Nutritional Composition and Bioactive Components in Quinoa (Chenopodium quinoa Willd.) Greens: A Review
Abstract
:1. Introduction
2. Nutritional Composition
2.1. Protein
2.2. Fat
2.3. Fiber
2.4. Carbohydrate
2.5. Essential Amino Acids
2.6. Minerals
2.7. Vitamins
3. Bioactive Compounds/Functional Compounds
3.1. Total Phenolic Content (TPC)
3.2. Total Flavonoid Content (TFC)
3.3. Antioxidants
3.4. Carotenoids
4. Antinutritional Factors
4.1. Saponins
4.2. Phytic Acid
4.3. Oxalate
4.4. Trypsin Inhibitor (TI)
4.5. Tannins
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bazile, D.; Jacobsen, S.-E.; Verniau, A. The global expansion of quinoa: Trends and limits. Front. Plant Sci. 2016, 7, 622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazile, D.; Baudron, F. The dynamics of the global expansion of quinoa growing in view of its high biodiversity. In State of the Art Report of Quinoa in the World in 2013; Bazile, D., Bertero, H.D., Nieto, C., Eds.; FAO & CIRAD: Rome, Italy, 2015; pp. 42–55. Available online: http://www.fao.org/3/a-i4042e.pdf (accessed on 25 October 2021).
- Repo-Carrasco, R.; Espinoza, C.; Jacobsen, S.E. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev. Int. 2003, 19, 179–189. [Google Scholar] [CrossRef]
- Vega-Galvez, A.; Miranda, M.; Vergara, J.; Uribe, E.; Puente, L.; Martinez, E.A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: A review. J. Sci. Food Agric. 2010, 90, 2541–2547. [Google Scholar] [CrossRef] [PubMed]
- Camaggio, G.; Amicarelli, V. The ancient crop of quinoa for world food security. In Future Trends and Challenges in the Food Sector; Miśniakiewicz, M., Popek, S., Eds.; Polish Society of Commodity Science: Cracow, Poland, 2014. [Google Scholar]
- Bhargava, A.; Shukla, S.; Deepak, O. Chenopodium quinoa: An Indian perspective. Ind. Crops Prod. 2006, 23, 73–87. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Swieca, M.; Sulkowski, M.; Dziki, D.; Baraniak, B.; Czyz, J. Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts—In vitro study. Food Chem. Toxicol. 2013, 57, 154–160. [Google Scholar] [CrossRef]
- Jancurová, M.; Minarovičová, L.; Dandár, A. Quinoa—A review. Czech J. Food Sci. 2009, 27, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Li, X.; Chen, P.X.; Zhang, B.; Hernandez, M.; Zhang, H.; Marcone, M.F.; Liu, R.; Tsao, R. Characterization of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem. 2015, 174, 502–508. [Google Scholar] [CrossRef]
- Abd El-Samad, E.; Hussin, S.; El-Naggar, A.; El-Bordeny, N.; Eisa, S. The potential use of quinoa as a new non-traditional leafy vegetable crop. Biosci. Res. 2018, 15, 3387–3403. [Google Scholar]
- Adamczewska-Sowińska, K.; Sowiński, J.; Jama-Rodzeńska, A. The effect of sowing date and harvest time on leafy greens of quinoa (Chenopodium quinoa willd.) yield and selected nutritional parameters. Agriculture 2021, 11, 405. [Google Scholar] [CrossRef]
- Pathan, S.; Eivazi, F.; Valliyodan, B.; Paul, K.; Ndunguru, G.; Clark, K. Nutritional composition of the green leaves of quinoa (Chenopodium quinoa Willd.). J. Food Res. 2019, 8, 55–65. [Google Scholar] [CrossRef]
- Pandey, S.; Gupta, R.K. Screening of nutritional, phytochemical, antioxidant and antibacterial activity of Chenopodium album (Bathua). J. Phar. Phytochem. 2014, 3, 1–9. [Google Scholar]
- Poonia, A.; Upadhayay, A. Chenopodium album Linn: Review of nutritive value and biological properties. J. Food Sci. Technol. 2015, 52, 3977–3985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradhan, S.; Tamang, J.P. Ethnobiology of wild leafy vegetables of Sikkim. Indian J. Trad. Knowl. 2015, 14, 290–297. [Google Scholar]
- Saini, S.; Saini, K. Chenopodium album Linn: An outlook on weed cum nutritional vegetable along with medicinal properties. Emergent Life Sci. Res. 2020, 6, 28–33. [Google Scholar] [CrossRef]
- Yadav, R.K.; Tomar, B.S.; Pachauri, N.; Jain, V. Studies of nutritional properties and antioxidant potential in green leafy vegetables. J. Sci. Food Agric. 2018, 2, 7–13. [Google Scholar]
- Angeli, V.; Silva, P.; Massuela, D.; Khan, M.; Hamar, A.; Khajehei, F.; Graeff-Hönninger, S.; Piatti, C. Quinoa (Chenopodium quinoa Willd.): An overview of the potentials of the “golden grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods 2020, 9, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Hazzam, K.; Hafsa, J.; Sobeh, M.; Mhada, M.; Taourirte, M.; Kacimi, K.E.L.; Yasri, A. An insight into saponins from Quinoa (Chenopodium quinoa Willd): A review. Molecules 2020, 25, 1059. [Google Scholar] [CrossRef] [Green Version]
- Melini, V.; Melini, F. Functional components and anti-nutritional factors in gluten-free grains: A focus on quinoa seeds. Foods 2021, 10, 351. [Google Scholar] [CrossRef]
- Vilcacundo, R.; Hernández-Ledesma, B. Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Curr. Opin. Food Sci. 2017, 14, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Chacaliaza-Rodríguez, L.; Espinoza-Begazo, G.; Ramos-Escudero, F.; Servan, K. Proximate chemical composition and content of biologically active components in leaves of two quinoa cultivars (Salcedo and Altiplano) produced in Peru. Res. J. Med. Plant 2016, 10, 450–456. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-L.; Lan, X.-Z.; Wu, Y.-Y.; Ou, Y.-W.; Chen, T.C.; Wu, W.-T. The antioxidant activity and nitric oxide production of extracts obtained from the leaves of Chenopodium quinoa Willd. Biomedicine 2017, 7, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debski, B.; Gralak, M.A.; Bertrandt, J.; Klos, A. Comparison of antioxidant potential and mineral composition of quinoa and lamb’s quarters weed (Chenopodium album). Probl. Hig. Epidemiol. 2018, 99, 88–93. [Google Scholar]
- El-Naggar, A.; Hussin, S.; Abd El-Samad, E.; Eisa, S. Quinoa as a new leafy vegetable crop in Egypt. Arab. Univ. J. Agric. Sci. 2018, 26, 745–753. [Google Scholar] [CrossRef]
- Vazquez-Luna, A.; Cortés, V.P.; Carmona, F.F.; Díaz-Sobac, R. Quinoa leaf as a nutritional alternative. Cienc. Investig. Agrar. 2019, 46, 137–143. [Google Scholar] [CrossRef]
- Złotek, U.; Gawlik-Dziki, U.; Dziki, D.; Swieca, M.; Nowak, R.; Martinez, E. Influence of drying temperature on phenolic acids composition and antioxidant activity of sprouts and leaves of white and red quinoa. J. Chem. 2019, 2019, 7125169. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Gai, F.; Tassone, S. Fatty acid profile and nutritive value quinoa (Chenopodium quinoa Willd.) seeds and plants at different growth stages. Anim. Feed Sci. Technol. 2013, 183, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Le, L.; Gong, X.; An, Q.; Xiang, D.; Zou, L.; Peng, L.; Wu, X.; Tan, M.; Nie, Z.; Wu, Q.; et al. Quinoa sprouts as potential vegetable source: Nutrient composition and functional contents of different quinoa sprout varieties. Food Chem. 2021, 357, 129752. [Google Scholar] [CrossRef]
- Bhathal, S.; Kaur, N.; Gill, J. Effect of processing on the nutritional composition of quinoa (Chenopodium quinoa Willd). Agric. Res. J. 2017, 54, 90–93. [Google Scholar] [CrossRef]
- Choque-Quispe, D.; LigardaSamanez, C.A.; RamosPacheco, B.S.; Legu’ıaDamiano, S.; CallaFlórez, M.; ZamalloaPuma, L.M.; ColqueCondeña, L. Phenolic compounds, antioxidant capacity, and protein content of three varieties of germinated quinoa (Chenopodium quinoa Willd). Ing. Investig. 2021, 41, e89831. [Google Scholar] [CrossRef]
- Carciochi, R.; Galván-D’Alessandro, L.; Vandendriessche, P.; Chollet, S. Effect of germination and fermentation process on the antioxidant compounds of quinoa seeds. Plant Foods Hum. Nutr. 2016, 71, 361–367. [Google Scholar] [CrossRef]
- Alvarez-Jubete, L.; Wijngaard, H.; Arendt, E.; Gallagher, E. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa, buckwheat and wheat as affected by sprouting and baking. Food Chem. 2010, 119, 770–778. [Google Scholar] [CrossRef]
- Al-Qabba, M.; El-Mowafy, M.; Althwab, S.; Alfheeaid, H.; Aljutaily, T.; Barakat, H. Phenolic profile, antioxidant activity, and ameliorating efficacy of Chenopodium quinoa sprouts against ccl4-induced oxidative stress in rats. Nutrients 2020, 12, 2904. [Google Scholar] [CrossRef]
- Paśko, P.; Sajewicz, M.; Gorinstein, S.; Zachwieja, Z. Analysis of selected phenolic acids and flavonoids in Amaranthus cruentus and Chenopodium quinoa seeds and sprouts by HPLC. Acta Chrom. 2008, 20, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Paśko, P.; Bartoń, H.; Zagrodzki, P.; Gorinstein, S.; Fołta, M.; Zachwieja, Z. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem. 2009, 115, 994–998. [Google Scholar] [CrossRef]
- Zhang, Q.; Xing, B.; Sun, M.; Zhou, B.; Ren, G.; Qin, P. Changes in bio-accessibility, polyphenol profile and antioxidants of quinoa and djulis sprouts during in vitro simulated gastrointestinal digestion. Food Sci. Nutr. 2020, 8, 4232–4241. [Google Scholar] [CrossRef]
- Khan, I.H.; Javaid, A. Anticancer, antimicrobial and antioxidant compounds of quinoa inflorescence. Adv. Life Sci. 2020, 8, 68–72. [Google Scholar]
- Mezzatesta, P.; Farah, S.; di Fabio, A.; Emilia, R. Variation of the nutritional composition of quinoa according to the processing used. Proceedings 2020, 53, 4. [Google Scholar] [CrossRef]
- Nowak, V.; Du, J.; Charrondière, U.R. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem. 2016, 193, 47–54. [Google Scholar] [CrossRef]
- Navruz-Varli, S.; Sanlier, N. Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). J. Cereal Sci. 2016, 69, 371–376. [Google Scholar] [CrossRef]
- Gesinski, K.; Nowak, K. Comparative analysis of the biological value of protein of Chenopodium quinoa willd and Chenopodium album L. Part I. amino acid composition of the seed protein. Acta Sci. Pol.-Agric. 2011, 10, 47–56. [Google Scholar]
- Eryilmaz-Acikgoz, F.; Adiloglu, S.; Solmaz, Y.; Adiloglu, A. Determination of some mineral material content in quinoa greens (Chenopodium quinoa) as a vegetable. Fresenius Environ. Bull. Adv. Food Sci. 2018, 27, 7108–7111. [Google Scholar]
- Odhav, B.; Beekrum, S.; Akula, U.; Baijnath, H. Preliminary assessment of nutritional value of traditional leafy vegetables in KwaZulu-Natal, South Africa. J. Food Comp. Anal. 2007, 20, 430–435. [Google Scholar] [CrossRef]
- Abugoch, L. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional properties. Adv. Food Nutr. Res. 2009, 58, 1–31. [Google Scholar] [CrossRef]
- Craine, E.B.; Murphy, K.M. Seed Composition and amino acid profiles for quinoa grown in Washington State. Front. Nutr. 2020, 7, 126. [Google Scholar] [CrossRef] [PubMed]
- Saad-Allah, K.; Youssef, M. Phytochemical and genetic characterization of five quinoa (Chenopodium quinoa Willd.) genotypes introduced to Egypt. Physiol. Mol. Biol. Plants 2018, 24, 617–629. [Google Scholar] [CrossRef]
- Barzegar, M.; Erfani, F.; Jabbari, A.; Hassandokht, M.R. Chemical composition of 15 spinach (Spinacea oleracea L.) cultivars grown in Iran. Ital. J. Food Sci. 2007, 19, 309–318. [Google Scholar]
- Ayaz, F.A.; Glew, R.H.; Millson, M.; Huang, H.S.; Chuang, L.T.; Sanz, C.; Hayirlioglu-Ayaz, S. Nutrient contents of kale (Brassica oleraceae L. var. acephala DC.). Food Chem. 2006, 96, 572–579. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An increase in the Omega-6/Omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- González Martín, M.I.; Wells Moncada, G.; Fischer, S.; Escuredo, O. Chemical characteristics and mineral composition of quinoa by near-infrared spectroscopy. J. Sci. Food Agric. 2014, 94, 876–881. [Google Scholar] [CrossRef]
- Lamothe, L.M.; Srichuwong, S.; Reuhs, B.L.; Hamaker, B.R. Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Food Chem. 2015, 167, 490–496. [Google Scholar] [CrossRef]
- Lee, C.; Giallongo, F.; Hristov, A.N.; Lapierre, H.; Cassidy, T.W.; Heyler, K.S.; Varga, G.A.; Parys, C. Effect of dietary protein level and rumen-protected amino acid supplementation on amino acid utilization for milk protein in lactating dairy cows. J. Dairy Sci. 2015, 98, 1885–1902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Ludewig, U. Lysine catabolism, amino acid transport, and systemic acquired resistance: What is the link? Plant Signal. Behav. 2014, 9, e28933-1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brisibe, E.; Umoren, U.; Brisibe, F.; Magalhäes, P.; Ferreira, J.; Luthria, D.; Wu, X.; Prior, R. Nutritional characterisation and antioxidant capacity of different tissues of Artemisia annua L. Food Chem. 2009, 115, 1240–1246. [Google Scholar] [CrossRef]
- Laus, M.N.; Cataldi, M.P.; Robbe, C.; D’Ambrosio, T.; Luisa Amodio, M.; Colelli, G.; de Santis, G.; Flagella, Z.; Pastore, D. Antioxidant capacity, phenolic and vitamin C contents of quinoa (Chenopodium quinoa willd.) as affected by sprouting and storage conditions. Ital. J. Agron. 2017, 12, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Koziol, M.J. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). J. Food Compos. Anal. 1992, 5, 35–68. [Google Scholar] [CrossRef]
- Phillips, K.M.; Tarrago-Trani, M.T.; McGinty, R.C.; Rasor, A.S.; Haytowitz, D.B.; Pehrsson, P.R. Seasonal variability of the vitamin C content of fresh fruits and vegetables in a local retail market. J. Sci. Food Agric. 2018, 98, 4191–4204. [Google Scholar] [CrossRef]
- Wang, X.; Cai, X.; Xu, C.; Zhao, Q.; Ge, C.; Dai, S.; Wang, Q. Diversity of nitrate, oxalate, vitamin C and carotenoid contents in different spinach accessions and their correlation with various morphological traits. J. Hort. Sci. Biotechnol. 2018, 93, 409–415. [Google Scholar] [CrossRef]
- Ahamed, N.; Singhai, R.; Kulkarni, P.; Pal, M. A lesser-known grain, Chenopodium Quinoa: Review of the chemical composition of its edible parts. Food Nutr. Bull. 1998, 19, 61–70. [Google Scholar] [CrossRef]
- Kaur, I.; Tanwar, B.; Reddy, M.; Chauhan, A. Vitamin C, total polyphenols and antioxidant activity in raw, domestically processed and industrially processed Indian Chenopodium quinoa seeds. J. Appl. Pharm. Sci. 2016, 6, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Sani, I.M.; Iqbal, S.; Chan, K.W.; Ismail, M. Effect of acid and base catalyzed hydrolysis on the yield of phenolics and antioxidant activity of extracts from germinated brown rice (GBR). Molecules 2012, 17, 7584–7594. [Google Scholar] [CrossRef] [Green Version]
- Filho, A.M.M.; Pirozi, M.R.; Borges, J.T.D.S.; Sant’Ana, H.M.P.; Chaves, J.B.P.; Coimbra, J.S.D.R. Quinoa: Nutritional, functional, and antinutritional aspects. Crit. Rev. Food Sci. Nutr. 2017, 57, 1618–1630. [Google Scholar] [CrossRef] [PubMed]
- Piñuel, L.; Boeri, P.; Zubillaga, F.; Barrio, D.A.; Torreta, J.; Cruz, A.; Vásquez, G.; Pinto, A.; Carrillo, W. Production of white, red and black quinoa (Chenopodium quinoa Willd Var. Real) protein isolates and its hydrolysates in germinated and nongerminated quinoa samples and antioxidant activity evaluation. Plants 2019, 8, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oghbaei, M.; Prakash, J. Nutritional properties of green gram germinated in mineral fortified soak water: I. Effect of dehulling on total and bioaccessible nutrients and bioactive components. J. Food Sci. Technol. 2017, 54, 880889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Televiciute, D.; Taraseviciene, Z.; Danilcenko, H.; Barcauskaite, K.; Kandaraite, M.; Paulauskiene, A. Changes in chemical composition of germinated leguminous under abiotic stress conditions. Food Sci. Technol. 2020, 40, 415421. [Google Scholar] [CrossRef]
- Abderrahim, F.; Huanatico, E.; Segura, R.; Arribas, S.; Gonzalez, M.; Condezo-Hoyos, L. Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food Chem. 2015, 183, 83–90. [Google Scholar] [CrossRef]
- Han, Y.; Chi, J.; Zhang, M.; Zhang, R.; Fan, S.; Huang, F.; Xue, K.; Liu, L. Characterization of saponins and phenolic compounds: Antioxidant activity and inhibitory effects on glucosidase in different varieties of colored quinoa (Chenopodium quinoa Willd). Biosci. Biotechnol. Biochem. 2019, 83, 2128–2139. [Google Scholar] [CrossRef]
- Huang, J.; Qin, L.; Shi, Q.; Wen, A. Effect of quinoa saponins extraction and sprouting on saponins content. J. Chin. Cereals Oils Assoc. 2017, 32, 3439. Available online: https://en.cnki.com.cn/Article_en/CJFDTotalZLYX201711008.htm (accessed on 27 October 2021).
- Baiano, A.; del Nobile, M.A. Antioxidant Compounds from Vegetable Matrices: Biosynthesis, Occurrence, and Extraction Systems. Crit. Rev. Food Sci. Nutr. 2016, 56, 2053–2068. [Google Scholar] [CrossRef]
- Prakash, D.; Nath, P.; Pal, M. Composition, variation of nutritional content in leaves, seed protein, fat and fatty acid profile of Chenopodium species. J. Sci. Food. Agric. 1993, 62, 203–205. [Google Scholar] [CrossRef]
- Diaz-Valencia, Y.K.; Alca, J.J.; Calori-Domingues, M.A.; Zanabria-Galvez, S.J.; da Cruz, S.H. Nutritional composition, total phenolic compounds and antioxidant activity of quinoa (Chenopodium quinoa Willd.) of different colours. Nova Biotechnol. Chim. 2018, 17, 74–85. [Google Scholar] [CrossRef]
- Navarro del Hierro, J.; Herrera, T.; García-Risco, M.R.; Fornari, T.; Reglero, G.; Martin, D. Ultrasound-assisted extraction and bioaccessibility of saponins from edible seeds: Quinoa, lentil, fenugreek, soybean and lupin. Food Res. Int. 2018, 109, 440–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiallos-Jurado, J.; Pollier, J.; Moses, T.; Arendt, P.; Barriga-Medina, N.; Morillo, E.; Arahana, V.; de Lourdes Torres, M.; Goossens, A.; Leon-Reyes, A. Saponin determination, expression analysis and functional characterization of saponin biosynthetic genes in Chenopodium quinoa leaves. Plant Sci. 2016, 250, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.G.; Park, H.M.; Yoon, K.S. Analysis of saponin composition and comparison of the antioxidant activity of various parts of the quinoa plant (Chenopodium quinoa Willd.). Food Sci. Nutr. 2020, 8, 694–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastebroek, H.D.; Limburg, H.; Gilles, T.; Marvin, H.J.P. Occurrence of sapogenins in leaves and seeds of quinoa (Chenopodium quinoa Willd). J. Sci. Food Agric. 2000, 80, 152–156. [Google Scholar] [CrossRef]
- Graf, B.L.; Rojas-Silva, P.; Rojo, L.E.; Delatorre-Herrera, J.; Baldeón, M.E.; Raskin, I. Innovations in Health Value and Functional Food Development of Quinoa (Chenopodium quinoa Willd.). Compr. Rev. Food Sci. Food Saf. 2015, 14, 431–445. [Google Scholar] [CrossRef] [Green Version]
- Castro-Alba, V.; Lazarte, C.E.; Perez-Rea, D.; Carlsson, N.G.; Almgren, A.; Bergenståhl, B.; Granfeldt, Y. Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate. J. Sci. Food Agric. 2019, 99, 5239–5248. [Google Scholar] [CrossRef] [Green Version]
- Reguera, M.; Conesa, C.M.; Gil-Gómez, A.; Haros, C.M.; Pérez-Casas, M.Á.; Briones-Labarca, V.; Bolaños, L.; Bonilla, I.; Álvare, B.; Pinto, K.; et al. The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ 2018, 2018, e4442. [Google Scholar] [CrossRef]
- Sood, P.; Modgil, R.; Sood, M.; Chuhan, P.K. Anti-nutrient profile of different chenopodium cultivars leaves. Annals Food Sci. Technol. 2012, 13, 68–74. [Google Scholar]
- Siener, R.; Hönow, R.; Seidler, A.; Voss, S.; Hesse, A. Oxalate contents of species of the Polygonaceae, Amaranthaceae and Chenopodiaceae families. Food Chem. 2006, 98, 220–224. [Google Scholar] [CrossRef]
- Guil, J.L.; Torija, M.E.; Giménez, J.J.; Rodríguez-García, I.; Giménez, A. Oxalic acid and calcium determination in wild edible plants. J. Agric. Food Chem. 1996, 44, 1821–1823. [Google Scholar] [CrossRef]
- Savage, G.; Vanhanen, L. Oxalate contents of raw, boiled, wok-fried and pesto and juice made from fat hen (Chenopodium album) leaves. Foods 2019, 8, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valencia-Chamorro, S. Quinoa-Overview. In Encyclopedia of Food Grains, 2nd ed.; Wrigley, C., Corke, H., Seetharaman, K., Faubion, J., Eds.; Academic Press: Oxford, UK, 2016; Volume 1, pp. 341–348. [Google Scholar]
Plant Parts | Study Description | Study Location | References |
---|---|---|---|
Leaf | Antioxidant and anticancer activities | Poland | [7] |
Leaf | Nutritional and chemical composition | Egypt | [10] |
Leaf | Nutritional parameters | Poland | [11] |
Leaf | Nutritional contents | USA | [12] |
Leaf | Proximate and chemical composition | Peru | [22] |
Leaf | Antioxidant activity and nitric oxide production | Taiwan | [23] |
Leaf | Nutritional composition and antioxidant capacity | Poland | [24] |
Leaf | Nutritional and chemical composition | Egypt | [25] |
Leaf | Nutritional composition, polyphenols, flavonoids, and antioxidant capacity | Mexico | [26] |
Leaf and sprout | Phenolic composition and antioxidant capacity in colored seeds | Poland | [27] |
Seed and plant | Fatty acid and nutritive value of quinoa grains and plants at different growth stages | Italy | [28] |
Sprout | Nutritional and functional contents in sprouts | China | [29] |
Sprout | Effect of processing on nutritional composition | India | [30] |
Sprout | Phenolic contents in colored grains | Peru | [31] |
Sprout | Phenolic composition and antioxidant capacity | Argentina | [32] |
Sprout | Polyphenolic contents and antioxidant capacity | Ireland | [33] |
Sprout | Phenolic profiles and antioxidant capacity | Saudi Arabia | [34] |
Sprout | Polyphenols and antioxidant capacity | Poland | [35,36] |
Sprout | Polyphenols and antioxidant capacity | China | [37] |
Infructescence | Nutritional composition and antioxidant capacity | Poland | [24] |
Inflorescence | Anticancer, antimicrobial, and antioxidant compounds | Pakistan | [38] |
Nutrients | Quinoa Plant Parts | C. album Leaves | ||
---|---|---|---|---|
Leaves | Sprouts | Grains | ||
Proximate composition | ||||
Crude protein% | 28.2–37.0 [10,12] | 6.1–12.3 [30,39] | 9.1–15.7 [40] | 28.7 [13] |
Crude fat% | 2.4–4.5 [10,12] | 0.1–3.8 [30,39] | 4.0–7.6 [40] | 4.4 [13] |
Crude fiber% | 6.9–7.8 [10,12] | 4.6–23.5 [30,39] | 7.0–14.1 [40,41] | 0.1 [13] |
Carbohydrate% | 34.0 [12] | 9.6–73.0 [30,39] | 48.5–69.8 [40] | 40.8 [13] |
Ash% | 2.1–20.0 [10,12] | 0.9–3.4 [30,39] | 2.0–7.7 [40] | 21.0 [13] |
Energy (kcal) | 325 [12] | 69 [39] | 331–381 [40] | 317.8 [13] |
Essential amino acids (g 100 g−1 DW) | ||||
Histidine (His) | 0.7 [12] | 0.7 [29] | 1.4–5.4 [40] | 0.4 [42] |
Isoleucine (Ile) | 1.6 [12] | 1.1 [29] | 0.8–7.4 [40] | 0.5 [42] |
Leucine (Leu) | 2.7 [12] | 2.0 [29] | 2.3–9.4 [40] | 1.3 [42] |
Lysine (Lys) | 1.9 [12] | 1.3 [29] | 2.4–7.5 [40] | 1.8 [42] |
Methionine (Met) | 0.6 [12] | 0.2 [29] | 0.3–9.1 [40] | 0.2 [42] |
Phenylalanine (Phe) | 1.8 [12] | 1.2 [29] | 0.1–2.7 [40] | 0.9 [42] |
Threonine (Thr) | 1.5 [12] | 1.0 [29] | 2.1–8.9 [40] | 0.8 [42] |
Tryptophan (Trp) | 1.2 [12] | NA | 0.6–1.9 [40] | NA |
Valine (Val) | 1.8 [12] | 1.3 [29] | 0.8–6.1 [40] | 0.7 [42] |
Minerals (mg 100 g−1 DW) | ||||
Calcium (Ca) | 147.0–1535.0 [10,12] | 21.7 [29] | 27.5–148.7 [40] | 1438.9 [13] |
Copper (Cu) | 1.0–1.1 [10,12] | 0.2 [29] | 1.0–9.5 [40] | 1.1 [13] |
Iron (Fe) | 11.6–148.0 [10,12] | NA | 1.4–16.7 [40] | 15.2 [13] |
Magnesium (Mg) | 14.0–902.0 [12,43] | 219.3 [29] | 26.0–502.0 [40] | 1301.1 [13] |
Phosphorus (P) | 39.0–405.6 [12,43] | NA | 140.0–530.0 [40] | 419.7 [13] |
Potassium (K) | 474.0–8769.0 [12,43] | 525.2 [29] | 696.7–1475.0 [40] | 8125.2 [13] |
Sodium (Na) | 3.0–15.1 [10,12] | NA | 11.0–31.0 [40] | 573.9 [13] |
Zinc (Zn) | 3.3–6.8 [10,12] | NA | 2.8–4.8 [40] | 4.8 [13] |
Plant Parts Studied | Saturated Fatty Acid (SFA) | Unsaturated Fatty Acid (UFA) | References | |||
---|---|---|---|---|---|---|
Palmitic (16:0) | Stearic (18:0) | Oleic (18:1) | Linoleic Acid (LA, 18:2) | Linolenic Acid (ALA, 18:3) | ||
Quinoa early veg | 12.07 | 1.51 | 7.49 | 15.97 | 47.4 | [28] |
Quinoa bud | 11.64 | 1.68 | 7.64 | 16.14 | 39.9 | [28] |
Quinoa grain | 9.60–10.00 [9] | 0.84–0.94 [9] | 23.10–29.18 [9,47] | 46.69–58.10 [9,47] | 6.10–8.44 [9,47] | [9,47] |
Spinach | 20.65 | 1.71 | 9.48 | 18.63 | 37.37 | [48] |
Kale | 11.84 | 3.95 | 2.14 | 11.8 | 54 | [49] |
Plant Parts Studied | TPC | TFC | AC_DPPH | References |
---|---|---|---|---|
(mg GAE 100 g−1 DW) | (mg QE 100 g−1 DW) | (mg TE 100 g−1 DW) | ||
Leaf | 418.00–544.00 | 14.00–23.00 | 29.90–55.40 | [10] |
Leaf | 10.55–10.75 mg/g | 8.69–9.14 mg/g | 46.00–62.65 | [22] |
Leaf | 569.50 mg/g | NA | 50.70–65.30 mg/g | [23] |
Leaf | 188 | NA | 34 | [24] |
Leaf | 131.8 | 62.07 | NA | [26] |
1 Leaf | 16.03–16.10 mg/g | 2.02–2.54 mg/g | NA | [27] |
Sprout | 58.91–71.01 mg/g | 3.29–9.05 mg/g | NA | [29] |
Sprout | 101.2 | 18.02 | 61.41 | [61] |
1 Sprout | 308.82–417.75 | NA | NA | [31] |
Sprout | 79.04 | NA | 27.39 | [32] |
Sprout | 147 | 122.6 | 50.4 | [33] |
1 Sprout | 259.02–293.35 | 10.38–24.00 | 5.26–7.39 | [34] |
Sprout | 49.02–51.63 | 290.00–304.10 | NA | [35,36] |
1 Sprout | 15.15–28.79 mg/g | 0.63–3.34 mg/g | NA | [27] |
Infructescence | 172 | NA | 95 | [24] |
Quinoa grain, raw | 39.29–198.23 [31,32] | 11.40–223.80 [36,61] | 13.61–59.61 [33,61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pathan, S.; Siddiqui, R.A. Nutritional Composition and Bioactive Components in Quinoa (Chenopodium quinoa Willd.) Greens: A Review. Nutrients 2022, 14, 558. https://doi.org/10.3390/nu14030558
Pathan S, Siddiqui RA. Nutritional Composition and Bioactive Components in Quinoa (Chenopodium quinoa Willd.) Greens: A Review. Nutrients. 2022; 14(3):558. https://doi.org/10.3390/nu14030558
Chicago/Turabian StylePathan, Safiullah, and Rafat A. Siddiqui. 2022. "Nutritional Composition and Bioactive Components in Quinoa (Chenopodium quinoa Willd.) Greens: A Review" Nutrients 14, no. 3: 558. https://doi.org/10.3390/nu14030558
APA StylePathan, S., & Siddiqui, R. A. (2022). Nutritional Composition and Bioactive Components in Quinoa (Chenopodium quinoa Willd.) Greens: A Review. Nutrients, 14(3), 558. https://doi.org/10.3390/nu14030558