Compliance, Adherence and Concordance Differently Predict the Improvement of Uremic and Microbial Toxins in Chronic Kidney Disease on Low Protein Diet
Abstract
:1. Introduction
2. Patients and Methods
2.1. Participants
2.2. Intervention
2.3. Study Design
2.4. Statistical Analysis
3. Results
3.1. Adherence Group
3.2. Concordance Group
3.3. Changes in Nutritional Status
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De las Cuevas, C. Towards a clarification of terminology in medicine taking behavior: Compliance, adherence and concordance are related although different terms with different uses. Curr. Clin. Pharmacol. 2011, 6, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Haynes, R.B.; Taylor, D.W.; Sackett, D.L. Compliance in Health Care; Johns Hopkins University Press: Baltimore, MD, USA, 1979. [Google Scholar]
- Barofsky, I. Compliance, adherence and the therapeutic alliance: Steps in the development of self-care. Soc. Sci. Med. 1978, 12, 369–376. [Google Scholar] [PubMed]
- Royal Pharmaceutical Society of Great Britain; Marinker, M. From Compliance to Concordance: Achieving Shared Goals in Medicine Taking; Royal Pharmaceutical Society, in Partnership with Merck Sharp & Dohme: London, UK, 1997. [Google Scholar]
- Segal, J.Z. “Compliance” to “concordance”: A critical view. J. Med. Humanit. 2007, 28, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Osterberg, L.; Blaschke, T. Adherence to medication. N. Engl. J. Med. 2005, 353, 487–497. [Google Scholar] [CrossRef] [Green Version]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef]
- Piccoli, G.B.; Nazha, M.; Capizzi, I.; Vigotti, F.N.; Mongilardi, E.; Bilocati, M.; Avagnina, P.; Versino, E. Patient Survival and Costs on Moderately Restricted Low-Protein Diets in Advanced CKD: Equivalent Survival at Lower Costs? Nutrients 2016, 8, 758. [Google Scholar] [CrossRef] [Green Version]
- Cupisti, A.; Brunori, G.; Di Iorio, B.R.; D’Alessandro, C.; Pasticci, F.; Cosola, C.; Bellizzi, V.; Bolasco, P.; Capitanini, A.; Fantuzzi, A.L.; et al. Nutritional treatment of advanced CKD: Twenty consensus statements. J. Nephrol. 2018, 31, 457–473. [Google Scholar] [CrossRef] [Green Version]
- Cupisti, A.; Bolasco, P.; D’Alessandro, C.; Giannese, D.; Sabatino, A.; Fiaccadori, E. Protection of Residual Renal Function and Nutritional Treatment: First Step Strategy for Reduction of Uremic Toxins in End-Stage Kidney Disease Patients. Toxins 2021, 13, 289. [Google Scholar] [CrossRef]
- Rysz, J.; Franczyk, B.; Cialkowska-Rysz, A.; Gluba-Brzozka, A. The Effect of Diet on the Survival of Patients with Chronic Kidney Disease. Nutrients 2017, 9, 495. [Google Scholar] [CrossRef] [Green Version]
- Vaziri, N.D.; Wong, J.; Pahl, M.; Piceno, Y.M.; Yuan, J.; DeSantis, T.Z.; Ni, Z.; Nguyen, T.H.; Andersen, G.L. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013, 83, 308–315. [Google Scholar] [CrossRef] [Green Version]
- Mafra, D.; Lobo, J.C.; Barros, A.F.; Koppe, L.; Vaziri, N.D.; Fouque, D. Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease. Future Microbiol. 2014, 9, 399–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanholder, R.; Schepers, E.; Pletinck, A.; Nagler, E.V.; Glorieux, G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: A systematic review. J. Am. Soc. Nephrol. 2014, 25, 1897–1907. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.J.; Wu, V.; Wu, P.C.; Wu, C.J. Meta-Analysis of the Associations of p-Cresyl Sulfate (PCS) and Indoxyl Sulfate (IS) with Cardiovascular Events and All-Cause Mortality in Patients with Chronic Renal Failure. PLoS ONE 2015, 10, e0132589. [Google Scholar] [CrossRef] [PubMed]
- Wu, I.W.; Hsu, K.H.; Lee, C.C.; Sun, C.Y.; Hsu, H.J.; Tsai, C.J.; Tzen, C.Y.; Wang, Y.C.; Lin, C.Y.; Wu, M.S. p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol. Dial Transplant 2011, 26, 938–947. [Google Scholar] [CrossRef] [Green Version]
- Cai, A.; Zheng, D.; Qiu, R.; Mai, W.; Zhou, Y. Lipoprotein-associated phospholipase A2 (Lp-PLA(2)): A novel and promising biomarker for cardiovascular risks assessment. Dis. Markers 2013, 34, 323–331. [Google Scholar] [CrossRef]
- Li, D.; Zhao, L.; Yu, J.; Zhang, W.; Du, R.; Liu, X.; Liu, Y.; Chen, Y.; Zeng, R.; Cao, Y.; et al. Lipoprotein-associated phospholipase A2 in coronary heart disease: Review and meta-analysis. Clin. Chim. Acta 2017, 465, 22–29. [Google Scholar] [CrossRef]
- Li, D.; Wei, W.; Ran, X.; Yu, J.; Li, H.; Zhao, L.; Zeng, H.; Cao, Y.; Zeng, Z.; Wan, Z. Lipoprotein-associated phospholipase A2 and risks of coronary heart disease and ischemic stroke in the general population: A systematic review and meta-analysis. Clin. Chim. Acta 2017, 471, 38–45. [Google Scholar] [CrossRef]
- Maroni, B.J.; Steinman, T.I.; Mitch, W.E. A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int. 1985, 27, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- World Health Organization. Physical Status: The Use of and Interpretation of Anthropometry, Report of a WHO Expert Committee; World Health Organization: Geneva, Switzerland, 1995. [Google Scholar]
- Frisancho, A.R. Anthropometric Standards for the Assessment of Growth and Nutritional Status; The University of Michigan Press: Ann Arbor, MI, USA, 1990. [Google Scholar]
- Mitch, W.E.; Remuzzi, G. Diets for patients with chronic kidney disease, still worth prescribing. J. Am. Soc. Nephrol. 2004, 15, 234–237. [Google Scholar] [CrossRef] [Green Version]
- Bellizzi, V.; Cupisti, A.; Locatelli, F.; Bolasco, P.; Brunori, G.; Cancarini, G.; Caria, S.; De Nicola, L.; Di Iorio, B.R.; Di Micco, L.; et al. Low-protein diets for chronic kidney disease patients: The Italian experience. BMC Nephrol. 2016, 17, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, G.-J.; Kalantar-Zadeh, K. How important is dietary management in chronic kidney disease progression? A role for low protein diets. Korean J. Intern. Med. 2021, 36, 795–806. [Google Scholar] [CrossRef] [PubMed]
- Koppe, L.; Fouque, D.; Soulage, C.O. The Role of Gut Microbiota and Diet on Uremic Retention Solutes Production in the Context of Chronic Kidney Disease. Toxins 2018, 10, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mafra, D.; Borges, N.; Alvarenga, L.; Esgalhado, M.; Cardozo, L.; Lindholm, B.; Stenvinkel, P. Dietary Components That May Influence the Disturbed Gut Microbiota in Chronic Kidney Disease. Nutrients 2019, 11, 496. [Google Scholar] [CrossRef] [Green Version]
- Camerotto, C.; Cupisti, A.; D’Alessandro, C.; Muzio, F.; Gallieni, M. Dietary Fiber and Gut Microbiota in Renal Diets. Nutrients 2019, 11, 2149. [Google Scholar] [CrossRef] [Green Version]
- Black, A.P.; Anjos, J.S.; Cardozo, L.; Carmo, F.L.; Dolenga, C.J.; Nakao, L.S.; de Carvalho Ferreira, D.; Rosado, A.; Carraro Eduardo, J.C.; Mafra, D. Does Low-Protein Diet Influence the Uremic Toxin Serum Levels From the Gut Microbiota in Nondialysis Chronic Kidney Disease Patients? J. Ren. Nutr. 2018, 28, 208–214. [Google Scholar] [CrossRef]
- Marzocco, S.; Dal Piaz, F.; Di Micco, L.; Torraca, S.; Sirico, M.L.; Tartaglia, D.; Autore, G.; Di Iorio, B. Very low protein diet reduces indoxyl sulfate levels in chronic kidney disease. Blood Purif. 2013, 35, 196–201. [Google Scholar] [CrossRef]
- Dinu, M.; Abbate, R.; Gensini, G.F.; Casini, A.; Sofi, F. Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3640–3649. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Levin, S.M.; Barnard, N.D. Association between plant-based diets and plasma lipids: A systematic review and meta-analysis. Nutr. Rev. 2017, 75, 683–698. [Google Scholar] [CrossRef]
- Najjar, R.S.; Moore, C.E.; Montgomery, B.D. Consumption of a defined, plant-based diet reduces lipoprotein(a), inflammation, and other atherogenic lipoproteins and particles within 4 weeks. Clin. Cardiol. 2018, 41, 1062–1068. [Google Scholar] [CrossRef]
- Davidson, M.H.; Corson, M.A.; Alberts, M.J.; Anderson, J.L.; Gorelick, P.B.; Jones, P.H.; Lerman, A.; McConnell, J.P.; Weintraub, H.S. Consensus panel recommendation for incorporating lipoprotein-associated phospholipase A2 testing into cardiovascular disease risk assessment guidelines. Am. J. Cardiol. 2008, 101, 51F–57F. [Google Scholar] [CrossRef]
- Rolla, R.; De Mauri, A.; Valsesia, A.; Vidali, M.; Chiarinotti, D.; Bellomo, G. Lipoprotein profile, lipoprotein-associated phospholipase A2 and cardiovascular risk in hemodialysis patients. J. Nephrol. 2015, 28, 749–755. [Google Scholar] [CrossRef] [PubMed]
- De Mauri, A.; Vidali, M.; Chiarinotti, D.; Bellomo, G.; Rolla, R. Lipoprotein-associated phospholipase A2 predicts cardiovascular events in dialyzed patients. J. Nephrol. 2019, 32, 283–288. [Google Scholar] [CrossRef] [PubMed]
- van Dulmen, S.; Sluijs, E.; van Dijk, L.; de Ridder, D.; Heerdink, R.; Bensing, J. Patient adherence to medical treatment: A review of reviews. BMC Health Serv. Res. 2007, 7, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desroches, S.; Lapointe, A.; Ratte, S.; Gravel, K.; Legare, F.; Turcotte, S. Interventions to enhance adherence to dietary advice for preventing and managing chronic diseases in adults. Cochrane Database Syst. Rev. 2013, 2. [Google Scholar] [CrossRef] [Green Version]
- Lambert, K.; Mullan, J.; Mansfield, K. An integrative review of the methodology and findings regarding dietary adherence in end stage kidney disease. BMC Nephrol. 2017, 18, 318. [Google Scholar] [CrossRef] [Green Version]
- Hollingdale, R.; Sutton, D.; Hart, K. Facilitating dietary change in renal disease: Investigating patients’ perspectives. J. Ren. Care 2008, 34, 136–142. [Google Scholar] [CrossRef]
- Hibbard, J.H.; Cunningham, P.J. How engaged are consumers in their health and health care, and why does it matter? Res. Brief 2008, 8, 1–9. [Google Scholar]
- Hibbard, J.H.; Greene, J. What the evidence shows about patient activation: Better health outcomes and care experiences; fewer data on costs. Health Aff. 2013, 32, 207–214. [Google Scholar] [CrossRef]
- Bayliss, E.A.; Bhardwaja, B.; Ross, C.; Beck, A.; Lanese, D.M. Multidisciplinary team care may slow the rate of decline in renal function. Clin. J. Am. Soc. Nephrol. 2011, 6, 704–710. [Google Scholar] [CrossRef] [Green Version]
- Fraser, S. Concordance, compliance, preference or adherence. Patient Prefer. Adherence 2010, 4, 95–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
T0 | T2 | p | |
---|---|---|---|
EPI-CKD (mL/min) | 18.1 ± 3.7 | 18.2 ± 4.7 | 0.77 |
Daily urine proteins (g/24 h) | 1.58 ± 1.38 | 1.74 ± 1.96 | 0.31 |
Hemoglobin (g/dL) | 12.0 ± 1.5 | 11.9 ± 1.5 | 0.08 |
BUN (mg/dL) | 52 ± 17 | 46 ± 15 | 0.007 |
Uric acid (mg/dL) | 6 ± 1.4 | 6 ± 1.2 | 0.49 |
Albumin (mg/dL) | 4.2 ± 0.3 | 4.1 ± 0.3 | 0.07 |
Calcium (mg/dL) | 9.1 ± 0.5 | 9.1 ± 0.5 | 0.19 |
Phosphorus (mg/dL) | 3.7 ± 0.7 | 3.7 ± 0.8 | 0.59 |
Total cholesterol (mg/dL) | 186 ± 42 | 161 ± 70 | 0.004 |
HDL (mg/dL) | 45 ± 13 | 45 ± 13 | 0.50 |
Triglycerides (mg/dL) | 196 ± 151 | 161 ± 70 | 0.037 |
LDL (mg/dL) | 105 ± 37 | 94 ± 30 | 0.09 |
HCO3 (mEq/L) | 22.6 ± 3.2 | 23.6 ± 2.6 | 0.001 |
PTH (ng/mL) | 92.9 ± 76.4 | 97.5 ± 57.9 | 0.08 |
Urine Natrium (mEq/day) | 144 ± 59 | 145 ± 60 | 0.47 |
Epoetin rensponse index (IU/gHb) | 134 ± 345 | 124 ± 324 | 0.79 |
Epoetin zeta (IU/week) | 1368 ± 3410 | 1280 ± 3143 | 0.81 |
Furosemide (mg/day) | 38.2 ± 69.9 | 30.7 ± 45.5 | 0.41 |
TUN g/kg/24 h | 10.9 ± 3.5 | 9.5 ± 2.7 | 0.0001 |
nPCR (g/kg/day) | 0.91 ± 0.3 | 0.77 ± 0.2 | 0.005 |
Lp-PLA2 (nmol/mL/min) | 165.5 ± 44.4 | 161.1 ± 45.8 | 0.52 |
t-PC (mcMol) | 135.3 ± 78.4 | 120.4 ± 69.8 | 0.35 |
f-PC (mcMol) | 5.21 ± 3.89 | 4.2 ± 3.1 | 0.08 |
t-IS (mcMol) | 30.5 ± 14.6 | 28.4 ± 14.4 | 0.16 |
f-IS (mcMol) | 1.44 ± 0.82 | 1.35 ± 0.99 | 0.52 |
BMI (kg/cm2) | 29.4 ± 8.3 | 29.3 ± 8.5 | 0.38 |
Free Fat Mass (kg) | 52.7 ± 11.8 | 52.7 ± 11.5 | 0.99 |
Fat Mass (kg) | 23.7 ± 8.4 | 23.3 ± 8.7 | 0.31 |
Angle Phase | 4.89 ± 1.11 | 4.80 ± 1.90 | 0.23 |
Hand Grip (kg) | 33.8 ± 10.4 | 34.6 ± 10.3 | 0.15 |
Non-Adherent | Adherent | |||||
---|---|---|---|---|---|---|
T0 | T2 | p | T0 | T2 | p | |
EPI-CKD (mL/min) | 16.6 ± 3.2 | 16.5 ± 4.6 | 0.86 | 18.6 ± 3.8 | 19.0 ± 4.6 | 0.53 |
Daily urine proteins (g/24 h) | 1.9 ± 1.3 | 2.0 ± 2.1 | 0.66 | 1.5 ± 1.4 | 1.9 ± 1.9 | 0.26 |
Hemoglobin (g/dL) | 11.4 ± 1.0 | 11.2 ± 1.2 | 0.15 | 12.2 ± 1.7 | 12.1 ± 1.5 | 0.18 |
BUN (mg/dL) | 58 ± 23 | 52 ± 18 | 0.21 | 50 ± 13 | 44 ± 14 | 0.017 |
Uric acid (mg/dL) | 6.1 ± 1.2 | 6.0 ± 1.1 | 0.46 | 6.0 ± 1.5 | 6.0 ± 1.3 | 0.75 |
Albumin (mg/dL) | 4.2 ± 0.3 | 4.0 ± 0.3 | 0.04 | 4.3 ± 0.4 | 4.2 ± 0.4 | 0.37 |
Calcium (mg/dL) | 9.0 ± 0.6 | 8.9 ± 0.5 | 0.61 | 9.1 ± 0.5 | 9.1 ± 0.6 | 0.26 |
Phosphorus (mg/dL) | 3.7 ± 0.7 | 3.8 ± 0.8 | 0.75 | 3.6 ± 0.7 | 3.7 ± 0.8 | 0.79 |
Total cholesterol (mg/dL) | 183 ± 61 | 171 ± 44 | 0.61 | 186 ± 34 | 171 ± 30 | 0.002 |
HDL (mg/dL) | 47 ± 13 | 46 ± 14 | 0.28 | 45 ± 14 | 45 ± 13 | 0.99 |
Triglycerides (mg/dL) | 161 ± 61 | 151 ± 42 | 0.61 | 209 ± 172 | 165 ± 79 | 0.05 |
LDL (mg/dL) | 106 ± 45 | 94 ± 34 | 0.97 | 105 ± 34 | 94 ± 29 | 0.037 |
HCO3 (mEq/L) | 23.0 ± 2.7 | 22.5 ± 2.6 | 0.63 | 22.4 ± 3.4 | 24.0 ± 2.5 | 0.0001 |
PTH (ng/mL) | 113.8 ± 105.6 | 104.8 ± 58.9 | 0.49 | 82.3 ± 63.4 | 94.2 ± 59.0 | 0.05 |
Urine Natrium (mEq/day) | 150 ± 60 | 148 ± 47 | 0.28 | 140 ± 58 | 144 ± 65 | 0.96 |
Epoetin response index (IU/gHb) | 71 ± 196 | 119 ± 234 | 0.49 | 160 ± 368 | 132 ± 381 | 0.41 |
Epoetin zeta (IU/week) | 800 ± 2242 | 1200 ± 2306 | 0.59 | 1609 ± 3718 | 1341 ± 3449 | 0.55 |
Furosemide (mg/day) | 50.0 ± 81.3 | 43.3 ± 64.4 | 0.25 | 34.7 ± 66.7 | 26.8 ± 36.7 | 0.78 |
nPCR (g/kg/day) | 0.82 ± 0.33 | 0.75 ± 0.22 | 0.15 | 0.93 ± 0.28 | 0.78 ± 0.17 | 0.003 |
Lp-PLA2 (nmol/mL/min) | 158.2 ± 43.4 | 161.0 ± 54.1 | 0.97 | 167.5 ± 45.5 | 159.98 ± 42.9 | 0.15 |
t-PC (mcMol) | 173.6 ± 90.2 | 151.5 ± 78.5 | 0.92 | 123.8 ± 71.1 | 109.7 ± 65.2 | 0.15 |
f-PC (mcMol) | 7.49 ± 5.63 | 5.84 ± 4.52 | 0.86 | 4.51 ± 2.81 | 3.63 ± 2.31 | 0.04 |
t-IS (mcMol) | 30.6 ± 10.1 | 30.2 ± 15.7 | 0.97 | 30.1 ± 16.0 | 27.9 ± 14.3 | 0.06 |
f-IS (mcMol) | 1.56 ± 0.79 | 1.51 ± 1.10 | 0.91 | 1.41 ± 0.83 | 1.31 ± 0.97 | 0.05 |
BMI (kg/cm2) | 30.5 ± 14.1 | 30.6 ± 14.4 | 0.73 | 29.0 ± 5.0 | 28.9 ± 5.0 | 0.19 |
Free Fat Mass (kg) | 49.1 ± 15.7 | 49.4 ± 16.0 | 0.72 | 54.1 ± 10.0 | 53.9 ± 9.3 | 0.81 |
Fat Mass (kg) | 21.2 ± 8.8 | 20.4 ± 9.0 | 0.35 | 24.5 ± 8.3 | 24.3 ± 8.5 | 0.57 |
Angle Phase | 4.32 ± 1.44 | 4.29 ± 1.45 | 0.81 | 5.06 ± 0.92 | 4.98 ± 0.88 | 0.23 |
Hand Grip (kg) | 31.0 ± 8.5 | 33.1 ± 9.6 | 0.1 | 35.0 ± 10.8 | 35.1 ± 10.6 | 0.66 |
Non-Concordant | Concordant | |||||
---|---|---|---|---|---|---|
T0 | T2 | p | T0 | T2 | p | |
EPI-CKD (mL/min) | 18.1 ± 2.9 | 17.7 ± 4.2 | 0.64 | 18.8 ± 4.2 | 18.6 ± 5.1 | 0.52 |
Daily urine proteins (g/24 h) | 1.9 ± 1.6 | 2.0 ± 2.3 | 0.91 | 1.49 ± 1.2 | 2.7 ± 2.4 | 0.68 |
Hemoglobin (g/dL) | 11.7 ± 1.4 | 11.5 ± 1.6 | 0.34 | 12.2 ± 1.6 | 12.1 ± 1.4 | 0.12 |
BUN (mg/dL) | 52 ± 20 | 50 ± 15 | 0.85 | 52 ± 14 | 44 ± 14 | 0.003 |
Uric acid (mg/dL) | 6.4 ± 1.1 | 6.2 ± 1.1 | 0.28 | 5.8 ± 1.5 | 5.8 ± 1.3 | 0.99 |
Albumin (mg/dL) | 4.1 ± 0.3 | 4.1 ± 0.3 | 0.48 | 4.3 ± 0.4 | 4.2 ± 0.4 | 0.1 |
Calcium (mg/dL) | 8.9 ± 0.6 | 8.9 ± 0.5 | 0.96 | 9.2 ± 0.6 | 9.1 ± 0.6 | 0.13 |
Phosphorus (mg/dL) | 3.7 ± 0.7 | 3.8 ± 0.8 | 0.41 | 3.6 ± 0.7 | 3.6 ± 0.9 | 0.98 |
Total cholesterol (mg/dL) | 190 ± 53 | 177 ± 41 | 0.37 | 183 ± 32 | 167 ± 29 | 0.005 |
HDL (mg/dL) | 46 ± 15 | 46 ± 14 | 0.6 | 45 ± 12 | 45 ± 12 | 0.8 |
Triglycerides (mg/dL) | 198 ± 152 | 160 ± 53 | 0.11 | 193 ± 152 | 162 ± 80 | 0.14 |
LDL (mg/dL) | 106 ± 47 | 99 ± 32 | 0.97 | 104 ± 30 | 91 ± 28 | 0.03 |
HCO3 (mEq/L) | 22.6 ± 2.9 | 23.2 ± 2.9 | 0.18 | 22.6 ± 3.4 | 23.9 ± 2.5 | 0.006 |
PTH (ng/mL) | 107.8 ± 87.8 | 104.8 ± 58.9 | 0.18 | 82.9 ± 67.1 | 93 ± 57.6 | 0.19 |
Urine Natrium (mEq/day) | 164 ± 69 | 165 ± 56 | 0.92 | 133 ± 49 | 132 ± 55 | 0.37 |
Epoetin response index (IU/gHb) | 150 ± 277 | 189 ± 455 | 0.78 | 160 ± 388 | 132 ± 361 | 0.49 |
Epoetin zeta (IU/week) | 1608 ± 2965 | 1869 ± 4267 | 0.71 | 1205 ± 3715 | 882 ± 2056 | 0.46 |
Furosemide (mg/day) | 38.0 ± 69.8 | 39.1 ± 57.9 | 0.79 | 38.2 ± 71.3 | 25.0 ± 34.7 | 0.19 |
nPCR (g/kg/day) | 0.87 ± 0.27 | 0.81 ± 0.21 | 0.22 | 0.93 ± 0.32 | 0.74 ± 0.19 | 0.002 |
Lp-PLA2 (nmol/mL/min) | 175.6 ± 48.1 | 182.3 ± 48.6 | 0.019 | 158.9 ± 41.4 | 146.8 ± 38.2 | 0.013 |
t-PC (mcMol) | 133.1 ± 79.1 | 141.1 ± 66.7 | 0.005 | 136.7 ± 79.1 | 106.9 ± 69.5 | 0.001 |
f-PC (mcMol) | 5.32 ± 4.46 | 4.84 ± 3.57 | 0.29 | 5.13 ± 3.53 | 3.77 ± 2.91 | 0.003 |
t-IS (mcMol) | 29.4 ± 13.4 | 29.4 ± 13.3 | 0.32 | 31.2 ± 15.5 | 27.7 ± 15.5 | 0.021 |
f-IS (mcMol) | 1.39 ± 0.64 | 1.23 ± 0.57 | 0.70 | 1.46 ± 0.92 | 1.43 ± 1.19 | 0.09 |
BMI (kg/cm2) | 28.3 ± 3.9 | 28.4 ± 3.9 | 0.91 | 30.1 ± 10.2 | 29.9 ± 10.4 | 0.29 |
Free Fat Mass (kg) | 54.4 ± 10.4 | 54.9 ± 10.2 | 0.31 | 51.7 ± 12.7 | 51.3 ± 12.2 | 0.28 |
Fat Mass (kg) | 24.5 ± 7.6 | 24.2 ± 6.7 | 0.54 | 23.7 ± 8.1 | 2.4 ± 9.2 | 0.41 |
Angle Phase | 4.68 ± 0.85 | 4.71 ± 0.93 | 0.85 | 5.14 ± 0.90 | 5.00 ± 0.85 | 0.11 |
Hand Grip (kg) | 31.5 ± 3.6 | 31.8 ± 4.2 | 0.21 | 32.1 ± 4.2 | 31.5 ± 4.5 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Mauri, A.; Carrera, D.; Vidali, M.; Bagnati, M.; Rolla, R.; Riso, S.; Torreggiani, M.; Chiarinotti, D. Compliance, Adherence and Concordance Differently Predict the Improvement of Uremic and Microbial Toxins in Chronic Kidney Disease on Low Protein Diet. Nutrients 2022, 14, 487. https://doi.org/10.3390/nu14030487
De Mauri A, Carrera D, Vidali M, Bagnati M, Rolla R, Riso S, Torreggiani M, Chiarinotti D. Compliance, Adherence and Concordance Differently Predict the Improvement of Uremic and Microbial Toxins in Chronic Kidney Disease on Low Protein Diet. Nutrients. 2022; 14(3):487. https://doi.org/10.3390/nu14030487
Chicago/Turabian StyleDe Mauri, Andreana, Deborah Carrera, Matteo Vidali, Marco Bagnati, Roberta Rolla, Sergio Riso, Massimo Torreggiani, and Doriana Chiarinotti. 2022. "Compliance, Adherence and Concordance Differently Predict the Improvement of Uremic and Microbial Toxins in Chronic Kidney Disease on Low Protein Diet" Nutrients 14, no. 3: 487. https://doi.org/10.3390/nu14030487
APA StyleDe Mauri, A., Carrera, D., Vidali, M., Bagnati, M., Rolla, R., Riso, S., Torreggiani, M., & Chiarinotti, D. (2022). Compliance, Adherence and Concordance Differently Predict the Improvement of Uremic and Microbial Toxins in Chronic Kidney Disease on Low Protein Diet. Nutrients, 14(3), 487. https://doi.org/10.3390/nu14030487