective education and resources. Gastroenterology 2005, 128, S128–S134. [Google Scholar] [CrossRef]
- Feliciani, C.; Cozzani, E.; Marzano, A.V.; Caproni, M.; Di Zenzo, G.; Calzavara-Pinton, P.; “Cutaneous Immunology” Group of SIDeMaST. Italian Guidelines in Pemphigus—Adapted from the European Dermatology Forum (EDF) and European Academy of Dermatology and Venerology (EADV). G. Ital. Dermatol. Venereol. 2018, 153, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Grover, S. Scoring systems in pemphigus. Indian J. Dermatol. 2011, 56, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Roujeau, J.C.; Revuz, J. Intensive care in Dermatology. In Recent Advances in Dermatology; Champion, R.H., Pye, R.J., Eds.; Churchill Livingstone: London, UK, 1990; pp. 85–99. [Google Scholar]
- Kar, P. Recent Trends in the Management of Pemphigus Vulgaris. Med. J. Armed Forces India 1998, 54, 243–246. [Google Scholar] [CrossRef] [Green Version]
- Joly, P.; Horwath, B.; Patsatsi, A.; Uzun, S.; Bech, R.; Beissert, S.; Bergman, R.; Bernard, P.; Borradori, L.; Caproni, M.; et al. Updated S2K guidelines on the management of pemphigus vulgaris and foliaceus initiated by the european academy of dermatology and venereology (EADV). J. Eur. Acad. Dermatol. Venereol. 2020, 34, 1900–1913. [Google Scholar] [CrossRef] [PubMed]
- Zarei, M.; Javanbakht, M.H.; Chams-Davatchi, C.; Daneshpazhooh, M.; Eshraghian, M.R.; De-Rakhshanian, H.; Djalali, M. Evaluation of Vitamin D Status in Newly Diagnosed Pemphigus Vulgaris Patients. Iran. J. Public Health 2014, 43, 1544–1549. [Google Scholar]
- Yamamoto, C.; Tamai, K.; Nakano, H.; Matsuzaki, Y.; Kaneko, T.; Sawamura, D. Vitamin D3 inhibits expression of pemphigus vulgaris antigen desmoglein 3: Implication of a partial mechanism in the pharmacological effect of vitamin D3 on skin diseases. Mol. Med. Rep. 2008, 1, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Hans-Filho, G.; Aoki, V.; Bittner, N.R.H.; Bittner, G.C. Fogo selvagem: Endemic pemphigus foliaceus. Bras Dermatol. 2018, 93, 638–650. [Google Scholar] [CrossRef]
- Brenner, S.; Wolf, R. Possible Nutritional Factors in Induced Pemphigus. Dermatology 1994, 189, 337–339. [Google Scholar] [CrossRef]
- Tur, E.; Brenner, S. In pursuit exogenous factors in pemphigus and fogo selvagem. Arch. Dermatol. 1998, 134, 1406–1410. [Google Scholar] [CrossRef]
- Lakdawala, N.; Babalola, O., 3rd; Fedeles, F.; McCusker, M.; Ricketts, J.; Whitaker-Worth, D.; Grant-Kels, J.M. The role of nutrition in dermatologic diseases: Facts and controversies. Clin. Dermatol. 2013, 31, 677–700. [Google Scholar] [CrossRef]
- Fedeles, F.; Murphy, M.; Rothe, M.J.; Grant-Kels, J.M. Nutrition and bullous skin diseases. Clin. Dermatol. 2010, 28, 627–643. [Google Scholar] [CrossRef]
- Vaillant, L.; Bernard, P.; Joly, P.; Prost, C.; Labeille, B.; Bedane, C.; Arbeille, B.; Thomine, E.; Bertrand, P.; Lok, C.; et al. Evaluation of clinical criteria for diagnosis of bullous pemphigoid. French Bullous Study Group. Arch. Dermatol. 1998, 134, 1075–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atakan, N.; Tüzün, J.; Karaduman, A. Dyshidrosiform pemphigoid induced by nickel in the diet. Contact Dermat. 1993, 29, 159–160. [Google Scholar] [CrossRef] [PubMed]
- Economidou, J.; Avgerinou, G.; Tsiroyianni, A.; Stavropoulos, P.; Vareltzidis, A.; Katsambas, A. Endomysium and antigliadin antibodies in dermatitis herpetiformis and other bullous diseases. J. Eur. Acad. Dermatol. Venereol. 1998, 11, 184–185. [Google Scholar] [CrossRef] [PubMed]
- Picardo, M.; Dell’Anna, M.L.; Ezzedine, K.; Hamzavi, I.; Harris, J.E.; Parsad, D.; Taieb, A. Vitiligo. Nat. Rev. Dis. Primers 2015, 1, 15011. [Google Scholar] [CrossRef] [PubMed]
- Alikhan, A.; Felsten, L.M.; Daly, M.; Petronic-Rosic, V. Vitiligo: A comprehensive overview Part, I. Introduction, epidemiolo-gy, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. J. Am. Acad. Dermatol. 2011, 65, 473–491. [Google Scholar] [CrossRef] [PubMed]
- Ezzedine, K.; Eleftheriadou, V.; Whitton, M.; van Geel, N. Vitiligo. Lancet 2015, 386, 74–84. [Google Scholar] [CrossRef]
- Adotama, P.; Zapata, L.; Currimbhoy, S.; Hynan, L.S.; Pandya, A.G. Patient satisfaction with different treatment modalities for vitiligo. J. Am. Acad. Dermatol. 2015, 72, 732–733. [Google Scholar] [CrossRef]
- Grimes, P.E.; Nashawati, R. The Role of Diet and Supplements in Vitiligo Management. Dermatol. Clin. 2017, 35, 235–243. [Google Scholar] [CrossRef]
- Khandalavala, B.N.; Nirmalraj, M.C. Rapid partial repigmentation of vitiligo in a young female adult with a gluten-free diet. Case Rep. Dermatol. 2014, 6, 283–287. [Google Scholar] [CrossRef]
- Salafia, A. Vitiligo. Successful treatment with dapsone. Chron. Dermatol. 1995, 5, 171–188. [Google Scholar]
- Rodríguez-García, C.; González-Hernández, S.; Pérez-Robayna, N.; Guimerá, F.; Fagundo, E.; Sanchez, R. Repigmentation of Vitiligo Lesions in a Child with Celiac Disease after a Gluten-Free Diet. Pediatr. Dermatol. 2011, 28, 209–210. [Google Scholar] [CrossRef] [PubMed]
- Cormane, R.H.; Siddiqui, A.H.; Westerhof, W.; Schutgens, R.B.H. Phenylalanine and UVA light for the treatment of vitiligo. Arch. Dermatol. Res. 1985, 277, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, A.; Stolk, L.; Bhaggoe, R.; Hu, R.; Schutgens, R.; Westerhof, W. L-Phenylalanine and UVA Irradiation in the Treatment of Vitiligo. Dermatology 1994, 188, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, C.; Schulpis, H.; Michas, T.; Katsambas, A.; Frajis, N.; Tsagaraki, S.; Stratigos, J. Vitiligo Therapy with Oral and Topical Phenylalanine with UVA Exposure. Int. J. Dermatol. 1989, 28, 545–547. [Google Scholar] [CrossRef]
- Buggiani, G.; Tsampau, D.; Hercogovà, J.; Rossi, R.; Brazzini, B.; Lotti, T. Clinical efficacy of a novel topical formulation for vitiligo: Compared evaluation of different treatment modalities in 149 patients. Dermatol. Ther. 2012, 25, 472–476. [Google Scholar] [CrossRef]
- Andreini, C.; Banci, L.; Bertini, I.; Rosato, A. Counting the Zinc-Proteins Encoded in the Human Genome. J. Proteome Res. 2006, 5, 196–201. [Google Scholar] [CrossRef]
- Prasad, A.S. Zinc: An overview. Nutrition 1994, 11 (Suppl. S1), 93–99. [Google Scholar]
- Prasad, P.S.; Kaviarasan, P.; Shameer, P. Serum zinc level in vitiligo: A case control study. Indian J. Dermatol. Venereol. Leprol. 2005, 71, 206–207. [Google Scholar] [CrossRef]
- Jaffary, F.; Derakhshandeh-Rishehri, S.-M.; Heidari-Beni, M.; Askari, G.; Nilfroshzade, M.; Adibi, N. Role of fatty acids intake in generalized vitiligo. Int. J. Prev. Med. 2019, 10, 52. [Google Scholar] [CrossRef]
- Dell’Anna, M.L.; Mastrofrancesco, A.; Sala, R.; Venturini, M.; Ottaviani, M.; Vidolin, A.P.; Leone, G.; Calzavara-Pinton, P.; Westerhof, W.; Picardo, M. Antioxidants and narrow band-UVB in the treatment of vitiligo: A double-blind placebo controlled trial. Clin. Exp. Dermatol. 2007, 32, 631–636. [Google Scholar] [CrossRef]
- Shakhbazova, A.; Wu, H.; Chambers, C.J.; Sivamani, R.K. A Systematic Review of Nutrition, Supplement, and Herbal-Based Adjunctive Therapies for Vitiligo. J. Altern. Complement. Med. 2021, 27, 294–311. [Google Scholar] [CrossRef] [PubMed]
- Juhlin, L.; Olsson, M.J. Improvement of vitiligo after oral treatment with vitamin B12 and folic acid and the importance of sun exposure. Acta Derm. Venereol. 1977, 77, 460–462. [Google Scholar]
- Tjioe, M.; Gerritsen, M.J.P.; Juhlin, L.; van de Kerkhof, P.C.M. Treatment of Vitiligo Vulgaris with Narrow Band UVB (311 nm) for One Year and the Effect of Addition of Folic Acid and Vitamin B12. Acta Derm. Venereol. 2002, 82, 369–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, J.; Kim, T.H.; Sun, Y.W. Complementary and Alternative Medicine for Vitiligo. In Vitiligo: Management and Therapy; Park, K.K., Murase, J.E., Eds.; INTECH Open Access Publisher: Rijeka, Croatia, 2011. [Google Scholar]
- Bhattacharya, S.K.; Dutta, A.K.; Mandal, S.B.; Chatterjee, A. Ascorbic acid in vitiligo. Indian J. Dermatol. 1981, 26, 4–11. [Google Scholar]
- Ramadan, R.; Tawdy, A.; Hay, R.A.; Rashed, L.; Tawfik, D. The Antioxidant Role of Paraoxonase 1 and Vitamin E in Three Autoimmune Diseases. Ski. Pharmacol. Physiol. 2013, 26, 2–7. [Google Scholar] [CrossRef]
- Elgoweini, M.; El Din, N.N. Response of Vitiligo to Narrowband Ultraviolet B and Oral Antioxidants. J. Clin. Pharmacol. 2009, 49, 852–855. [Google Scholar] [CrossRef]
- Akyol, M.; Celik, V.K.; Ozcelik, S.; Polat, M.; Marufihah, M.; Atalay, A. The effects of vitamin E on the skin lipid peroxidation and the clinical improvement in vitiligo patients treated with PUVA. Eur. J. Dermatol. 2002, 12, 11809591. [Google Scholar]
- Finamor, D.C.; Sinigaglia-Coimbra, R.; Das Neves, L.C.M.; Gutierrez, M.; Silva, J.J.; Torres, L.D.; Surano, F.; Neto, D.J.; Novo, N.F.; Juliano, Y.; et al. A pilot study assessing the effect of prolonged administration of high daily doses of vitamin D on the clinical course of vitiligo and psoriasis. Dermato-Endocrinology 2013, 5, 222–234. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Wang, S.; Lin, F.; Li, Q.; Xu, A. The therapeutic effects of EGCG on vitiligo. Fitoterapia 2014, 99, 243–251. [Google Scholar] [CrossRef]
- Parsad, D.; Pandhi, R.; Juneja, A. Effectiveness of oral Ginkgo biloba in treating limited, slowly spreading vitiligo. Clin. Exp. Dermatol. 2003, 28, 285–287. [Google Scholar] [CrossRef]
- Szczurko, O.; Shear, N.; Taddio, A.; Boon, H. Ginkgo biloba for the treatment of vitilgo vulgaris: An open label pilot clinical trial. BMC Complement. Altern. Med. 2011, 11, 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Nardo, V.; Barygina, V.; França, K.; Tirant, M.; Valle, Y.; Lotti, T. Functional nutrition as integrated approach in vitiligo management. Dermatol. Ther. 2019, 32, e12625. [Google Scholar] [CrossRef] [PubMed]
- Prignano, F.; Pescitelli, L.; Becatti, M.; Di Gennaro, P.; Fiorillo, C.; Taddei, N.; Lotti, T. Ultrastructural and functional alterations of mitochondria in perilesional vitiligo skin. J. Dermatol. Sci. 2009, 54, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Asawanonda, P.; Klahan, S.-O. Tetrahydrocurcuminoid Cream Plus Targeted Narrowband UVB Phototherapy for Vitiligo: A Preliminary Randomized Controlled Study. Photomed. Laser Surg. 2010, 28, 679–684. [Google Scholar] [CrossRef]
- Berman, B.; Ellis, C.; Elmets, C. Polypodium leucotomos—An Overview of Basic Investigative Findings. J. Drugs Dermatol. 2016, 15, 224–228. [Google Scholar]
- Middelkamp-Hup, M.A.; Bos, J.D.; Rius-Diaz, F.; Gonzalez, S.; Westerhof, W. Treatment of vitiligo vulgaris with narrow-band UVB and oral Polypodium leucotomos extract: A randomized double-blind placebo-controlled study. J. Eur. Acad. Dermatol. Venereol. 2007, 21, 942–950. [Google Scholar] [CrossRef]
- Mohammad, A. Vitiligo repigmentation with Anapsos (Polypodium leucotomos). Int. J. Dermatol. 1989, 28, 479. [Google Scholar]
- Heinrich, U.; Gärtner, C.; Wiebusch, M.; Eichler, O.; Sies, H.; Tronnier, H.; Stahl, W. Supplementation with β-Carotene or a Similar Amount of Mixed Carotenoids Protects Humans from UV-Induced Erythema. J. Nutr. 2003, 133, 98–101. [Google Scholar] [CrossRef]
- Ortel, B.; Tanew, A.; Hönigsmann, H. Treatment of vitiligo with khellin and ultraviolet A. J. Am. Acad. Dermatol. 1988, 18, 693–701. [Google Scholar] [CrossRef]
- Ghorbanibirgani, A.; Khalili, A.; Rokhafroz, D. Comparing Nigella sativa Oil and Fish Oil in Treatment of Vitiligo. Iran. Red Crescent Med. J. 2014, 16, e4515. [Google Scholar] [CrossRef] [Green Version]
- Rajabi, F.; Drake, L.; Senna, M.; Rezaei, N. Alopecia areata: A review of disease pathogenesis. Br. J. Dermatol. 2018, 179, 1033–1048. [Google Scholar] [CrossRef] [PubMed]
- Alkhalifah, A.; Alsantali, A.; Wang, E.; McElwee, K.; Shapiro, J. Alopecia areata update: Part I. Clinical picture, histopathology, and pathogenesis. J. Am. Acad. Dermatol. 2010, 62, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Gwillim, E.; Patel, K.R.; Hua, T.; Rastogi, S.; Ibler, E.; Silverberg, J.I. Epidemiology of alopecia areata, ophiasis, totalis, and universalis: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 2020, 82, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Trüeb, R.M.; Dias, M.F.R.G. Alopecia Areata: A Comprehensive Review of Pathogenesis and Management. Clin. Rev. Allergy Immunol. 2018, 54, 68–87. [Google Scholar] [CrossRef] [PubMed]
- Paus, R.; Ito, N.; Takigawa, M.; Ito, T. The Hair Follicle and Immune Privilege. J. Investig. Dermatol. Symp. Proc. 2003, 8, 188–194. [Google Scholar] [CrossRef]
- Gilhar, A.; Paus, R.; Kalish, R.S. Lymphocytes, neuropeptides, and genes involved in alopecia areata. J. Clin. Investig. 2007, 117, 2019–2027. [Google Scholar] [CrossRef] [PubMed]
- Pratt, C.H.; King, L.E., Jr.; Messenger, A.G.; Christiano, A.M.; Sundberg, J.P. Alopecia areata. Nat. Rev. Dis. Primers 2017, 3, 17011. [Google Scholar] [CrossRef] [Green Version]
- Harries, M.; Macbeth, A.E.; Holmes, S.; Thompson, A.R.; Chiu, W.S.; Gallardo, W.R.; Messenger, A.G.; Tziotzios, C.; de Lusignan, S. Epidemiology, management and the associated burden of mental health illness, atopic and autoimmune conditions, and com-mon infections in alopecia areata: Protocol for an observational study series. BMJ Open 2021, 11, e045718. [Google Scholar] [CrossRef]
- Ganzetti, G.; Campanati, A.; Offidani, A. Alopecia Areata: A possible extraintestinal manifestation of Crohn’s disease. J. Crohn’s Colitis 2012, 6, e503. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Lee, H.; Lee, C.H.; Lee, W.-S. Comorbidities in alopecia areata: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 2019, 80, 466–477.e16. [Google Scholar] [CrossRef]
- Bikle, D.D. Vitamin D and the skin: Physiology and pathophysiology. Rev. Endocr. Metab. Disord. 2011, 13, 3–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holick, M.F. Vitamin D: A d-lightful solution for health. J. Investig. Med. 2011, 59, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Malloy, P.J.; Pike, J.W.; Feldman, D. The Vitamin D Receptor and the Syndrome of Hereditary 1,25-Dihydroxyvitamin D-Resistant Rickets*. Endocr. Rev. 1999, 20, 156–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Z.; Komuves, L.; Yu, Q.-C.; Elalieh, H.; Ng, D.C.; Leary, C.; Chang, S.; Crumrine, D.; Bikle, D.D.; Yoshizawa, T.; et al. Lack of the Vitamin D Receptor is Associated with Reduced Epidermal Differentiation and Hair Follicle Growth. J. Investig. Dermatol. 2002, 118, 11–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sassi, F.; Tamone, C.; D’Amelio, P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients 2018, 10, 1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakry, O.A.; El Farargy, S.M.; El Shafiee, M.K.; Soliman, A. Serum Vitamin D in patients with alopecia areata. Indian Dermatol. Online J. 2016, 7, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Cerman, A.A.; Solak, S.S.; Altunay, I.K. Vitamin D deficiency in alopecia areata. Br. J. Dermatol. 2014, 170, 1299–1304. [Google Scholar] [CrossRef]
- Gade, V.K.V.; Mony, A.; Munisamy, M.; Chandrashekar, L.; Rajappa, M. An investigation of vitamin D status in alopecia areata. Clin. Exp. Med. 2018, 18, 577–584. [Google Scholar] [CrossRef]
- Daroach, M.; Narang, T.; Saikia, U.N.; Sachdeva, N.; Kumaran, M.S. Correlation of vitamin D and vitamin D receptor expression in patients with alopecia areata: A clinical paradigm. Int. J. Dermatol. 2018, 57, 217–222. [Google Scholar] [CrossRef]
- Unal, M.; Gonulalan, G. Serum vitamin D level is related to disease severity in pediatric alopecia areata. J. Cosmet. Dermatol. 2017, 17, 101–104. [Google Scholar] [CrossRef]
- Molinelli, E.; Campanati, A.; Brisigotti, V.; Sapigni, C.; Paolinelli, M.; Offidani, A. Efficacy and Safety of Topical Calcipotriol 0.005% Versus Topical Clobetasol 0.05% in the Management of Alopecia Areata: An Intrasubject Pilot Study. Dermatol. Ther. 2020, 10, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Amin, S.S.; Adil, M.; Arif, T.; Zahra, F.T.; Varshney, I. Comparative Study of Efficacy of Topical Mometasone with Calcipotriol versus Mometasone Alone in the Treatment of Alopecia Areata. Int. J. Trichol. 2019, 11, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, D.T.; Bothou, C.; Dermitzaki, E.; Alexopoulos, A.; Mastorakos, G. Treatment of alopecia totalis/universalis/focalis with vitamin D and analogs: Three case reports and a literature review. World J. Clin. Pediatr. 2021, 10, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Narang, T.; Daroach, M.; Kumaran, M.S. Efficacy and safety of topical calcipotriol in management of alopecia areata: A pilot study. Dermatol. Ther. 2017, 30, e12464. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Lee, J.W.; Kim, I.S.; Choi, S.Y.; Lim, Y.Y.; Kim, H.M.; Kim, B.J.; Kim, M.N. Successful Treatment of Alopecia Areata with Topical Calcipotriol. Ann. Dermatol. 2012, 24, 341–344. [Google Scholar] [CrossRef] [Green Version]
- Tjellström, B.; Högberg, L.; Stenhammar, L.; Fälth-Magnusson, K.; Magnusson, K.-E.; Norin, E.; Sundqvist, T.; Midtvedt, T. Faecal short-chain fatty acid pattern in childhood coeliac disease is normalised after more than one year’s gluten-free diet. Microb. Ecol. Health Dis. 2013, 24, 24. [Google Scholar] [CrossRef]
- Fessatou, S.; Kostaki, M.; Karpathios, T. Coeliac disease and alopecia areata in childhood. J. Paediatr. Child Health 2003, 39, 152–154. [Google Scholar] [CrossRef]
- Barbato, M.; Viola, F.; Grillo, R.; Franchin, L.; Russo, L.L.; Lucarelli, S.; Frediani, T.; Mazzilli, M.C.; Cardi, E. Alopecia and coeliac disease: Report of two patients showing response to gluten-free diet. Clin. Exp. Dermatol. 1998, 23, 236–237. [Google Scholar] [CrossRef]
- Pham, C.T.; Romero, K.; Almohanna, H.M.; Griggs, J.; Ahmed, A.; Tosti, A. The Role of Diet as an Adjuvant Treatment in Scarring and Nonscarring Alopecia. Ski. Appendage Disord. 2020, 6, 88–96. [Google Scholar] [CrossRef]
- Handjiski, B.K.; Eichmüller, S.; Hofmann, U.; Czarnetzki, B.M.; Paus, R. Alkaline phosphatase activity and localization during the murine hair cycle. Br. J. Dermatol. 1994, 131, 303–310. [Google Scholar] [CrossRef]
- Prie, B.E.; Voiculescu, V.M.; Ionescu-Bozdog, O.B.; Petrutescu, B.; Iosif, L.; Gaman, L.E.; Clatici, V.G.; Stoian, I.; Giurcaneanu, C. Oxidative stress and alopecia areata. J. Med. Life 2015, 8, 43–46. [Google Scholar] [PubMed]
- Thompson, J.; Mirza, M.A.; Park, M.K.; Qureshi, A.A.; Cho, E. The Role of Micronutrients in Alopecia Areata: A Review. Am. J. Clin. Dermatol. 2017, 18, 663–679. [Google Scholar] [CrossRef] [PubMed]
- Finner, A.M. Nutrition and hair: Deficiencies and supplements. Dermatol. Clin. 2013, 31, 167–172. [Google Scholar] [CrossRef]
- Park, H.; Kim, C.W.; Kim, S.S.; Park, C.W. The Therapeutic Effect and the Changed Serum Zinc Level after Zinc Supplementation in Alopecia Areata Patients Who Had a Low Serum Zinc Level. Ann. Dermatol. 2009, 21, 142–146. [Google Scholar] [CrossRef] [Green Version]
- Camacho, F.M.; García-Hernández, M.-J. Zinc Aspartate, Biotin, and Clobetasol Propionate in the Treatment of Alopecia Areata in Childhood. Pediatr. Dermatol. 1999, 16, 335–338. [Google Scholar] [CrossRef]
- Lux-Battistelli, C. Combination therapy with zinc gluconate and PUVA for alopecia areata totalis: An adjunctive but crucial role of zinc supplementation. Dermatol. Ther. 2015, 28, 235–238. [Google Scholar] [CrossRef]
- Ead, R. Oral zinc sulphate in alopacia areata—A double blind trial. Br. J. Dermatol. 1981, 104, 483–484. [Google Scholar] [CrossRef]
- World Health Organization; Centers for Disease Control and Prevention. Assessing the Iron Status of Populations, 2nd ed.; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Trost, L.B.; Bergfeld, W.F.; Calogeras, E. The diagnosis and treatment of iron deficiency and its potential relationship to hair loss. J. Am. Acad. Dermatol. 2006, 54, 824–844. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef]
- Nasimi, M.; Shakoei, S.; Abedini, R.; Ghandi, N.; Faghihi, Z. A cross-sectional study of metabolic syndrome in patients with alope-cia areata. Indian J. Dermatol. Venereol. Leprol. 2021, 87, 427–429. [Google Scholar] [CrossRef]
- Abdollahimajd, F.; Niknezhad, N.; Bahreini, N.; Younespour, S.; Namazi, N. Metabolic syndrome in patients with Alopecia Areata: A case-control study. Dermatol. Ther. 2021, 34, e14979. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diotallevi, F.; Campanati, A.; Martina, E.; Radi, G.; Paolinelli, M.; Marani, A.; Molinelli, E.; Candelora, M.; Taus, M.; Galeazzi, T.; et al. The Role of Nutrition in Immune-Mediated, Inflammatory Skin Disease: A Narrative Review. Nutrients 2022, 14, 591. https://doi.org/10.3390/nu14030591
Diotallevi F, Campanati A, Martina E, Radi G, Paolinelli M, Marani A, Molinelli E, Candelora M, Taus M, Galeazzi T, et al. The Role of Nutrition in Immune-Mediated, Inflammatory Skin Disease: A Narrative Review. Nutrients. 2022; 14(3):591. https://doi.org/10.3390/nu14030591
Chicago/Turabian StyleDiotallevi, Federico, Anna Campanati, Emanuela Martina, Giulia Radi, Matteo Paolinelli, Andrea Marani, Elisa Molinelli, Matteo Candelora, Marina Taus, Tiziana Galeazzi, and et al. 2022. "The Role of Nutrition in Immune-Mediated, Inflammatory Skin Disease: A Narrative Review" Nutrients 14, no. 3: 591. https://doi.org/10.3390/nu14030591
APA StyleDiotallevi, F., Campanati, A., Martina, E., Radi, G., Paolinelli, M., Marani, A., Molinelli, E., Candelora, M., Taus, M., Galeazzi, T., Nicolai, A., & Offidani, A. (2022). The Role of Nutrition in Immune-Mediated, Inflammatory Skin Disease: A Narrative Review. Nutrients, 14(3), 591. https://doi.org/10.3390/nu14030591