Deprescribing Leads to Improved Energy Intake among Hospitalized Older Sarcopenic Adults with Polypharmacy after Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Setting
2.2. Data Collection
2.3. Polypharmacy
2.4. Sarcopenia Definition
2.5. Energy and Protein Intakes
2.6. Outcomes
2.7. Sample Size Calculation
2.8. Statistical Analysis
2.9. Ethics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Mayhew, A.J.; Amog, K.; Phillips, S.; Parise, G.; McNicholas, P.D.; de Souza, R.J.; Thabane, L.; Raina, P. The Prevalence of Sarcopenia in Community-Dwelling Older Adults, an Exploration of Differences between Studies and within Definitions: A Systematic Review and Meta-Analyses. Age Ageing 2019, 48, 48–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimura, Y.; Wakabayashi, H.; Bise, T.; Tanoue, M. Prevalence of Sarcopenia and Its Association with Activities of Daily Living and Dysphagia in Convalescent Rehabilitation Ward Inpatients. Clin. Nutr. 2018, 37, 2022–2028. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Wakabayashi, H.; Bise, T.; Nagano, F.; Shimazu, S.; Shiraishi, A.; Yamaga, M.; Koga, H. Sarcopenia Is Associated with Worse Recovery of Physical Function and Dysphagia and a Lower Rate of Home Discharge in Japanese Hospitalized Adults Undergoing Convalescent Rehabilitation. Nutrition 2019, 61, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Goisser, S.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.C.; et al. ESPEN Guideline on Clinical Nutrition and Hydration in Geriatrics. Clin. Nutr. 2019, 38, 10–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojzischke, J.; van Wijngaarden, J.; van den Berg, C.; Cetinyurek-Yavuz, A.; Diekmann, R.; Luiking, Y.; Bauer, J. Nutritional Status and Functionality in Geriatric Rehabilitation Patients: A Systematic Review and Meta-Analysis. Eur. Geriatr. Med. 2020, 11, 195–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimura, Y.; Wakabayashi, H.; Nagano, F.; Bise, T.; Shimazu, S.; Kudo, M.; Shiraishi, A. Sarcopenic Obesity Is Associated With Activities of Daily Living and Home Discharge in Post-Acute Rehabilitation. J. Am. Med. Dir. Assoc. 2020, 21, 1475–1480. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Wakabayashi, H.; Yamada, M.; Kim, H.; Harada, A.; Arai, H. Interventions for Treating Sarcopenia: A Systematic Review and Meta-Analysis of Randomized Controlled Studies. J. Am. Med. Dir. Assoc. 2017, 18, 553.e1–553.e16. [Google Scholar] [CrossRef]
- Arai, H.; Wakabayashi, H.; Yoshimura, Y.; Yamada, M.; Kim, H.; Harada, A. Chapter 4 Treatment of Sarcopenia. Geriatr. Gerontol. Int. 2018, 18 (Suppl. S1), 28–44. [Google Scholar] [CrossRef]
- Dent, E.; Morley, J.E.; Cruz-Jentoft, A.J.; Arai, H.; Kritchevsky, S.B.; Guralnik, J.; Bauer, J.M.; Pahor, M.; Clark, B.C.; Cesari, M.; et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, Diagnosis and Management. J. Nutr. Health Aging 2018, 22, 1148–1161. [Google Scholar] [CrossRef]
- Takeuchi, I.; Yoshimura, Y.; Shimazu, S.; Jeong, S.; Yamaga, M.; Koga, H. Effects of Branched-Chain Amino Acids and Vitamin D Supplementation on Physical Function, Muscle Mass and Strength, and Nutritional Status in Sarcopenic Older Adults Undergoing Hospital-Based Rehabilitation: A Multicenter Randomized Controlled Trial. Geriatr. Gerontol. Int. 2019, 19, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, Y.; Bise, T.; Shimazu, S.; Tanoue, M.; Tomioka, Y.; Araki, M.; Nishino, T.; Kuzuhara, A.; Takatsuki, F. Effects of a Leucine-Enriched Amino Acid Supplement on Muscle Mass, Muscle Strength, and Physical Function in Post-Stroke Patients with Sarcopenia: A Randomized Controlled Trial. Nutrition 2019, 58, 1–6. [Google Scholar] [CrossRef]
- Kokura, Y.; Nishioka, S.; Okamoto, T.; Takayama, M.; Miyai, I. Weight Gain Is Associated with Improvement in Activities of Daily Living in Underweight Rehabilitation Inpatients: A Nationwide Survey. Eur. J. Clin. Nutr. 2019, 73, 1601–1604. [Google Scholar] [CrossRef]
- Nagano, F.; Yoshimura, Y.; Bise, T.; Shimazu, S.; Shiraishi, A. Muscle Mass Gain Is Positively Associated with Functional Recovery in Patients with Sarcopenia after Stroke. J. Stroke Cereb. Dis. 2020, 29, 105017. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Wakabayashi, H.; Momosaki, R.; Nagano, F.; Bise, T.; Shimazu, S.; Shiraishi, A. Stored Energy Increases Body Weight and Skeletal Muscle Mass in Older, Underweight Patients after Stroke. Nutrients 2021, 13, 3274. [Google Scholar] [CrossRef]
- Calderón-Larrañaga, A.; Poblador-Plou, B.; González-Rubio, F.; Gimeno-Feliu, L.A.; Abad-Díez, J.M.; Prados-Torres, A. Multimorbidity, Polypharmacy, Referrals, and Adverse Drug Events: Are We Doing Things Well? Br. J. Gen. Pract. 2012, 62, e821–e826. [Google Scholar] [CrossRef] [Green Version]
- Fried, T.R.; O’Leary, J.; Towle, V.; Goldstein, M.K.; Trentalange, M.; Martin, D.K. Health Outcomes Associated with Polypharmacy in Community-Dwelling Older Adults: A Systematic Review. J. Am. Geriatr. Soc. 2014, 62, 2261–2272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pana, A.; Sourtzi, P.; Kalokairinou, A.; Velonaki, V.S. Sarcopenia and Polypharmacy among Older Adults: A Scoping Review of the Literature. Arch. Gerontol. Geriatr. 2022, 98, 104520. [Google Scholar] [CrossRef] [PubMed]
- Kose, E.; Toyoshima, M.; Okazoe, S.; Oka, R.; Shiratsuchi, Y.; Hayashi, H. The Relationship between Polypharmacy and Recovery of Activities of Daily Living among Convalescent Stroke Patients: A Propensity Score-Matched Analysis. Eur. Geriatr. Med. 2017, 8, 250–255. [Google Scholar] [CrossRef]
- Jyrkkä, J.; Enlund, H.; Lavikainen, P.; Sulkava, R.; Hartikainen, S. Association of Polypharmacy with Nutritional Status, Functional Ability and Cognitive Capacity over a Three-Year Period in an Elderly Population. Pharm. Drug Saf. 2011, 20, 514–522. [Google Scholar] [CrossRef]
- Shigematsu, K.; Nakano, H.; Watanabe, Y. The Eye Response Test Alone Is Sufficient to Predict Stroke Outcome--Reintroduction of Japan Coma Scale: A Cohort Study. BMJ Open 2013, 3, e002736. [Google Scholar] [CrossRef] [Green Version]
- Bouillanne, O.; Morineau, G.; Dupont, C.; Coulombel, I.; Vincent, J.-P.; Nicolis, I.; Benazeth, S.; Cynober, L.; Aussel, C. Geriatric Nutritional Risk Index: A New Index for Evaluating at-Risk Elderly Medical Patients. Am. J. Clin. Nutr. 2005, 82, 777–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunieda, K.; Ohno, T.; Fujishima, I.; Hojo, K.; Morita, T. Reliability and Validity of a Tool to Measure the Severity of Dysphagia: The Food Intake LEVEL Scale. J. Pain Symptom Manag. 2013, 46, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A New Method of Classifying Prognostic Comorbidity in Longitudinal Studies: Development and Validation. J. Chronic. Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Banks, J.L.; Marotta, C.A. Outcomes Validity and Reliability of the Modified Rankin Scale: Implications for Stroke Clinical Trials: A Literature Review and Synthesis. Stroke 2007, 38, 1091–1096. [Google Scholar] [CrossRef] [Green Version]
- Ottenbacher, K.J.; Hsu, Y.; Granger, C.V.; Fiedler, R.C. The Reliability of the Functional Independence Measure: A Quantitative Review. Arch. Phys. Med. Rehabil. 1996, 77, 1226–1232. [Google Scholar] [CrossRef]
- Kaido, T.; Uemoto, S. Direct Segmental Multi-Frequency Bioelectrical Impedance Analysis Is Useful to Evaluate Sarcopenia. Am. J. Transplant. 2013, 13, 2506–2507. [Google Scholar] [CrossRef]
- Kojima, T.; Akishita, M.; Kameyama, Y.; Yamaguchi, K.; Yamamoto, H.; Eto, M.; Ouchi, Y. High Risk of Adverse Drug Reactions in Elderly Patients Taking Six or More Drugs: Analysis of Inpatient Database. Geriatr. Gerontol. Int. 2012, 12, 761–762. [Google Scholar] [CrossRef]
- By the 2019 American Geriatrics Society Beers Criteria® Update Expert Panel. American Geriatrics Society 2019 Updated AGS Beers Criteria® for Potentially Inappropriate Medication Use in Older Adults: 2019 AGS BEERS CRITERIA® UPDATE EXPERT PANEL. J. Am. Geriatr. Soc. 2019, 67, 674–694. [Google Scholar] [CrossRef]
- Sawaya, A.L.; Tucker, K.; Tsay, R.; Willett, W.; Saltzman, E.; Dallal, G.E.; Roberts, S.B. Evaluation of Four Methods for Determining Energy Intake in Young and Older Women: Comparison with Doubly Labeled Water Measurements of Total Energy Expenditure. Am. J. Clin. Nutr. 1996, 63, 491–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimazu, S.; Yoshimura, Y.; Kudo, M.; Nagano, F.; Bise, T.; Shiraishi, A.; Sunahara, T. Frequent and Personalized Nutritional Support Leads to Improved Nutritional Status, Activities of Daily Living, and Dysphagia after Stroke. Nutrition 2021, 83, 111091. [Google Scholar] [CrossRef] [PubMed]
- Kose, E.; Hirai, T.; Seki, T. Change in Number of Potentially Inappropriate Medications Impacts on the Nutritional Status in a Convalescent Rehabilitation Setting. Geriatr. Gerontol. Int. 2019, 19, 44–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kose, E.; Hirai, T.; Seki, T.; Yasuno, N. Anticholinergic Load and Nutritional Status in Older Individuals. J. Nutr. Health Aging 2020, 24, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Kose, E.; Wakabayashi, H. Rehabilitation Pharmacotherapy: A Scoping Review. Geriatr. Gerontol. Int. 2020, 20, 655–663. [Google Scholar] [CrossRef]
- Wakabayashi, H.; Sakuma, K. Rehabilitation Nutrition for Sarcopenia with Disability: A Combination of Both Rehabilitation and Nutrition Care Management. J. Cachexia Sarcopenia Muscle 2014, 5, 269–277. [Google Scholar] [CrossRef]
Total (n = 91) | Deprescribing Group (n = 39) | Non-Deprescribing Group (n = 52) | p Value | |
---|---|---|---|---|
Age, y, mean (SD) | 81.0 (7.5) | 80.8 (8.2) | 81.2 (7.1) | 0.823 * |
Sex, male, n (%) | 44 (48.4) | 15 (38.5) | 29 (55.8) | 0.102 *** |
Stroke type | ||||
Cerebral infarction, n (%) | 61 (67) | 23 (59.0) | 38 (73.1) | 0.157 *** |
Cerebral hemorrhage, n (%) | 24 (26.4) | 14 (35.9) | 10 (19.2) | 0.074 *** |
Subarachnoid hemorrhage, n (%) | 5 (5.5) | 2 (5.1) | 3 (5.8) | 1.0 *** |
Stroke history, n (%) | 37 (40.7) | 17 (43.6) | 20 (38.5) | 0.622 *** |
Premorbid mRS, median (IQR) | 2 (0–3) | 2 (0–4) | 1.5 (0–3) | 0.191 ** |
Onset-admission days, median (IQR) | 15 (10–25) | 17 (12–22) | 15 (9–27) | 0.779 ** |
Paralysis, n (%) | ||||
Right/Left/Both | 40 (44.0)/39 (42.9)/4 (4.4) | 19 (48.7)/16 (41.0)/2 (5.1) | 21 (40.4)/23 (44.2)/2 (3.8) | 0.541 ** |
BRS, median (IQR) | ||||
Upper limb/Hand-finger/Lower limb | 4 (2–6)/5 (2–6)/5 (2–6) | 4 (2–6)/4 (2–5)/4 (2–5) | 4 (2–6)/5 (2–6)/5 (2–6) | 0.619 ** |
FIM, score, median (IQR) | ||||
- Total | 36 (25–67) | 33 (22–63) | 43 (27–68) | 0.227 ** |
- Motor | 22 (14–51) | 20 (13–40) | 24 (16–52) | 0.197 ** |
- Cognitive | 15 (8–23) | 14 (8–22) | 15 (10–24) | 0.472 ** |
FILS, score, median (IQR) | 7 (2–8) | 7 (2–7) | 7 (6–9) | 0.104 ** |
CCI, score, median (IQR) | 3 (2–4) | 3 (2–4) | 3 (1–5) | 0.766 ** |
Nutritional status, median (IQR) | ||||
GNRI | 91 (84–99) | 91 (85–102) | 90 (82–99) | 0.767 ** |
BMI, kg/m2 | 21.3 (19.2–23.0) | 21.4 (19.1–23.4) | 20.7 (19.2–22.6) | 0.411 ** |
Energy intake, kcal/kg/day | 28.0 (24.1–33.3) | 27.0 (23.7–31.6) | 28.7 (24.6–34.0) | 0.186 ** |
Protein intake, g/kg/day | 1.1 (0.9–1.2) | 1.0 (0.9–1.2) | 1.1 (1.0–1.2) | 0.307 ** |
Muscle-related variables, median (IQR) | ||||
HG, kg | ||||
Male | 17.5 (10.2–22.0) | 19.9 (6.0–22.4) | 16.9 (11.6–21.7) | 0.941 ** |
Female | 9.2 (4.0–13.3) | 9.3 (3.7–13.5) | 9.2 (4.0–13.0) | 0.571 ** |
SMI, kg/m2 | ||||
Male | 6.1 (5.7–6.5) | 6.0 (5.7–6.4) | 6.1 (5.6–6.5) | 0.766 ** |
Female | 4.8 (4.0–5.1) | 4.8 (4.1–5.2) | 4.5 (4.0–5.1) | 0.602 ** |
Laboratory data, mean (SD) | ||||
Albumin, g/dL | 3.4 (0.6) | 3.4 (0.6) | 3.4 (0.6) | 0.707 * |
C-reactive protein, g/dL | 1.5 (2.6) | 1.2 (2.5) | 1.7 (2.7) | 0.418 * |
Hemoglobin, mg/dL | 12.8 (1.8) | 12.7 (2.1) | 12.9 (1.7) | 0.710 * |
Length of stay, days, median (IQR) | 107 (65–142) | 102 (62–144) | 113 (66–140) | 0.904 ** |
Number of total medications, median (IQR) | 8 (6–9) | 9 (7–11) | 7 (6–9) | 0.003 ** |
Number of any PIMs, median (IQR) | 1 (1–2) | 1 (1–2) | 1 (1–2) | 0.365 ** |
Total (n = 91) | Deprescribing Group (n = 39) | Non-Deprescribing Group (n = 52) | p Value | |
---|---|---|---|---|
Energy intake at discharge, kcal/kg/day, median (IQR) | 29.1 (26.4–34.7) | 30.5 (26.1–35.5) | 28.6 (26.5–33.5) | 0.227 |
Protein intake at discharge, g/kg/day, median (IQR) | 1.2 (1.0–1.3) | 1.2 (1.0–1.4) | 1.2 (1.0–1.3) | 0.912 |
HG at discharge, kg, median (IQR) | ||||
Male | 19.5 (14.4–25.1) | 19.3 (15.5–24.1) | 19.6 (14.2–25.4) | 0.970 |
Female | 11 (5.9–22.4) | 12.3 (6.1–14.6) | 9.7 (0.0–14.1) | 0.493 |
SMI at discharge, kg/m2, median (IQR) | ||||
Male | 6.2 (5.7–6.8) | 6.0 (5.7–6.3) | 6.4 (5.5–7.0) | 0.248 |
Female | 4.9 (4.6–5.2) | 4.8 (4.6–5.4) | 4.9 (4.5–5.2) | 0.985 |
Energy Intake at Discharge | Protein Intake at Discharge | HG at Discharge | SMI at Discharge | |||||
---|---|---|---|---|---|---|---|---|
β | p Value | β | p Value | β | p Value | β | p Value | |
Age | −0.009 | 0.921 | −0.170 | 0.141 | −0.040 | 0.504 | −0.066 | 0.359 |
Sex (male) | −0.092 | 0.331 | −0.106 | 0.373 | 0.152 | 0.033 | 0.179 | 0.108 |
FIM-Total on admission | 0.217 | 0.028 | 0.360 | 0.009 | −0.068 | 0.368 | −0.001 | 0.984 |
GNRI on admission | −0.538 | <0.001 | −0.726 | <0.001 | −0.082 | 0.215 | 0.192 | 0.026 |
Energy intake on admission | 0.071 | 0.461 | - | - | - | - | - | - |
Protein intake on admission | - | - | 0.151 | 0.208 | - | - | - | - |
HG on admission | - | - | - | - | 0.827 | <0.001 | - | - |
SMI on admission | - | - | - | - | - | - | 0.586 | <0.001 |
Change in number of drugs | −0.237 | 0.009 | −0.242 | 0.047 | −0.018 | 0.768 | 0.083 | 0.265 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsumoto, A.; Yoshimura, Y.; Wakabayashi, H.; Kose, E.; Nagano, F.; Bise, T.; Kido, Y.; Shimazu, S.; Shiraishi, A. Deprescribing Leads to Improved Energy Intake among Hospitalized Older Sarcopenic Adults with Polypharmacy after Stroke. Nutrients 2022, 14, 443. https://doi.org/10.3390/nu14030443
Matsumoto A, Yoshimura Y, Wakabayashi H, Kose E, Nagano F, Bise T, Kido Y, Shimazu S, Shiraishi A. Deprescribing Leads to Improved Energy Intake among Hospitalized Older Sarcopenic Adults with Polypharmacy after Stroke. Nutrients. 2022; 14(3):443. https://doi.org/10.3390/nu14030443
Chicago/Turabian StyleMatsumoto, Ayaka, Yoshihiro Yoshimura, Hidetaka Wakabayashi, Eiji Kose, Fumihiko Nagano, Takahiro Bise, Yoshifumi Kido, Sayuri Shimazu, and Ai Shiraishi. 2022. "Deprescribing Leads to Improved Energy Intake among Hospitalized Older Sarcopenic Adults with Polypharmacy after Stroke" Nutrients 14, no. 3: 443. https://doi.org/10.3390/nu14030443
APA StyleMatsumoto, A., Yoshimura, Y., Wakabayashi, H., Kose, E., Nagano, F., Bise, T., Kido, Y., Shimazu, S., & Shiraishi, A. (2022). Deprescribing Leads to Improved Energy Intake among Hospitalized Older Sarcopenic Adults with Polypharmacy after Stroke. Nutrients, 14(3), 443. https://doi.org/10.3390/nu14030443