Dairy Product Consumption in Relation to Incident Prediabetes and Longitudinal Insulin Resistance in the Rotterdam Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of Dairy Intake
2.3. Assessment of Outcomes
2.4. Assessment of Covariates
2.5. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. Dairy Intake and Prediabetes Risk
3.3. Dairy Intake and Longitudinal Insulin Resistance
3.4. Associations in Sub-Cohorts
3.5. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stumvoll, M.; Goldstein, B.J.; van Haeften, T.W. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet 2005, 365, 1333–1346. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a Who/Idf Consultation; World Health Organization (WHO): Geneva, Switzerland, 2006. [Google Scholar]
- Mutie, P.M.; Pomares-Millan, H.; Atabaki-Pasdar, N.; Jordan, N.; Adams, R.; Daly, N.L.; Tajes, J.F.; Giordano, G.N.; Franks, P.W. An investigation of causal relationships between prediabetes and vascular complications. Nat. Commun. 2020, 11, 4592. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, Y.; Li, M.; Wu, J.H.; Mai, L.; Li, J.; Yang, Y.; Hu, Y.; Huang, Y. Association between prediabetes and risk of all cause mortality and cardiovascular disease: Updated meta-analysis. BMJ 2020, 370, m2297. [Google Scholar] [CrossRef]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Manson, J.E.; Stampfer, M.J.; Colditz, G.; Liu, S.; Solomon, C.G.; Willett, W.C. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N. Engl. J. Med. 2001, 345, 790–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; Cogswell, M.E.; Flanders, W.D.; Hong, Y.; Zhang, Z.; Loustalot, F.; Gillespie, C.; Merritt, R.; Hu, F.B. Trends in cardiovascular health metrics and associations with all-cause and CVD mortality among US adults. JAMA 2012, 307, 1273–1283. [Google Scholar] [CrossRef] [Green Version]
- Long, G.H.; Johansson, I.; Rolandsson, O.; Wennberg, P.; Fhärm, E.; Weinehall, L.; Griffin, S.J.; Simmons, R.K.; Norberg, M. Healthy behaviours and 10-year incidence of diabetes: A population cohort study. Prev. Med. 2015, 71, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D.; Wu, J.H.Y. Flavonoids, Dairy Foods, and Cardiovascular and Metabolic Health: A Review of Emerging Biologic Pathways. Circ. Res. 2018, 122, 369–384. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.P.; Duan, L.; Li, S. Effect of vitamin K2 on type 2 diabetes mellitus: A review. Diabetes Res. Clin. Pract. 2018, 136, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Beulens, J.W.; van der, A.D.; Grobbee, D.E.; Sluijs, I.; Spijkerman, A.M.; van der Schouw, Y.T. Dietary phylloquinone and menaquinones intakes and risk of type 2 diabetes. Diabetes Care 2010, 33, 1699–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comerford, K.B.; Miller, G.D.; Boileau, A.C.; Masiello Schuette, S.N.; Giddens, J.C.; Brown, K.A. Global Review of Dairy Recommendations in Food-Based Dietary Guidelines. Front. Nutr. 2021, 8, 671999. [Google Scholar] [CrossRef]
- Drouin-Chartier, J.P.; Cote, J.A.; Labonte, M.E.; Brassard, D.; Tessier-Grenier, M.; Desroches, S.; Couture, P.; Lamarche, B. Comprehensive Review of the Impact of Dairy Foods and Dairy Fat on Cardiometabolic Risk. Adv. Nutr. 2016, 7, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Tieri, M.; Ghelfi, F.; Titta, L.; Marventano, S.; Lafranconi, A.; Gambera, A.; Alonzo, E.; Sciacca, S.; Buscemi, S.; et al. Dairy foods and health: An umbrella review of observational studies. Int. J. Food Sci. Nutr. 2020, 71, 138–151. [Google Scholar] [CrossRef]
- Willett, W.C.; Ludwig, D.S. Milk and Health. N. Engl. J. Med. 2020, 382, 644–654. [Google Scholar] [CrossRef]
- Alvarez-Bueno, C.; Cavero-Redondo, I.; Martinez-Vizcaino, V.; Sotos-Prieto, M.; Ruiz, J.R.; Gil, A. Effects of Milk and Dairy Product Consumption on Type 2 Diabetes: Overview of Systematic Reviews and Meta-Analyses. Adv. Nutr. 2019, 10, S154–S163. [Google Scholar] [CrossRef] [PubMed]
- Gijsbers, L.; Ding, E.L.; Malik, V.S.; de Goede, J.; Geleijnse, J.M.; Soedamah-Muthu, S.S. Consumption of dairy foods and diabetes incidence: A dose-response meta-analysis of observational studies. Am. J. Clin. Nutr. 2016, 103, 1111–1124. [Google Scholar] [CrossRef] [Green Version]
- Brouwer-Brolsma, E.M.; van Woudenbergh, G.J.; Oude Elferink, S.J.; Singh-Povel, C.M.; Hofman, A.; Dehghan, A.; Franco, O.H.; Feskens, E.J. Intake of different types of dairy and its prospective association with risk of type 2 diabetes: The Rotterdam Study. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 987–995. [Google Scholar] [CrossRef] [PubMed]
- Hruby, A.; Ma, J.; Rogers, G.; Meigs, J.B.; Jacques, P.F. Associations of Dairy Intake with Incident Prediabetes or Diabetes in Middle-Aged Adults Vary by Both Dairy Type and Glycemic Status. J. Nutr. 2017, 147, 1764–1775. [Google Scholar] [CrossRef] [Green Version]
- Slurink, I.A.L.; den Braver, N.R.; Rutters, F.; Kupper, N.; Smeets, T.; Elders, P.J.M.; Beulens, J.W.J.; Soedamah-Muthu, S.S. Dairy product consumption and incident prediabetes in Dutch middle-aged adults: The Hoorn Studies prospective cohort. Eur. J. Nutr. 2021. [Google Scholar] [CrossRef] [PubMed]
- Drehmer, M.; Pereira, M.A.; Schmidt, M.I.; Del Carmen, B.M.M.; Alvim, S.; Lotufo, P.A.; Duncan, B.B. Associations of dairy intake with glycemia and insulinemia, independent of obesity, in Brazilian adults: The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Am. J. Clin. Nutr. 2015, 101, 775–782. [Google Scholar] [CrossRef] [Green Version]
- Turner, K.M.; Keogh, J.B.; Clifton, P.M. Dairy consumption and insulin sensitivity: A systematic review of short- and long-term intervention studies. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Ikram, M.A.; Brusselle, G.G.O.; Murad, S.D.; van Duijn, C.M.; Franco, O.H.; Goedegebure, A.; Klaver, C.C.W.; Nijsten, T.E.C.; Peeters, R.P.; Stricker, B.H.; et al. The Rotterdam Study: 2018 update on objectives, design and main results. Eur. J. Epidemiol. 2017, 32, 807–850. [Google Scholar] [CrossRef] [Green Version]
- Voortman, T.; Kiefte-de Jong, J.C.; Ikram, M.A.; Stricker, B.H.; van Rooij, F.J.A.; Lahousse, L.; Tiemeier, H.; Brusselle, G.G.; Franco, O.H.; Schoufour, J.D. Adherence to the 2015 Dutch dietary guidelines and risk of non-communicable diseases and mortality in the Rotterdam Study. Eur. J. Epidemiol. 2017, 32, 993–1005. [Google Scholar] [CrossRef]
- Klipstein-Grobusch, K.; den Breeijen, J.H.; Goldbohm, R.A.; Geleijnse, J.M.; Hofman, A.; Grobbee, D.E.; Witteman, J.C. Dietary assessment in the elderly: Validation of a semiquantitative food frequency questionnaire. Eur. J. Clin. Nutr. 1998, 52, 588–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feunekes, G.I.; Van Staveren, W.A.; De Vries, J.H.; Burema, J.; Hautvast, J.G. Relative and biomarker-based validity of a food-frequency questionnaire estimating intake of fats and cholesterol. Am. J. Clin. Nutr. 1993, 58, 489–496. [Google Scholar] [CrossRef]
- Goldbohm, R.A.; van den Brandt, P.A.; Brants, H.A.; van’t Veer, P.; Al, M.; Sturmans, F.; Hermus, R.J. Validation of a dietary questionnaire used in a large-scale prospective cohort study on diet and cancer. Eur. J. Clin. Nutr. 1994, 48, 253–265. [Google Scholar] [PubMed]
- Neeley, W.E. Simple automated determination of serum or plasma glucose by a hexokinase-glucose-6 -phosphate dehydrogenase method. Clin. Chem. 1972, 18, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, C.J.; Bloemberg, B.P.; Saris, W.H.; Merritt, R.K.; Kromhout, D. The prevalence of selected physical activities and their relation with coronary heart disease risk factors in elderly men: The Zutphen Study, 1985. Am. J. Epidemiol. 1991, 133, 1078–1092. [Google Scholar] [CrossRef] [PubMed]
- Stel, V.S.; Smit, J.H.; Pluijm, S.M.; Visser, M.; Deeg, D.J.; Lips, P. Comparison of the LASA Physical Activity Questionnaire with a 7-day diary and pedometer. J. Clin. Epidemiol. 2004, 57, 252–258. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Health Council of the Netherlands (Gezondheidsraad). Dutch Dietary Guidelines 2015 (Richtlijnen Goede Voeding 2015); publication number: 2015/24; The Health Council of the Netherlands: The Hague, The Netherlands, 2015. [Google Scholar]
- Leening, M.J.; Kavousi, M.; Heeringa, J.; van Rooij, F.J.; Verkroost-van Heemst, J.; Deckers, J.W.; Mattace-Raso, F.U.; Ziere, G.; Hofman, A.; Stricker, B.H.; et al. Methods of data collection and definitions of cardiac outcomes in the Rotterdam Study. Eur. J. Epidemiol. 2012, 27, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Soedamah-Muthu, S.S.; de Goede, J. Dairy Consumption and Cardiometabolic Diseases: Systematic Review and Updated Meta-Analyses of Prospective Cohort Studies. Curr. Nutr. Rep. 2018, 7, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Hoffmann, G.; Lampousi, A.M.; Knuppel, S.; Iqbal, K.; Schwedhelm, C.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2017, 32, 363–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizopoulos, D. Joint Models for Longitudinal and Time-to-Event Data: With Applications in R; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Rothman, K.J. No adjustments are needed for multiple comparisons. Epidemiology 1990, 1, 43–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eussen, S.J.; van Dongen, M.C.; Wijckmans, N.; den Biggelaar, L.; Oude Elferink, S.J.; Singh-Povel, C.M.; Schram, M.T.; Sep, S.J.; van der Kallen, C.J.; Koster, A.; et al. Consumption of dairy foods in relation to impaired glucose metabolism and type 2 diabetes mellitus: The Maastricht Study. Br. J. Nutr. 2016, 115, 1453–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouwer-Brolsma, E.M.; Sluik, D.; Singh-Povel, C.M.; Feskens, E.J.M. Dairy product consumption is associated with pre-diabetes and newly diagnosed type 2 diabetes in the Lifelines Cohort Study. Br. J. Nutr. 2018, 119, 442–455. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans. 8th Edition. 2015. Available online: https://health.gov/our-work/food-nutrition/previous-dietary-guidelines/ (accessed on 1 January 2021).
- Soedamah-Muthu, S.S.; Guo, J. Dairy consumption and cardiometabolic diseases: Evidence from prospective studies. In Milk and Dairy Foods; Academic Press: Cambridge, MA, USA, 2020; pp. 1–28. [Google Scholar]
- Chen, Z.; Franco, O.H.; Lamballais, S.; Ikram, M.A.; Schoufour, J.D.; Muka, T.; Voortman, T. Associations of specific dietary protein with longitudinal insulin resistance, prediabetes and type 2 diabetes: The Rotterdam Study. Clin. Nutr. 2020, 39, 242–249. [Google Scholar] [CrossRef]
- Vogtschmidt, Y.D.; Raben, A.; Faber, I.; de Wilde, C.; Lovegrove, J.A.; Givens, D.I.; Pfeiffer, A.F.H.; Soedamah-Muthu, S.S. Is protein the forgotten ingredient: Effects of higher compared to lower protein diets on cardiometabolic risk factors. A systematic review and meta-analysis of randomised controlled trials. Atherosclerosis 2021, 328, 124–135. [Google Scholar] [CrossRef]
- Fekete, Á.A.; Givens, D.I.; Lovegrove, J.A. Can milk proteins be a useful tool in the management of cardiometabolic health? An updated review of human intervention trials. Proc. Nutr. Soc. 2016, 75, 328–341. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, S.; Turcotte, A.F.; Gagnon, C.; Rudkowska, I. Increased Dairy Product Intake Modifies Plasma Glucose Concentrations and Glycated Hemoglobin: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2019, 10, 262–279. [Google Scholar] [CrossRef]
- Sochol, K.M.; Johns, T.S.; Buttar, R.S.; Randhawa, L.; Sanchez, E.; Gal, M.; Lestrade, K.; Merzkani, M.; Abramowitz, M.K.; Mossavar-Rahmani, Y.; et al. The Effects of Dairy Intake on Insulin Resistance: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients 2019, 11, 2237. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, K.A.; Cromer, G.; Burhans, M.S.; Kuzma, J.N.; Hagman, D.K.; Fernando, I.; Murray, M.; Utzschneider, K.M.; Holte, S.; Kraft, J.; et al. The impact of diets rich in low-fat or full-fat dairy on glucose tolerance and its determinants: A randomized controlled trial. Am. J. Clin. Nutr. 2021, 113, 534–547. [Google Scholar] [CrossRef]
- Li, X.; Xu, Q.; Jiang, T.; Fang, S.; Wang, G.; Zhao, J.; Zhang, H.; Chen, W. A comparative study of the antidiabetic effects exerted by live and dead multi-strain probiotics in the type 2 diabetes model of mice. Food Funct. 2016, 7, 4851–4860. [Google Scholar] [CrossRef] [PubMed]
- Toshimitsu, T.; Gotou, A.; Sashihara, T.; Hachimura, S.; Shioya, N.; Suzuki, S.; Asami, Y. Effects of 12-Week Ingestion of Yogurt Containing Lactobacillus plantarum OLL2712 on Glucose Metabolism and Chronic Inflammation in Prediabetic Adults: A Randomized Placebo-Controlled Trial. Nutrients 2020, 12, 374. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, B.L.; Rudkowska, I. Nutrigenomic point of view on effects and mechanisms of action of ruminant trans fatty acids on insulin resistance and type 2 diabetes. Nutr. Rev. 2017, 75, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.S.; Chartrand, D.; Vohl, M.C.; Barbier, O.; Rudkowska, I. Dairy Product Consumption Interacts with Glucokinase (GCK) Gene Polymorphisms Associated with Insulin Resistance. J. Pers. Med. 2017, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Jakubowicz, D.; Froy, O. Biochemical and metabolic mechanisms by which dietary whey protein may combat obesity and Type 2 diabetes. J. Nutr. Biochem. 2013, 24, 1–5. [Google Scholar] [CrossRef]
- Kahn, B.B.; Flier, J.S. Obesity and insulin resistance. J. Clin. Investig. 2000, 106, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.; Koh, G. Clinical Evidence and Mechanisms of High-Protein Diet-Induced Weight Loss. J. Obes. Metab. Syndr. 2020, 29, 166–173. [Google Scholar] [CrossRef]
- Guo, J.; Astrup, A.; Lovegrove, J.A.; Gijsbers, L.; Givens, D.I.; Soedamah-Muthu, S.S. Milk and dairy consumption and risk of cardiovascular diseases and all-cause mortality: Dose-response meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 2017, 32, 269–287. [Google Scholar] [CrossRef] [Green Version]
- Paoli, A.; Tinsley, G.; Bianco, A.; Moro, T. The Influence of Meal Frequency and Timing on Health in Humans: The Role of Fasting. Nutrients 2019, 11, 719. [Google Scholar] [CrossRef] [Green Version]
- Fewell, Z.; Davey Smith, G.; Sterne, J.A. The impact of residual and unmeasured confounding in epidemiologic studies: A simulation study. Am. J. Epidemiol. 2007, 166, 646–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total | Q1 | Q2 | Q3 | Q4 | |
---|---|---|---|---|---|
n = 6770 | n = 1692 | n = 1697 | n = 1688 | n = 1693 | |
Total dairy intake (servings/day) | 3.6 ± 1.2 | 1.5 ± 0.3 | 2.8 ± 0.2 | 3.9 ± 0.2 | 6.0 ± 1.1 |
Range | 0–15.1 | 0–1.2 | 0.9–1.9 | 1.4–2.7 | 2.2–15.1 |
Age at dietary assessment (years) | 61.7 ± 3.9 | 62.1 ± 4.0 | 62.0 ± 3.9 | 61.8 ± 3.8 | 60.9 ± 3.7 |
Sex, female (%) | 58.7 | 59.9 | 61.7 | 59.6 | 53.8 |
BMI (kg/m2) | 26.6 ± 2.2 | 26.7 ± 2.2 | 26.7 ± 2.2 | 26.6 ± 2.2 | 26.6 ± 2.2 |
Waist circumference (cm) | 91.1 ± 6.7 | 91.1 ± 6.7 | 90.7 ± 6.6 | 91.0 ± 6.5 | 91.6 ± 6.8 |
Education level (%) | |||||
Primary education | 11.8 | 13.7 | 11.2 | 11.4 | 11.0 |
Lower education | 40.9 | 42.2 | 43.8 | 40.1 | 37.6 |
Intermediate | 28.9 | 28.0 | 28.0 | 29.7 | 30.0 |
Higher | 18.3 | 16.1 | 17.0 | 18.8 | 21.4 |
Smoking (%) | |||||
Never | 32.2 | 31.3 | 33.5 | 32.9 | 31.3 |
Ever | 45.0 | 41.7 | 45.9 | 46.3 | 46.3 |
Current | 22.7 | 27.0 | 20.6 | 20.8 | 22.4 |
Physical activity (MET-hours/week) | |||||
Zutphen Physical Activity Questionnaire (n = 4328) | 79.7 [54.7, 112.1] | 77.7 [51.5, 110.8] | 78.2 [53.0, 109.2] | 79.4 [57.5, 111.9] | 82.4 [56.6, 115.6] |
LASA Physical Activity Questionnaire (n = 2177) | 42.9 [17.7, 82.5] | 39.8 [15.0, 75.9] | 40.5 [16.9, 79.9] | 48.2 [21.0, 87.8] | 45.0 [18.0, 86.4] |
Family history diabetes mellitus | 12.8 | 12.7 | 12.6 | 12.6 | 13.3 |
Dietary intake | |||||
Diet quality score (0–14) | 6.6 ± 1.1 | 6.0 ± 1.0 | 6.6 ± 1.0 | 7.0 ± 1.1 | 7.0 ± 1.1 |
Energy intake (kcal/day) | 2113 ± 333 | 1858 ± 293 | 2012 ± 283 | 2151 ± 285 | 2452 ± 365 |
Total fat intake (E%) | 35.1 ± 3.6 | 35.3 ± 4.1 | 35.0 ± 3.5 | 34.5 ± 3.3 | 35.4 ± 3.6 |
Total saturated fat intake (E%) | 13.2 ± 1.6 | 12.4 ± 1.6 | 12.9 ± 1.5 | 13.1 ± 1.4 | 14.1 ± 1.8 |
Total protein intake (E%) | 16.7 ± 1.7 | 15.8 ± 1.6 | 16.4 ± 1.6 | 16.8 ± 1.5 | 17.6 ± 1.7 |
Carbohydrate intake (E%) | 44.5 ± 4.2 | 44.5 ± 4.9 | 44.9 ± 4.1 | 44.9 ± 3.8 | 43.8 ± 3.9 |
Calcium intake (mg/day) | 1109 ± 251 | 688 ± 113 | 960 ± 95 | 1175 ± 101 | 1621 ± 245 |
Sodium intake (mg/day) | 2344 ± 463 | 1979 ± 385 | 2203 ± 366 | 2398 ± 372 | 2814 ± 511 |
Alcohol intake (g/day) | 6.6 [0.7, 18.8] | 6.7 [0.5, 20.9] | 6.6 [0.7, 18.6] | 6.2 [0.7, 17.6] | 6.7 [0.7, 17.6] |
Vegetables (g/day) | 211 ± 69 | 206 ± 62 | 208 ± 71 | 207 ± 59 | 220 ± 74 |
Fruit (g/day) | 228 ± 98 | 209 ± 102 | 230 ± 93 | 235 ± 94 | 234 ± 101 |
Wholegrains (g/day) | 116 ± 43 | 95 ± 41 | 111 ± 41 | 123 ± 42 | 133 ± 46 |
Legumes (g/day) | 16.5 ± 12.5 | 15.7 ± 14.6 | 16.4 ± 11.2 | 15.4 ± 9.9 | 17.5 ± 11.8 |
Nuts (g/day) | 8.5 ± 7.9 | 7.9 ± 8.0 | 8.3 ± 7.9 | 8.5 ± 7.3 | 9.1 ± 8.1 |
Red meat (g/day) | 93 ± 36 | 91 ± 35 | 92 ± 34 | 93 ± 32 | 97 ± 40 |
Fish (g/day) | 20 ± 13 | 19 ± 13 | 21 ± 12 | 20 ± 13 | 21 ± 13 |
Tea (g/day) | 288 ± 155 | 286 ± 162 | 275 ± 146 | 304 ± 152 | 286 ± 159 |
Coffee (g/day) | 471 ± 152 | 445 ± 155 | 462 ± 144 | 475 ± 146 | 502 ± 159 |
Sugar sweetened beverages (g/day) | 94 ± 74 | 92 ± 78 | 96 ± 74 | 86 ± 63 | 101 ± 79 |
Pooled Effect Estimates | ||||||
---|---|---|---|---|---|---|
Intake Range Categories | Continuous | |||||
Q1 | Q2 | Q3 | Q4 | |||
HR | HR (95% CI) | HR (95% CI) | HR (95% CI) | Ptrend | HR (95% CI) | |
Total dairy | ||||||
n/N | 297/1512 | 287/1517 | 257/1513 | 298/1511 | 1139/6053 | |
Median intake | 1.6 | 2.8 | 3.9 | 5.6 | 3.3 | |
Model 1 | 1 (ref) | 0.96 (0.81–1.13) | 0.85 (0.71–1.00) | 1.00 (0.84–1.19) | 0.89 | 1.02 (0.99–1.05) |
Model 2 | 1 (ref) | 0.98 (0.83–1.16) | 0.91 (0.76–1.08) | 1.09 (0.91–1.31) | 0.38 | 1.03 (1.00–1.07) |
High-fat dairy | ||||||
n/N | 285/1512 | 302/1502 | 288/1532 | 264/1507 | ||
Median intake | 0.4 | 1.4 | 2.1 | 3.6 | 1.7 | |
Model 1 | 1 (ref) | 1.11 (0.94–1.30) | 0.98 (0.83–1.16) | 0.91 (0.76–1.09) | 0.11 | 1.00 (0.96–1.04) |
Model 2 | 1 (ref) | 1.11 (0.94–1.31) | 0.97 (0.82–1.15) | 0.94 (0.78–1.13) | 0.22 | 1.00 (0.96–1.04) |
Low-fat dairy | ||||||
n/N | 273/1517 | 288/1511 | 283/1510 | 295/1515 | ||
Median intake | 0.1 | 1.0 | 1.8 | 3.1 | 1.4 | |
Model 1 | 1 (ref) | 1.07 (0.90–1.26) | 1.06 (0.90–1.25) | 1.09 (0.92–1.28) | 0.31 | 1.03 (0.99–1.08) |
Model 2 | 1 (ref) | 1.08 (0.92–1.28) | 1.10 (0.93–1.31) | 1.17 (0.99–1.39) | 0.06 | 1.05 (1.01–1.10) * |
Fermented dairy | ||||||
n/N | 292/1525 | 284/1501 | 279/1514 | 284/1513 | ||
Median intake | 1.0 | 1.8 | 2.7 | 4.2 | 2.2 | |
Model 1 | 1 (ref) | 0.96 (0.82–1.14) | 0.93 (0.79–1.10) | 0.94 (0.79–1.11) | 0.48 | 1.02 (0.98–1.05) |
Model 2 | 1 (ref) | 0.98 (0.83–1.15) | 0.95 (0.80–1.13) | 1.00 (0.84–1.19) | 0.94 | 1.03 (0.99–1.06) |
High-fat fermented dairy | ||||||
n/N | 294/1522 | 279/1498 | 285/1520 | 281/1513 | ||
Median intake | 0.2 | 1.1 | 1.8 | 3.0 | 1.3 | |
Model 1 | 1 (ref) | 0.99 (0.84–1.17) | 0.95 (0.81–1.12) | 0.94 (0.79–1.11) | 0.44 | 1.03 (0.99–1.07) |
Model 2 | 1 (ref) | 0.99 (0.83–1.16) | 0.94 (0.80–1.11) | 0.93 (0.78–1.11) | 0.41 | 1.03 (0.99–1.07) |
Low-fat fermented dairy | ||||||
n/N | 309/1571 | 289/1523 | 258/1463 | 283/1496 | ||
Median intake | 0.0 | 0.3 | 0.9 | 2.1 | 0.6 | |
Model 1 | 1 (ref) | 0.96 (0.81–1.12) | 0.88 (0.75–1.04) | 0.93 (0.79–1.10) | 0.50 | 0.99 (0.94–1.05) |
Model 2 | 1 (ref) | 0.98 (0.83–1.16) | 0.93 (0.79–1.11) | 1.01 (0.85–1.19) | 0.85 | 1.01 (0.96–1.07) |
Total milk | ||||||
n/N | 276/1509 | 299/1499 | 271/1437 | 293/1608 | ||
Median intake | 0.1 | 0.8 | 1.3 | 2.4 | 1.0 | |
Model 1 | 1 (ref) | 1.12 (0.95–1.31) | 1.05 (0.89–1.25) | 1.03 (0.87–1.22) | 0.73 | 1.00 (0.95–1.06) |
Model 2 | 1 (ref) | 1.13 (0.95–1.33) | 1.09 (0.92–1.30) | 1.09 (0.92–1.29) | 0.31 | 1.02 (0.97–1.08) |
High-fat milk | ||||||
n/N | 600/3002 | 148/860 | 226/1141 | 165/1050 | ||
Median intake | 0.0 | 0.1 | 0.2 | 1.0 | 0.0 | |
Model 1 | 1 (ref) | 0.90 (0.75–1.08) | 1.01 (0.87–1.18) | 0.79 (0.66–0.94) | 0.02 | 0.87 (0.78–0.97) * |
Model 2 | 1 (ref) | 0.94 (0.78–1.13) | 1.03 (0.88–1.21) | 0.81 (0.67–0.97) | 0.04 | 0.88 (0.79–0.99) * |
Low-fat milk | ||||||
n/N | 274/1583 | 297/1488 | 294/1490 | 274/1492 | ||
Median intake | 0.0 | 0.5 | 1.1 | 2.2 | 0.8 | |
Model 1 | 1 (ref) | 1.19 (1.01–1.40) | 1.19 (1.00–1.40) | 1.09 (0.92–1.29) | 0.45 | 1.05 (0.99–1.11) |
Model 2 | 1 (ref) | 1.19 (1.01–1.41) | 1.20 (1.02–1.43) | 1.14 (0.96–1.36) | 0.20 | 1.07 (1.01–1.13) * |
Total yogurt | ||||||
n/N | 425/2050 | 279/1480 | 221/1231 | 214/1292 | ||
Median intake | 0.0 | 0.3 | 0.6 | 1.0 | 0.4 | |
Model 1 | 1 (ref) | 0.89 (0.77–1.04) | 0.93 (0.78–1.10) | 0.80 (0.67–0.94) | 0.00 | 0.88 (0.78–0.98) * |
Model 2 | 1 (ref) | 0.92 (0.79–1.08) | 1.00 (0.84–1.19) | 0.84 (0.71–0.99) | 0.05 | 0.92 (0.82–1.02) |
High-fat yogurt | ||||||
n/N | 908/4596 | 69/514 | 100/500 | 62/443 | ||
Median intake | 0.0 | 0.1 | 0.3 | 0.7 | 0.0 | |
Model 1 | 1 (ref) | 0.69 (0.54–0.88) | 1.04 (0.84–1.28) | 0.68 (0.52–0.89) | 0.003 | 0.66 (0.50–0.88) ** |
Model 2 | 1 (ref) | 0.70 (0.54–0.89) | 1.04 (0.84–1.28) | 0.70 (0.54–0.91) | 0.005 | 0.67 (0.51–0.89) ** |
Low-fat yogurt | ||||||
n/N | 457/2354 | 267/1377 | 205/1070 | 210/1252 | ||
Median intake | 0.0 | 0.1 | 0.5 | 1.0 | 0.1 | |
Model 1 | 1 (ref) | 1.06 (0.91–1.24) | 1.04 (0.87–1.23) | 0.94 (0.79–1.11) | 0.17 | 0.94 (0.84–1.06) |
Model 2 | 1 (ref) | 1.10 (0.93–1.28) | 1.10 (0.92–1.31) | 0.99 (0.83–1.17) | 0.54 | 0.99 (0.88–1.11) |
Total cheese | ||||||
n/N | 272/1501 | 287/1517 | 270/1501 | 310/1534 | ||
Median intake | 0.5 | 1.2 | 2.0 | 3.1 | 1.5 | |
Model 1 | 1 (ref) | 1.04 (0.88–1.23) | 0.97 (0.82–1.15) | 1.09 (0.92–1.29) | 0.46 | 1.05 (1.01–1.08) * |
Model 2 | 1 (ref) | 1.04 (0.88–1.23) | 0.98 (0.83–1.17) | 1.11 (0.94–1.33) | 0.32 | 1.05 (1.01–1.09) * |
High-fat cheese | ||||||
n/N | 281/1536 | 282/1502 | 286/1503 | 290/1512 | ||
Median intake | 0.1 | 1.1 | 1.7 | 2.9 | 1.2 | |
Model 1 | 1 (ref) | 1.06 (0.90–1.25) | 1.05 (0.89–1.24) | 1.04 (0.88–1.24) | 0.74 | 1.04 (1.00–1.07) * |
Model 2 | 1 (ref) | 1.05 (0.89–1.24) | 1.03 (0.87–1.21) | 1.05 (0.88–1.25) | 0.75 | 1.03 (1.00–1.08) |
Low-fat cheese | ||||||
n/N | 813/4260 | 111/625 | 104/560 | 111/608 | ||
Median intake | 0.0 | 0.2 | 0.7 | 1.8 | 0.0 | |
Model 1 | 1 (ref) | 1.06 (0.86–1.30) | 1.13 (0.91–1.41) | 1.09 (0.89–1.35) | 0.10 | 1.05 (0.97–1.14) |
Model 2 | 1 (ref) | 1.10 (0.90–1.36) | 1.16 (0.93–1.45) | 1.17 (0.95–1.44) | 0.04 | 1.06 (0.97–1.14) |
Cream | ||||||
n/N | 735/3604 | 140/825 | 128/849 | 136/775 | ||
Median intake | 0.0 | 0.07 | 0.18 | 0.49 | 0.0 | |
Model 1 | 1 (ref) | 0.89 (0.74–1.09) | 0.88 (0.71–1.07) | 1.01 (0.83–1.23) | 0.41 | 1.04 (0.93–1.17) |
Model 2 | 1 (ref) | 0.90 (0.74–1.10) | 0.89 (0.72–1.09) | 1.00 (0.82–1.22) | 0.52 | 1.03 (0.92–1.16) |
Ice cream | ||||||
n/N | 713/3615 | 137/792 | 122/765 | 167/881 | ||
Median intake | 0.0 | 0.07 | 0.17 | 0.28 | 0.0 | |
Model 1 | 1 (ref) | 0.94 (0.78–1.13) | 0.87 (0.71–1.07) | 0.95 (0.80–1.13) | 0.58 | 0.94 (0.71–1.26) |
Model 2 | 1 (ref) | 0.93 (0.77–1.12) | 0.86 (0.70–1.05) | 0.93 (0.78–1.11) | 0.50 | 0.94 (0.70–1.26) |
Pooled Effect Estimates | ||||||
---|---|---|---|---|---|---|
Intake Range Categories | Continuous | |||||
Q1 | Q2 | Q3 | Q4 | |||
B | B (95% CI) | B (95% CI) | B (95% CI) | Ptrend | B (95% CI) | |
Total dairy | ||||||
n | 1650 | 1642 | 1647 | 1654 | ||
Median intake | 1.6 | 2.8 | 3.9 | 5.6 | 3.3 | |
Model 1 | ref | 0.01 (−0.03, 0.05) | −0.02 (−0.05, 0.02) | 0.02 (−0.02, 0.06) | 0.37 | 0.00 (−0.01, 0.01) |
Model 2 | ref | 0.02 (−0.02, 0.05) | 0.00 (−0.04, 0.04) | 0.04 (0.00, 0.08) | 0.07 | 0.00 (0.00, 0.01) |
High-fat dairy | ||||||
n | 1644 | 1663 | 1642 | 1644 | ||
Median intake | 0.4 | 1.4 | 2.2 | 3.6 | 1.7 | |
Model 1 | ref | 0.02 (−0.02, 0.06) | −0.03 (−0.07, 0.00) | −0.03 (−0.08, 0.01) | 0.03 * | −0.01 (−0.01, 0.00) |
Model 2 | ref | 0.02 (−0.02, 0.06) | −0.03 (−0.07, 0.01) | −0.03 (−0.07, 0.01) | 0.06 | −0.01 (−0.02, 0.00) |
Low-fat dairy | ||||||
n | 1652 | 1655 | 1655 | 1631 | ||
Median intake | 0.1 | 1 | 1.7 | 3 | 1.3 | |
Model 1 | ref | 0.02 (−0.02, 0.06) | 0.05 (0.02, 0.09) | 0.05 (0.01, 0.09) | 0.01 ** | 0.01 (0.00, 0.02) * |
Model 2 | ref | 0.02 (−0.01, 0.06) | 0.06 (0.03, 0.10) | 0.06 (0.03, 0.10) | 0.0003 *** | 0.02 (0.01, 0.03) ** |
Fermented dairy | ||||||
n | 1653 | 1645 | 1644 | 1651 | ||
Median intake | 1 | 1.8 | 2.7 | 4.2 | 2.2 | |
Model 1 | ref | −0.03 (−0.07, 0.01) | −0.02 (−0.06, 0.02) | −0.04 (−0.08, 0.00) | 0.10 | −0.01 (−0.02, 0.00) |
Model 2 | ref | −0.02 (−0.06, 0.02) | 0.00 (−0.04, 0.04) | −0.01 (−0.05, 0.03) | 0.77 | 0.00 (−0.01, 0.00) |
High-fat fermented dairy | ||||||
n | 1658 | 1625 | 1648 | 1662 | ||
Median intake | 0.2 | 1.1 | 1.8 | 3 | 1.4 | |
Model 1 | ref | 0.02 (−0.02, 0.06) | −0.02 (−0.06, 0.02) | −0.02 (−0.06, 0.02) | 0.22 | 0.00 (−0.01, 0.01) |
Model 2 | ref | 0.02 (−0.02, 0.06) | −0.01 (−0.05, 0.02) | −0.01 (−0.05, 0.03) | 0.49 | 0.00 (−0.01, 0.01) |
Low-fat fermented dairy | ||||||
n | 1718 | 1662 | 1624 | 1589 | ||
Median intake | 0 | 0.3 | 0.9 | 2 | 0.5 | |
Model 1 | ref | 0.04 (0.00, 0.08) | 0.03 (−0.01, 0.06) | 0.00 (−0.04, 0.04) | 0.31 | −0.01 (−0.02, 0.00) |
Model 2 | ref | 0.05 (0.01, 0.08) | 0.04 (0.00, 0.08) | 0.02 (−0.01, 0.06) | 0.70 | 0.00 (−0.01, 0.01) |
Total milk | ||||||
n | 1633 | 1627 | 1752 | 1581 | ||
Median intake | 0.1 | 0.8 | 1.3 | 2.4 | 1.0 | |
Model 1 | ref | 0.03 (−0.01, 0.07) | 0.03 (−0.01, 0.07) | 0.05 (0.01, 0.09) | 0.02 * | 0.01 (0.00, 0.02) |
Model 2 | ref | 0.03 (−0.01, 0.07) | 0.03 (0.00, 0.07) | 0.05 (0.01, 0.09) | 0.02 * | 0.01 (0.00, 0.02) |
High-fat milk | ||||||
n | 3278 | 942 | 1146 | 1227 | ||
Median intake | 0 | 0.05 | 0.2 | 0.9 | 0.003 | |
Model 1 | ref | 0.01 (−0.03, 0.05) | −0.02 (−0.05, 0.02) | 0.00 (−0.04, 0.04) | 0.46 | −0.02 (−0.04, 0.00) |
Model 2 | ref | 0.00 (−0.04, 0.04) | −0.03 (−0.06, 0.01) | 0.00 (−0.04, 0.03) | 0.46 | −0.02 (−0.04, 0.00) |
Low-fat milk | ||||||
n | 1736 | 1604 | 1620 | 1633 | ||
Median intake | 0 | 0.5 | 1.1 | 2.2 | 0.8 | |
Model 1 | ref | 0.03 (−0.01, 0.06) | 0.03 (−0.01, 0.06) | 0.07 (0.03, 0.11) | 0.002 ** | 0.02 (0.01, 0.04) *** |
Model 2 | ref | 0.02 (−0.02, 0.06) | 0.02 (−0.02, 0.06) | 0.07 (0.03, 0.11) | 0.001 ** | 0.02 (0.01, 0.04) *** |
Total yogurt | ||||||
n | 2259 | 1606 | 1402 | 1326 | ||
Median intake | 0 | 0.3 | 0.6 | 1.0 | 0.4 | |
Model 1 | ref | 0.04 (0.00, 0.07) | −0.01 (−0.05, 0.03) | −0.03 (−0.07, 0.00) | 0.02 * | −0.03 (−0.05, −0.01) ** |
Model 2 | ref | 0.04 (0.01, 0.08) | 0.00 (−0.04, 0.04) | −0.01 (−0.05, 0.02) | 0.18 | −0.02 (−0.04, 0.00) |
High-fat yogurt | ||||||
n | 5021 | 540 | 470 | 562 | ||
Median intake | 0 | 0.1 | 0.3 | 0.7 | 0.0 | |
Model 1 | ref | −0.01 (−0.06, 0.03) | 0.00 (−0.05, 0.05) | −0.11 (−0.17, −0.06) | 0.0001 *** | −0.08 (−0.13, −0.03) ** |
Model 2 | ref | −0.01 (−0.06, 0.04) | 0.00 (−0.05, 0.05) | −0.10 (−0.16, −0.05) | 0.0003 *** | −0.08 (−0.13, −0.03) ** |
Low-fat yogurt | ||||||
n | 2593 | 1412 | 1366 | 1222 | ||
Median intake | 0 | 0.1 | 0.5 | 1.0 | 0.14 | |
Model 1 | ref | 0.03 (−0.01, 0.06) | 0.05 (0.02, 0.09) | 0.00 (−0.04, 0.03) | 0.71 | −0.02 (−0.04, 0.01) |
Model 2 | ref | 0.03 (0.00, 0.07) | 0.07 (0.03, 0.10) | 0.01 (−0.02, 0.05) | 0.52 | 0.00 (−0.03, 0.02) |
Total cheese | ||||||
n | 1650 | 1633 | 1670 | 1640 | ||
Median intake | 0.5 | 1.2 | 2.0 | 3.1 | 1.5 | |
Model 1 | ref | 0.01 (−0.03, 0.05) | −0.01 (−0.05, 0.02) | −0.01 (−0.05, 0.03) | 0.62 | 0.00 (−0.01, 0.01) |
Model 2 | ref | 0.02 (−0.02, 0.06) | 0.00 (−0.04, 0.04) | 0.01 (−0.03, 0.05) | 0.62 | 0.00 (−0.01, 0.01) |
High-fat cheese | ||||||
n | 1691 | 1607 | 1652 | 1643 | ||
Median intake | 0.2 | 1.1 | 1.7 | 3.0 | 1.3 | |
Model 1 | ref | 0.01 (−0.02, 0.05) | −0.01 (−0.04, 0.03) | −0.01 (−0.05, 0.03) | 0.52 | 0.00 (−0.01, 0.01) |
Model 2 | ref | 0.01 (−0.02, 0.05) | 0.00 (−0.04, 0.04) | 0.00 (−0.04, 0.04) | 0.92 | 0.00 (−0.01, 0.01) |
Low-fat cheese | ||||||
n | 4682 | 664 | 647 | 600 | ||
Median intake | 0 | 0.2 | 0.7 | 1.8 | 0.0 | |
Model 1 | ref | 0.02 (−0.03, 0.07) | 0.00 (−0.05, 0.05) | −0.01 (−0.05, 0.04) | 0.83 | 0.00 (−0.02, 0.02) |
Model 2 | ref | 0.02 (−0.02, 0.07) | 0.01 (−0.04, 0.06) | 0.02 (−0.03, 0.07) | 0.50 | 0.01 (−0.01, 0.03) |
Cream | ||||||
n | 3977 | 880 | 829 | 907 | ||
Median intake | 0 | 0.07 | 0.2 | 0.5 | 0.0 | |
Model 1 | ref | −0.03 (−0.07, 0.02) | −0.06 (−0.10, −0.01) | −0.07 (−0.11, −0.02) | 0.89 | −0.01 (−0.04, 0.01) |
Model 2 | ref | −0.03 (−0.07, 0.02) | −0.05 (−0.09, 0.00) | −0.07 (−0.12, −0.03) | 0.77 | −0.02 (−0.05, 0.01) |
Ice cream | ||||||
n | 3963 | 851 | 956 | 823 | ||
Median intake | 0 | 0.07 | 0.2 | 0.3 | 0.0 | |
Model 1 | ref | 0.04 (0.00, 0.08) | 0.04 (0.00, 0.08) | 0.03 (−0.01, 0.07) | 0.05 | 0.05 (0.00, 0.10) * |
Model 2 | ref | 0.03 (−0.02, 0.07) | 0.02 (−0.02, 0.07) | 0.01 (−0.03, 0.05) | 0.52 | 0.04 (−0.01, 0.08) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slurink, I.A.L.; Voortman, T.; Ochoa-Rosales, C.; Ahmadizar, F.; Kavousi, M.; Kupper, N.; Smeets, T.; Soedamah-Muthu, S.S. Dairy Product Consumption in Relation to Incident Prediabetes and Longitudinal Insulin Resistance in the Rotterdam Study. Nutrients 2022, 14, 415. https://doi.org/10.3390/nu14030415
Slurink IAL, Voortman T, Ochoa-Rosales C, Ahmadizar F, Kavousi M, Kupper N, Smeets T, Soedamah-Muthu SS. Dairy Product Consumption in Relation to Incident Prediabetes and Longitudinal Insulin Resistance in the Rotterdam Study. Nutrients. 2022; 14(3):415. https://doi.org/10.3390/nu14030415
Chicago/Turabian StyleSlurink, Isabel A. L., Trudy Voortman, Carolina Ochoa-Rosales, Fariba Ahmadizar, Maryam Kavousi, Nina Kupper, Tom Smeets, and Sabita S. Soedamah-Muthu. 2022. "Dairy Product Consumption in Relation to Incident Prediabetes and Longitudinal Insulin Resistance in the Rotterdam Study" Nutrients 14, no. 3: 415. https://doi.org/10.3390/nu14030415
APA StyleSlurink, I. A. L., Voortman, T., Ochoa-Rosales, C., Ahmadizar, F., Kavousi, M., Kupper, N., Smeets, T., & Soedamah-Muthu, S. S. (2022). Dairy Product Consumption in Relation to Incident Prediabetes and Longitudinal Insulin Resistance in the Rotterdam Study. Nutrients, 14(3), 415. https://doi.org/10.3390/nu14030415