Effects of a Short-Term Meal Replacement Hypocaloric Diet in Subjects with Obesity and High Fatty Liver Index
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Subjects and Clinical Investigation
2.2. Dietary Intervention
2.3. Biochemical Parameters
2.4. Adiposity Parameters, Arterial Blood Pressure and Fatty Liver Index
2.5. Statistical Analysis
2.6. Ethical Approval
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bilson, J.; Sethi, J.K.; Byrne, C.D. Non-alcoholic fatty liver disease: a multi-system disease influenced by ageing and sex, and affected by adipose tissue and intestinal function. Proc. Nutr. Soc. 2021, 81, 146–161. [Google Scholar] [CrossRef]
- Berná, G.; Romero-Gomez, M. The role of nutrition in non-alcoholic fatty liver disease: Pathophysiology and management. Liver Int. 2020, 40, 102–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez-Fisac, J.L.; Guallar-Castillon, P.; León-Muñoz, L.M.; Graciani, A.; Banegas, J.R.; Rodríguez-Artalejo, F. Prevalence of general and abdominal obesity in the adult population of Spain, 2008–2010: The ENRICA study. Obes. Rev. 2011, 13, 388–392. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Mierlo, C.A.J.V.; Van Der Knaap, H.C.M.; Heo, M.; Frier, H.I. Weight management using a meal replacement strategy: Meta and pooling analysis from six studies. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 537–549. [Google Scholar] [CrossRef] [Green Version]
- Deibert, P.; Lazaro, A.; Schaffner, D.; Berg, A.; Koenig, D.; Kreisel, W.; Baumstark, M.W.; Steinmann, D.; Buechert, M.; Lange, T. Comprehensive lifestyle intervention vs. soy protein-based meal regimen in non-alcoholic steatohepatitis. World J. Gastroenterol. 2019, 25, 1116–1131. [Google Scholar] [CrossRef] [PubMed]
- Baldry, E.L.; Aithal, G.P.; Kaye, P.; Idris, I.R.; Bennett, A.; Leeder, P.C.; Macdonald, I.A. Effects of short-term energy restriction on liver lipid content and inflammatory status in severely obese adults: Results of a randomized controlled trial using 2 dietary approaches. Diabetes Obes. Metab. 2017, 19, 1179–1183. [Google Scholar] [CrossRef]
- Borggreve, S.E.; Hillege, H.L.; Wolffenbuttel, B.H.R.; de Jong, P.E.; Bakker, S.J.L.; van der Steege, G.; van Tol, A.; Dullaart, R.P.F.; PREVEND Study Group. The effect of cholesteryl ester transfer protein -629C->A promoter polymorphism on high-density lipoprotein cholesterol is dependent on serum triglycerides. J. Clin. Endocrinol. Metab. 2005, 90, 4198–4204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Lukaski, H.C.; Johnson, P.E.; Bolonchuk, W.W.; Lykken, G.I. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am. J. Clin. Nutr. 1985, 41, 810–817. [Google Scholar] [CrossRef] [Green Version]
- Meneghel, P.; Pinto, E.; Russo, F.P. Physiopathology of nonalcoholic fatty liver disease: From diet to nutrigenomics. Curr. Opin. Clin. Nutr. Metab. Care 2022, 25, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, A.J.; Campbell Sargent, C.; Mirshashi, F.; Rizzo, W.B.; Contos, M.J.; Sterling, R.K.; Luketic, V.A.; Shiffman, M.L.; Clore, J.N. Nonalcoholic steatohepatitis: Association of insulin resistance and mitocohondrial abnormalities. Gastroenterology 2001, 120, 1183–1192. [Google Scholar] [CrossRef]
- Aller, R.; Sigüenza, R.; Pina, M.; Laserna, C.; Antolín, B.; Burgueño, B.; Durà, M.; Izaola, O.; Primo, D.; de Luis, D.A. Insulin resistance is related with liver fibrosis in type 2 diabetic patients with non-alcoholic fatty liver disease proven biopsy and Mediterranean diet pattern as a protective factor. Endocrine 2020, 68, 557–563. [Google Scholar] [CrossRef]
- Rico, D.; Martin-Diana, A.B.; Lasa, A.; Aguirre, L.; Milton-Laskibar, I.; De Luis, D.A.; Miranda, J. Effect of Wakame and Carob Pod Snacks on Non-Alcoholic Fatty Liver Disease. Nutrients 2019, 11, 86. [Google Scholar] [CrossRef] [Green Version]
- Aller, R.; Izaola, O.; Gómez, S.; Tafur, C.; González, G.; Berroa, E.; Mora, N.; González, J.M.; De Luis, D.A. Effect of silymarin plus vitamin E in patients with non-alcoholic fatty liver disease. A randomized clinical pilot study. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 3118–3124. [Google Scholar]
- Behari, J.; Graham, L.; Wang, R.; Schirda, C.; Borhani, A.A.; Methé, B.A.; Li, K.; Morris, A.; Luu, H.N.; Palmieri, S.; et al. Dynamics of hepatic steatosis resolution and changes in gut microbiome with weight loss in nonalcoholic fatty liver disease. Obes. Sci. Pr. 2020, 7, 217–225. [Google Scholar] [CrossRef]
- Gasteyger, C.; Larsen, T.M.; Vercruysse, F.; Astrup, A. Effect of a dietary-induced weight loss on liver enzymes in obese subjects. Am. J. Clin. Nutr. 2008, 87, 1141–1147. [Google Scholar] [CrossRef] [Green Version]
- Sebastiani, G.; Patel, K.; Ratziu, V.; Feld, J.J.; A Neuschwander-Tetri, B.; Pinzani, M.; Petta, S.; Berzigotti, A.; Metrakos, P.; Shoukry, N.; et al. Current considerations for clinical management and care of non-alcoholic fatty liver disease: Insights from the 1st International Workshop of the Canadian NASH Network (CanNASH). Can. Liver J. 2022, 5, 61–90. [Google Scholar] [CrossRef]
- Cueto-Galán, R.; Barón, F.J.; Valdivielso, P.; Pintó, X.; Corbella, E.; Gómez-Gracia, E.; Wärnberg, J. Changes in fatty liver index after consuming a Mediterranean diet: 6-Year follow-up of the PREDIMED-Malaga trial. Medicina Clinica 2017, 148, 435–443. [Google Scholar] [CrossRef]
- Cuthbertson, D.J.; Weickert, M.O.; Lythgoe, D.; Sprung, V.S.; Dobson, R.; Shoajee-Moradie, F.; Umpleby, M.; Pfeiffer, A.F.; Thomas, E.L.; Bell, J.D.; et al. External validation of the fatty liver index and lipid accumulation product indices, using 1H-magnetic resonance spectroscopy, to identify hepatic steatosis in healthy controls and obese, insulin-resistant individuals. Eur. J. Endocrinol. 2014, 171, 561–569. [Google Scholar] [CrossRef] [Green Version]
- Balkau, B.; Lange, C.; Fezeu, L.; Tichet, J.; de Lauzon-Guillain, B.; Czernichow, S.; Fumeron, F.; Froguel, P.; Vaxillaire, M.; Cauchi, S.; et al. Predicting diabetes: Clinical, biological, and genetic approaches: Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care. 2008, 31, 2056–2061. [Google Scholar] [CrossRef]
- Mera, J.R.; Dickson, B.; Feldman, M. Influence of Gender on the Ratio of Serum Aspartate Aminotransferase (AST) to Alanine Aminotransferase (ALT) in Patients With and Without Hyperbilirubinemia. Dig. Dis. Sci. 2007, 53, 799–802. [Google Scholar] [CrossRef]
Theorical Oral Diet + Formula | Only Normocaloric Hyperproteic Formula (200 mL per Brick) | |
---|---|---|
Energy (kcal) | 1035 | 200 |
Proteins (g (%TCV)) | 64.4 (25%) | 15.4 (31%) |
Fats (g (%TCV)) | 19.1 (17%) | 5.2 (23%) |
Carbohydrates (g (%TCV)) | 151.6 (59%) | 21 (42%) |
Dietary Fiber (g) | 15.9 | 4.2 |
Parameters | All group (n = 666) | Females (n = 442) | Males (n = 164) | p Value between Male and Females |
---|---|---|---|---|
BMI | 40.3 ± 4.3 | 39.3 ± 2.1 | 40.6 ± 2.1 | p = 0.03 |
Weight (kg) | 103.2 ± 4.5 | 100.1 ± 4.0 | 107.9 ± 4.1 | p = 0.02 |
Fat mass (kg) | 47.1 ± 2.1 | 47.9 ± 3.8 | 42.1 ± 3.0 | p = 0.03 |
WC (cm) | 120.9 ± 2.1 | 118.8 ± 3.2 | 121.9 ± 3.0 | p = 0.01 |
SBP (mmHg) | 136.3 ± 2.1 | 136.0 ± 3.1 | 136.9 ± 3.0 | p = 0.21 |
DBP (mmHg) | 82.4 ± 4.0 | 82.2 ± 3.1 | 83.1 ± 3.2 | p = 0.33 |
Glucose (mg/dL) | 109.2 ± 2.1 | 108.8 ± 1.9 | 110.1 ± 1.8 | p = 0.44 |
Total cholesterol (mg/dL) | 198.1 ± 7.7 | 197.1 ± 4.2 | 199.6 ± 4.2 | p = 0.39 |
LDL-cholesterol (mg/dL) | 119.1 ± 3.1 | 118.9 ± 2.8 | 121.9 ± 4.1 | p = 0.42 |
HDL-cholesterol (mg/dL) | 50.1 ± 3.0 | 50.4 ± 3.1 | 49.9 ± 2.0 | p = 0.31 |
Triglycerides (mg/dL) | 139.4 ± 4.0 | 137.1 ± 3.9 | 141.1 ± 4.2 | p = 0.32 |
Insulin (mUI/L) | 20.1 ± 1.8 | 19.9 ± 1.9 | 22.5 ± 3.9 | p = 0.28 |
HOMA-IR | 5.4 ± 0.3 | 5.3 ± 0.5 | 5.5 ± 0.9 | p = 0.42 |
ALT (U/L) | 25.3 ± 2.1 | 21. 9 ± 1.1 | 27.3 ± 4.1 | p = 0.31 |
AST (U/L) | 22.6 ± 2.0 | 19.9 ± 2.8 | 23.8 ± 4.1 | p = 0.49 |
GGT (U/L) | 36.4 ± 2.1 | 32.9 ± 2.0 | 37.6 ± 4.9 | p = 0.34 |
Total bilirubin (mg/dL) | 0.6 ± 0.1 | 0.6 ± 0.2 | 0.7 ± 0.4 | p = 0.31 |
AST to ALT ratio | 0.95 ± 0.09 | 0.98 ± 0.08 | 0.95 ± 0.09 | p = 0.27 |
FLI | 92.8 ± 3.8 | 92.6 ± 3.1 | 93.8 ± 2.0 | p = 0.41 |
Daily Intakes | Group I ALT < 43 UI/L (n = 555) | Group II ALT ≥ 43 (n = 51) | |||||
---|---|---|---|---|---|---|---|
Basal | 3 Months | Effect Size | Basal | 3 Months | Effect Size | p Values | |
Calorie intake (kcal/day) | 1699.2 ± 78.1 | 1021.1 ± 61.1 * | 609.8±48.9 | 1695.2 ± 92.1 | 1028.1 ± 30.4 * | 611.2 ± 41.1 | p = 0.34 p = 0.02 p = 0.01 |
Carbohydrate intake (g/day) (PTC %) | 168.1 ± 23.0 (40.3%) | 130.3 ± 31.9$ (63.2%) | 37.1±13.1 | 169.9 ± 23.1 (39.9%) | 131.9 ± 30.0$ (63.0%) | 38.1 ± 9.0 | p = 0.43 p = 0.02 p = 0.01 |
Fat intake (g/day) (PTC %) | 57.2 ± 11.3 (36.5%) | 27.8 ± 8.1 # (22.7%) | 29.2 ± 4.3 | 57.8 ± 11.0 (36.7%) | 27.5 ± 8.5# (22.8%) | 22.2 ± 5.1 | p = 0.52 p = 0.03 p = 0.04 |
Protein intake (g/day) (PTC %) | 72.9 ± 12.3 (23.2%) | 56.2 ± 8.9 & (23.3%) | 16.1 ± 7.3 | 72.0 ± 13.1 (23.4%) | 56.8 ± 11.9& (23.4%) | 15.9 ± 6.1 | p = 0.33 p = 0.02 p = 0.01 |
Fiber intake (g/day) | 15.9 ± 5.0 | 16.9 ± 4.1 | 1.1 ± 0.3 | 15.6 ± 5.1 | 16.0 ± 4.1 | 0.9 ± 0.2 | p = 0.21 p = 0.57 p = 0.18 |
Physical activity (min/week) | 129.8 ± 7.9 | 130.8 ± 10.9 | 1.1 ± 0.9 | 128.7 ± 7.1 | 131.1 ± 10.4 | 2.1 ± 1.9 | p = 0.29 p = 0.41 p = 0.39 |
Parameteres | Group I ALT < 43 UI/L (n = 555) | Grop II ALT ≥ 43 (n = 51) | |||||
---|---|---|---|---|---|---|---|
Basal | 3 Months | Effect Size | Basal | 3 Months | Effect Size | p Values | |
BMI | 40.3 ± 2.2 | 37.0 ± 2.0 * | 2.3 ± 1.2 | 39.8 ± 2.0 | 35.8 ± 1.9 * | 3.0 ± 1.3 | p = 0.34 p = 0.03 p = 0.02 |
Weight (kg) | 102.9 ± 4.1 | 94.3 ± 2.3 $ | 8.9 ± 1.1 | 106.4 ± 4.0 | 96.1 ± 2.2 $ | 9.9 ± 1.1 | p = 0.51 p = 0.03 p = 0.03 |
Fat mass (kg) | 47.5 ± 3.0 | 40.7 ± 2.2 # | 6.5 ± 1.1 | 43.4 ± 3.1 | 36.2 ± 2.0 # | 6.7 ± 1.0 | p = 0.23 p = 0.02 p = 0.02 |
WC (cm) | 120.8 ± 3.1 | 112.9 ± 2.2 & | 7.8 ± 1.1 | 121.3 ± 3.1 | 110.1 ± 2.2 & | 9.8 ± 2.1 | p = 0.41 p = 0.02 p = 0.03 |
SBP (mmHg) | 136.2 ± 3.0 | 126.4 ± 4.0 ** | 10.2 ± 1.1 | 137.1 ± 3.0 | 128.3 ± 2.1 ** | 9.3 ± 1.0 | p = 0.43 p = 0.01 p = 0.02 |
DBP (mmHg) | 82.1 ± 3.1 | 78.4 ± 1.3 *** | 3.1 ± 1.1 | 85.3 ± 3.1 | 78.9 ± 2.1 *** | 5.1 ± 2.3 | p = 0.29 p = 0.03 p = 0.03 |
Biochemical Parameters | Group I ALT < 43 UI/L (n = 555) | Group II ALT ≥ 43 (n = 51) | |||||
---|---|---|---|---|---|---|---|
Basal | 3 Months | Effect Size | Basal | 3 Months | Effect Size | p Values | |
Glucose (mg/dL) | 108.8 ± 1.9 | 101.2 ± 2.2+ | 7.2 ± 1.2 | 113.8 ± 1.9 | 106.3 ± 2.2 + | 7.2 ± 0.9 | p = 0.47 p = 0.04 p = 0.01 |
Total cholesterol (mg/dL) | 197.9 ± 4.5 | 182.2 ± 3.1 * | 15.2 ± 1.1 | 203.6 ± 4.1 | 183.8 ± 2.1* | 19.9 ± 1.3 | p = 0.59 p = 0.02 p = 0.02 |
LDL-cholesterol (mg/dL) | 119.9 ± 2.0 | 111.1 ± 1.2 $ | 8.1 ± 0.4 | 123.5 ± 4.1 | 110.8 ± 3.1 $ | 13.1 ± 1.0 | p = 0.47 p = 0.03 p = 0.02 |
HDL-cholesterol (mg/dL) | 51.0 ± 3.0 | 49.9 ± 2.1 | 2.1 ± 0.1 | 46.9 ± 3.0 | 44.9 ± 2.1 | 3.9 ± 0.9 | p = 0.39 p = 0.60 p = 0.33 |
Triglycerides (mg/dL) | 137.5 ± 3.2 | 125.8 ± 2.1 # | 12.1 ± 2.0 | 167.1 ± 10.2 ++ | 136.8 ± 9.9 # | 11.8 ± 1.9 # | p = 0.42 p = 0.02 p = 0.01 |
Insulin (mUI/L) | 19.7 ± 1.9 | 14.5 ± 1.3 & | 5.2 ± 1.3 | 25.5 ± 1.9++ | 17.7 ± 2.1 & | 9.5 ± 3.3 | p = 0.38 p = 0.03 p = 0.01 |
HOMA-IR | 5.3 ± 0.3 | 3.6 ± 0.4 ** | 1.6 ± 0.2 | 7.2 ± 0.4++ | 5.0 ± 0.3 ** | 2.2 ± 0.5 | p = 0.34 p = 0.02 p = 0.01 |
Basal | 3 Months | Effect Size | Basal | 3 Months | Effect Size | p Values | |
---|---|---|---|---|---|---|---|
ALT (U/L) | 21.9 ± 1.1 | 19.7 ± 1.2 + | 2.7 ± 0.2 | 70.3 ± 4.1 ** | 38.4 ± 7.2 +, ** | 32.7 ± 1.9 ## | p = 0.03 p = 0.03 p = 0.01 |
AST (U/L) | 19.9 ± 0.8 | 16.1 ± 1.1 * | 3.1 ± 1.0 | 41.9 ± 4.9* * | 27.1 ± 3.1*,** | 23.1 ± 1.8 ## | p = 0.39 p = 0.04 p = 0.01 |
GGT (U/L) | 32.9 ± 2.0 | 28.1 ± 1.7 $ | 4.1 ± 0.7 | 87.6 ± 4.1** | 50.9 ± 3.9$,** | 37.1 ± 2.9 ## | p = 0.42 p = 0.02 p = 0.01 |
Total Billirubin (mg/dL) | 0.6 ± 0.2 | 0.7 ± 0.1 | 0.1 ± 0.1 | 0.7 ± 0.2 | 0.6 ± 0.1 | 0.1 ± 0.1 | p = 0.39 p = 0.60 p = 0.33 |
AST to ALT ratio | 0.99 ± 0.08 | 1.03 ± 0.06 # | 0.02 ± 0.01 | 0.61 ± 0.08 | 0.80 ± 0.06 # | 0.18 ± 0.06 ## | p = 0.43 p = 0.03 p = 0.02 |
FLI | 92.6 ± 3.1 | 82.8 ± 2.9 & | 9.8 ± 0.2 | 95.8 ± 2.1 | 83.6 ± 3.9 & | 12.8 ± 3.9 | p = 0.55 p = 0.03 p = 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luis, D.d.; Primo, D.; Izaola, O.; Lopez, J.J. Effects of a Short-Term Meal Replacement Hypocaloric Diet in Subjects with Obesity and High Fatty Liver Index. Nutrients 2022, 14, 5353. https://doi.org/10.3390/nu14245353
Luis Dd, Primo D, Izaola O, Lopez JJ. Effects of a Short-Term Meal Replacement Hypocaloric Diet in Subjects with Obesity and High Fatty Liver Index. Nutrients. 2022; 14(24):5353. https://doi.org/10.3390/nu14245353
Chicago/Turabian StyleLuis, Daniel de, David Primo, Olatz Izaola, and Juan Jose Lopez. 2022. "Effects of a Short-Term Meal Replacement Hypocaloric Diet in Subjects with Obesity and High Fatty Liver Index" Nutrients 14, no. 24: 5353. https://doi.org/10.3390/nu14245353
APA StyleLuis, D. d., Primo, D., Izaola, O., & Lopez, J. J. (2022). Effects of a Short-Term Meal Replacement Hypocaloric Diet in Subjects with Obesity and High Fatty Liver Index. Nutrients, 14(24), 5353. https://doi.org/10.3390/nu14245353