The Association between Methionine Intake and Diabetes in Chinese Adults—Results from the China Health and Nutrition Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Design and Study Sample
2.2. Outcome Variable: Diabetes
2.3. Exposure Variable: Dietary Intake of Methionine
2.4. Covariates
2.5. Statistical Analyses
3. Results
3.1. Descriptive Results
3.2. Associations between Total, Animal, and Plant Methionine Intake and Diabetes
3.3. Subgroup Analyses of the Associations between Quartiles of Different Methionine Intakes and Diabetes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Y.; Wang, L.; He, J.; Bi, Y.; Li, M.; Wang, T.; Wang, L.; Jiang, Y.; Dai, M.; Lu, J.; et al. Prevalence and control of diabetes in Chinese adults. JAMA 2013, 310, 948–959. [Google Scholar] [CrossRef] [PubMed]
- Federation, I.D. IDF Diabetes Atlas. Available online: https://diabetesatlas.org/ (accessed on 5 November 2022).
- Wang, L.; Peng, W.; Zhao, Z.; Zhang, M.; Shi, Z.; Song, Z.; Zhang, X.; Li, C.; Huang, Z.; Sun, X.; et al. Prevalence and Treatment of Diabetes in China, 2013–2018. JAMA 2021, 326, 2498–2506. [Google Scholar] [CrossRef] [PubMed]
- Mohan, V.; Mathur, P.; Deepa, R.; Deepa, M.; Shukla, D.K.; Menon, G.R.; Anand, K.; Desai, N.G.; Joshi, P.P.; Mahanta, J.; et al. Urban rural differences in prevalence of self-reported diabetes in India--the WHO-ICMR Indian NCD risk factor surveillance. Diabetes Res. Clin. Pract. 2008, 80, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Danaei, G.; Singh, G.M.; Paciorek, C.J.; Lin, J.K.; Cowan, M.J.; Finucane, M.M.; Farzadfar, F.; Stevens, G.A.; Riley, L.M.; Lu, Y.; et al. The global cardiovascular risk transition: Associations of four metabolic risk factors with national income, urbanization, and Western diet in 1980 and 2008. Circulation 2013, 127, 1493–1502. [Google Scholar] [CrossRef] [PubMed]
- WHO. World Health Organization (WHO) Global Report on Diabetes. Available online: https://www.who.int/publications/i/item/9789241565257 (accessed on 5 November 2022).
- Castaño-Martinez, T.; Schumacher, F.; Schumacher, S.; Kochlik, B.; Weber, D.; Grune, T.; Biemann, R.; Mccan, A.; Abraham, K.; Weikert, C.; et al. Methionine restriction prevents onset of type 2 diabetes in NZO mice. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2019, 33, 7092–7102. [Google Scholar] [CrossRef]
- Brown-Borg, H.M.; Buffenstein, R. Cutting back on the essentials: Can manipulating intake of specific amino acids modulate health and lifespan? Ageing Res. Rev. 2017, 39, 87–95. [Google Scholar] [CrossRef]
- Stone, K.P.; Wanders, D.; Orgeron, M.; Cortez, C.C.; Gettys, T.W. Mechanisms of increased in vivo insulin sensitivity by dietary methionine restriction in mice. Diabetes 2014, 63, 3721–3733. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Stone, K.P.; Wanders, D.; Forney, L.A.; Gettys, T.W. The Origins, Evolution, and Future of Dietary Methionine Restriction. Annu. Rev. Nutr. 2022, 42, 201–226. [Google Scholar] [CrossRef]
- Malloy, V.L.; Krajcik, R.A.; Bailey, S.J.; Hristopoulos, G.; Plummer, J.D.; Orentreich, N. Methionine restriction decreases visceral fat mass and preserves insulin action in aging male Fischer 344 rats independent of energy restriction. Aging Cell 2006, 5, 305–314. [Google Scholar] [CrossRef]
- Wanders, D.; Burk, D.H.; Cortez, C.C.; Van, N.T.; Stone, K.P.; Baker, M.; Mendoza, T.; Mynatt, R.L.; Gettys, T.W. UCP1 is an essential mediator of the effects of methionine restriction on energy balance but not insulin sensitivity. FASEB J. 2015, 29, 2603–2615. [Google Scholar] [CrossRef]
- Wanders, D.; Stone, K.P.; Forney, L.A.; Cortez, C.C.; Dille, K.N.; Simon, J.; Xu, M.; Hotard, E.C.; Nikonorova, I.A.; Pettit, A.P.; et al. Role of GCN2-Independent Signaling Through a Noncanonical PERK/NRF2 Pathway in the Physiological Responses to Dietary Methionine Restriction. Diabetes 2016, 65, 1499–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forney, L.A.; Stone, K.P.; Gibson, A.N.; Vick, A.M.; Sims, L.C.; Fang, H.; Gettys, T.W. Sexually Dimorphic Effects of Dietary Methionine Restriction are Dependent on Age when the Diet is Introduced. Obesity 2020, 28, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Plaisance, E.P.; Greenway, F.L.; Boudreau, A.; Hill, K.L.; Johnson, W.D.; Krajcik, R.A.; Perrone, C.E.; Orentreich, N.; Cefalu, W.T.; Gettys, T.W. Dietary Methionine Restriction Increases Fat Oxidation in Obese Adults with Metabolic Syndrome. J. Clin. Endocr. Metab. 2011, 96, E836–E840. [Google Scholar] [CrossRef] [PubMed]
- Comerford, K.B.; Pasin, G. Emerging Evidence for the Importance of Dietary Protein Source on Glucoregulatory Markers and Type 2 Diabetes: Different Effects of Dairy, Meat, Fish, Egg, and Plant Protein Foods. Nutrients 2016, 8, 446. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Gao, X.; Chinchilli, V.M.; Sinha, R.; Muscat, J.; Winkels, R.; Richie, J.P. Association of dietary sulfur amino acid intake with mortality from diabetes and other causes. Eur. J. Nutr. 2022, 61, 289–298. [Google Scholar] [CrossRef]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [Green Version]
- Elango, R. Methionine Nutrition and Metabolism: Insights from Animal Studies to Inform Human Nutrition. J. Nutr. 2020, 150, 2518s–2523s. [Google Scholar] [CrossRef]
- China Health and Nutrition Survey. Chinese Center for Disease Control and Prevention. 2011. Available online: www.cpc.unc.edu/projects/china (accessed on 20 October 2022).
- Li, M.; Shi, Z.M. Association between Ultra-Processed Food Consumption and Diabetes in Chinese Adults—Results from the China Health and Nutrition Survey. Nutrients 2022, 14, 4241. [Google Scholar] [CrossRef]
- Chinese Diabetes Society. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition). Chin. J. Diabetes Mellit. 2021, 13, 315–409. [Google Scholar]
- Zhai, F.Y.; Du, S.F.; Wang, Z.H.; Zhang, J.G.; Du, W.W.; Popkin, B.M. Dynamics of the Chinese diet and the role of urbanicity, 1991-2011. Obes. Rev. 2014, 15 (Suppl. 1), 16–26. [Google Scholar] [CrossRef] [Green Version]
- Yao, M.J.; Ma, G.S.; Tucker, K.L.; Gao, S.J.; Fuss, P.; Roberts, S.B. Relative influence of diet and physical activity on body composition in urban Chinese adults. Am. J. Clin. Nutr. 2003, 77, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-X.; Wang, G.; Pan, X.C. China Food Composition Table 2004; Beijing Medical University Press: Beijing, China, 2005. [Google Scholar]
- Hu, F.B.; Stampfer, M.J.; Rimm, E.; Ascherio, A.; Rosner, B.A.; Spiegelman, D.; Willett, W.C. Dietary fat and coronary heart disease: A comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements. Am. J. Epidemiol. 1999, 149, 531–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, B.F. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults—Study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed. Environ. Sci. 2002, 15, 83–96. [Google Scholar] [PubMed]
- Huang, L.N.; Wang, Z.H.; Wang, H.J.; Zhao, L.Y.; Jiang, H.R.; Zhang, B.; Ding, G.Q. Nutrition transition and related health challenges over decades in China. Eur. J. Clin. Nutr. 2021, 75, 247–252. [Google Scholar] [CrossRef]
- Olsen, T.; Ovrebo, B.; Haj-Yasein, N.; Lee, S.; Svendsen, K.; Hjorth, M.; Bastani, N.E.; Norheim, F.; Drevon, C.A.; Refsum, H.; et al. Effects of dietary methionine and cysteine restriction on plasma biomarkers, serum fibroblast growth factor 21, and adipose tissue gene expression in women with overweight or obesity: A double-blind randomized controlled pilot study. J. Transl. Med. 2020, 18, 122. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.J.; Campos, B.C.; Peng, Y.L.; Glauben, T. Nutrition Transition with Accelerating Urbanization? Empirical Evidence from Rural China. Nutrients 2021, 13, 921. [Google Scholar] [CrossRef]
- Carbonneau, E.; Lamarche, B.; Provencher, V.; Desroches, S.; Robitaille, J.; Vohl, M.C.; Begin, C.; Belanger, M.; Couillard, C.; Pelletier, L.; et al. Associations Between Nutrition Knowledge and Overall Diet Quality: The Moderating Role of Sociodemographic Characteristics-Results From the PREDISE Study. Am. J. Health Promot. 2021, 35, 38–47. [Google Scholar] [CrossRef]
- Seiglie, J.A.; Marcus, M.E.; Ebert, C.; Prodromidis, N.; Geldsetzer, P.; Theilmann, M.; Agoudavi, K.; Andall-Brereton, G.; Aryal, K.K.; Bicaba, B.W.; et al. Diabetes Prevalence and Its Relationship With Education, Wealth, and BMI in 29 Low- and Middle-Income Countries. Diabetes Care 2020, 43, 767–775. [Google Scholar] [CrossRef]
- Ning, G. Can Educational Expansion Improve Income Inequality in China? Evidences from the CHNS 1997 and 2006 Data. Econ. Syst. 2010, 34, 397–412. [Google Scholar] [CrossRef]
- Jin, Y.L.; Liu, P.; Sun, J.F.; Wang, C.N.; Min, J.; Zhang, Y.F.; Wang, S.Y.; Wu, Y.N. Dietary exposure and risk assessment to lead of the population of Jiangsu province, China. Food Addit. Contam. Part A 2014, 31, 1187–1195. [Google Scholar]
- Leff, T.; Stemmer, P.; Tyrrell, J.; Jog, R. Diabetes and Exposure to Environmental Lead (Pb). Toxics 2018, 6, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.J.; Fang, A.P.; Yu, S.W.; Shen, X.; Li, K.J. Dietary Nonheme, Heme, and Total Iron Intake and the Risk of Diabetes in Adults: Results From the China Health and Nutrition Survey. Diabetes Care 2020, 43, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yuan, Y.C.; Guo, M.N.; Xin, Z.; Chen, G.J.; Bentley, A.R.; Hua, L.; Zheng, J.P.; Ekoru, K.; Yang, J.K. Incidence of Type 1 Diabetes May Be Underestimated in the Chinese Population: Evidence From 21.7 Million People Between 2007 and 2017. Diabetes Care 2021, 44, 2503–2509. [Google Scholar] [CrossRef] [PubMed]
Q1 | Q2 | Q3 | Q4 | p | |
---|---|---|---|---|---|
n = 3213 | n = 3212 | n = 3212 | n = 3212 | ||
Age, mean (years) | 46.5 (16.3) | 43.7 (14.5) | 41.8 (14.1) | 41.3 (13.6) | <0.001 |
Sex | <0.001 | ||||
Men | 1082 (33.7%) | 1413 (44.0%) | 1725 (53.7%) | 2069 (64.4%) | |
Women | 2131 (66.3%) | 1799 (56.0%) | 1487 (46.3%) | 1143 (35.6%) | |
Survey year | <0.001 | ||||
1997 | 1786 (55.6%) | 1961 (61.1%) | 1878 (58.5%) | 1608 (50.1%) | |
2000 | 579 (18.0%) | 494 (15.4%) | 490 (15.3%) | 513 (16.0%) | |
2004 | 420 (13.1%) | 335 (10.4%) | 357 (11.1%) | 470 (14.6%) | |
2006 | 194 (6.0%) | 161 (5.0%) | 170 (5.3%) | 209 (6.5%) | |
2009 | 234 (7.3%) | 261 (8.1%) | 317 (9.9%) | 412 (12.8%) | |
Socioeconomic factors | |||||
Education | <0.001 | ||||
Low | 1669 (57.5%) | 1420 (48.7%) | 1200 (41.0%) | 959 (32.4%) | |
Medium | 790 (27.2%) | 913 (31.3%) | 996 (34.1%) | 1042 (35.2%) | |
High | 443 (15.3%) | 580 (19.9%) | 728 (24.9%) | 962 (32.5%) | |
Urbanization | <0.001 | ||||
Low | 1425 (44.4%) | 1148 (35.7%) | 932 (29.0%) | 783 (24.4%) | |
Medium | 874 (27.2%) | 1017 (31.7%) | 999 (31.1%) | 895 (27.9%) | |
High | 914 (28.4%) | 1047 (32.6%) | 1281 (39.9%) | 1534 (47.8%) | |
Lifestyle factors | |||||
Smoking | <0.001 | ||||
Non smoker | 2427 (75.8%) | 2243 (69.9%) | 2068 (64.6%) | 1890 (58.9%) | |
Ex-smokers | 52 (1.6%) | 39 (1.2%) | 52 (1.6%) | 49 (1.5%) | |
Current smokers | 723 (22.6%) | 927 (28.9%) | 1081 (33.8%) | 1271 (39.6%) | |
Alcohol drinking | 778 (24.7%) | 1014 (32.2%) | 1216 (38.5%) | 1466 (46.6%) | <0.001 |
Physical activity, mean (MET-hrs/week) | 134.2 (117.2) | 143.0 (116.3) | 145.2 (117.5) | 139.6 (116.7) | 0.001 |
Weight status | |||||
BMI (kg/m2), mean (SD) | 22.5 (3.3) | 22.7 (3.3) | 22.6 (3.1) | 23.0 (3.2) | <0.001 |
BMI ≥ 24 (kg/m2) | 847 (29.0%) | 909 (30.9%) | 895 (30.1%) | 1041 (35.0%) | <0.001 |
Dietary intakes | |||||
Energy intake (kcal/d) | 1757.8 (433.6) | 2152.9 (469.2) | 2405.7 (522.2) | 2735.5 (677.0) | <0.001 |
Fat intake (g/d) | 48.0 (27.2) | 60.8 (29.8) | 71.0 (32.0) | 91.0 (41.1) | <0.001 |
Protein intake (g/d) | 46.9 (10.7) | 61.7 (11.5) | 73.6 (13.9) | 92.4 (22.4) | <0.001 |
Carbohydrate intake (g/d) | 282.1 (87.4) | 336.4 (102.5) | 363.6 (119.2) | 378.4 (139.6) | <0.001 |
Cumulative methionine intake (mg/d) | 894.7 (152.6) | 1236.8 (81.8) | 1540.2 (100.3) | 2156.3 (455.8) | <0.001 |
Cumulative animal methionine intake (mg/d) | 187.3 (177.6) | 368.3 (238.8) | 578.9 (302.6) | 1075.9 (568.6) | <0.001 |
Cumulative plant methionine intake (mg/d) | 707.3 (191.6) | 868.5 (234.3) | 961.4 (294.6) | 1080.4 (433.6) | <0.001 |
Methionine intake (mg/d) | 894.7 (152.6) | 1236.8 (81.8) | 1540.2 (100.3) | 2156.3 (455.8) | <0.001 |
Animal methionine intake (mg/d) | 187.3 (177.6) | 368.3 (238.8) | 578.9 (302.6) | 1075.9 (568.6) | <0.001 |
Plant methionine intake (mg/d) | 707.3 (191.6) | 868.5 (234.3) | 961.4 (294.6) | 1080.4 (433.6) | <0.001 |
Intake of fruit (g/d) | 14.9 (53.5) | 18.6 (85.6) | 25.8 (80.8) | 35.3 (94.6) | <0.001 |
Intake of fresh vegetable (g/d) | 235.7 (148.9) | 267.1 (156.0) | 291.0 (172.7) | 326.9 (204.7) | <0.001 |
Intake of meat (g/d) | 28.7 (35.7) | 57.7 (52.7) | 88.5 (69.7) | 153.9 (119.8) | <0.001 |
Disease history | |||||
Hypertension | 517 (17.5%) | 466 (15.7%) | 417 (13.9%) | 493 (16.5%) | 0.002 |
Diabetes | 57 (1.8%) | 54 (1.7%) | 49 (1.5%) | 106 (3.3%) | <0.001 |
Q1 | Q2 | Q3 | Q4 | p trend | |
---|---|---|---|---|---|
Total methionine | |||||
Model 1 | 1.00 | 1.49 (1.21–1.82) | 1.72 (1.37–2.15) | 2.53 (1.97–3.23) | <0.001 |
Model 2 | 1.00 | 1.32 (1.06–1.66) | 1.27 (0.99–1.63) | 1.84 (1.40–2.43) | <0.001 |
Model 3 | 1.00 | 1.19 (0.95–1.49) | 1.09 (0.85–1.40) | 1.49 (1.12–1.98) | 0.009 |
Animal methionine | |||||
Model 1 | 1.00 | 1.27 (1.02–1.60) | 2.19 (1.75–2.75) | 2.68 (2.11–3.41) | <0.001 |
Model 2 | 1.00 | 0.98 (0.76–1.26) | 1.33 (1.01–1.75) | 1.52 (1.13–2.04) | <0.001 |
Model 3 | 1.00 | 0.93 (0.72–1.21) | 1.26 (0.95–1.67) | 1.37 (0.99–1.89) | 0.014 |
Plant methionine | |||||
Model 1 | 1.00 | 1.02 (0.84–1.23) | 0.92 (0.74–1.15) | 0.83 (0.64–1.06) | 0.107 |
Model 2 | 1.00 | 1.12 (0.91–1.38) | 1.26 (0.99–1.60) | 1.52 (1.14–2.02) | 0.004 |
Model 3 | 1.00 | 0.99 (0.81–1.22) | 1.11 (0.88–1.41) | 1.28 (0.96–1.70) | 0.079 |
Q1 | Q2 | Q3 | Q4 | p trend | p interaction | |
---|---|---|---|---|---|---|
Age (in years) | 0.896 | |||||
<60 years | 1.00 | 1.09 (0.78–1.53) | 1.44 (1.00–2.06) | 1.56 (1.04–2.35) | 0.015 | |
≥60 years | 1.00 | 0.78 (0.52–1.17) | 1.00 (0.64–1.56) | 1.16 (0.69–1.96) | 0.331 | |
Sex | 0.087 | |||||
Men | 1.00 | 0.71 (0.47–1.07) | 1.07 (0.70–1.66) | 1.28 (0.79–2.05) | 0.056 | |
Women | 1.00 | 1.13 (0.81–1.57) | 1.46 (1.00–2.12) | 1.42 (0.91–2.23) | 0.070 | |
Education | 0.809 | |||||
Low | 1.00 | 0.82 (0.60–1.12) | 0.98 (0.68–1.41) | 1.07 (0.69–1.66) | 0.622 | |
Medium | 1.00 | 1.28 (0.73–2.24) | 2.03 (1.13–3.67) | 1.98 (1.02–3.83) | 0.023 | |
High | 1.00 | 0.85 (0.37–1.96) | 1.25 (0.54–2.91) | 1.38 (0.57–3.34) | 0.182 | |
Income | 0.960 | |||||
Low | 1.00 | 0.96 (0.66–1.40) | 1.15 (0.73–1.80) | 1.11 (0.63–1.96) | 0.583 | |
Medium | 1.00 | 0.81 (0.53–1.23) | 0.99 (0.63–1.57) | 1.08 (0.63–1.86) | 0.513 | |
High | 1.00 | 1.02 (0.58–1.79) | 1.75 (0.99–3.11) | 1.98 (1.07–3.67) | 0.003 | |
Urbanization | 0.107 | |||||
Low | 1.00 | 0.71 (0.45–1.12) | 0.85 (0.47–1.53) | 1.06 (0.51–2.21) | 0.855 | |
Medium | 1.00 | 0.98 (0.65–1.46) | 1.54 (0.98–2.41) | 2.14 (1.26–3.65) | 0.002 | |
High | 1.00 | 0.82 (0.50–1.34) | 1.01 (0.62–1.67) | 1.04 (0.61–1.77) | 0.444 | |
Smoking | 0.146 | |||||
Non smoker | 1.00 | 1.16 (0.86–1.56) | 1.47 (1.06–2.06) | 1.61 (1.09–2.37) | 0.009 | |
Current smokers | 1.00 | 0.54 (0.33–0.90) | 0.86 (0.51–1.44) | 1.02 (0.57–1.82) | 0.358 | |
Hypertension | 0.746 | |||||
No | 1.00 | 0.93 (0.66–1.30) | 1.28 (0.89–1.85) | 1.50 (0.99–2.27) | 0.016 | |
Yes | 1.00 | 0.94 (0.64–1.38) | 1.26 (0.83–1.92) | 1.30 (0.80–2.09) | 0.148 | |
Overweight | 0.769 | |||||
No | 1.00 | 0.85 (0.60–1.20) | 1.08 (0.73–1.58) | 1.05 (0.67–1.64) | 0.547 | |
Yes | 1.00 | 1.00 (0.68–1.48) | 1.50 (0.98–2.28) | 1.80 (1.12–2.89) | 0.003 |
Q1 | Q2 | Q3 | Q4 | p trend | p interaction | |
---|---|---|---|---|---|---|
Age (in years) | 0.776 | |||||
<60 years | 1.00 | 1.00 (0.75–1.32) | 0.96 (0.70–1.31) | 1.13 (0.79–1.62) | 0.614 | |
≥60 years | 1.00 | 0.86 (0.63–1.17) | 1.08 (0.74–1.57) | 1.10 (0.68–1.80) | 0.653 | |
Sex | 0.725 | |||||
Men | 1.00 | 1.08 (0.77–1.53) | 1.17 (0.81–1.68) | 1.30 (0.86–1.96) | 0.203 | |
Women | 1.00 | 0.94 (0.72–1.22) | 1.06 (0.76–1.46) | 1.31 (0.87–1.99) | 0.299 | |
Education | 0.576 | |||||
Low | 1.00 | 0.85 (0.64–1.15) | 1.18 (0.85–1.63) | 1.32 (0.89–1.95) | 0.106 | |
Medium | 1.00 | 1.14 (0.76–1.72) | 0.91 (0.57–1.46) | 0.98 (0.56–1.72) | 0.733 | |
High | 1.00 | 1.01 (0.66–1.55) | 0.96 (0.57–1.62) | 1.37 (0.71–2.63) | 0.538 | |
Income | 0.155 | |||||
Low | 1.00 | 0.95 (0.63–1.41) | 1.38 (0.91–2.10) | 1.42 (0.87–2.33) | 0.076 | |
Medium | 1.00 | 1.28 (0.88–1.85) | 1.02 (0.67–1.54) | 1.04 (0.64–1.70) | 0.910 | |
High | 1.00 | 0.94 (0.68–1.30) | 1.06 (0.71–1.56) | 1.43 (0.88–2.33) | 0.231 | |
Urbanization | 0.064 | |||||
Low | 1.00 | 1.28 (0.66–2.49) | 1.52 (0.80–2.89) | 2.06 (1.05–4.05) | 0.023 | |
Medium | 1.00 | 1.07 (0.72–1.59) | 1.08 (0.70–1.66) | 1.00 (0.61–1.65) | 0.974 | |
High | 1.00 | 0.96 (0.73–1.26) | 1.07 (0.76–1.51) | 1.25 (0.79–1.97) | 0.407 | |
Smoking | 0.376 | |||||
Non smoker | 1.00 | 0.95 (0.75–1.21) | 1.01 (0.76–1.35) | 1.28 (0.90–1.81) | 0.258 | |
Current smokers | 1.00 | 1.08 (0.70–1.65) | 1.21 (0.77–1.89) | 1.22 (0.73–2.04) | 0.391 | |
Hypertension | 0.666 | |||||
No | 1.00 | 1.01 (0.77–1.34) | 1.10 (0.81–1.50) | 1.35 (0.93–1.95) | 0.131 | |
Yes | 1.00 | 0.95 (0.71–1.28) | 1.00 (0.71–1.41) | 0.99 (0.65–1.52) | 1.000 | |
Overweight | 0.487 | |||||
No | 1.00 | 0.93 (0.70–1.24) | 1.16 (0.83–1.60) | 1.17 (0.79–1.75) | 0.304 | |
Yes | 1.00 | 1.02 (0.76–1.37) | 0.96 (0.68–1.35) | 1.21 (0.80–1.81) | 0.529 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Chen, Y.; Shu, J.; Li, Z.; Yu, D.; Peng, W.; Yan, A.F.; Wang, Y.; Shi, Z. The Association between Methionine Intake and Diabetes in Chinese Adults—Results from the China Health and Nutrition Survey. Nutrients 2023, 15, 116. https://doi.org/10.3390/nu15010116
Sun X, Chen Y, Shu J, Li Z, Yu D, Peng W, Yan AF, Wang Y, Shi Z. The Association between Methionine Intake and Diabetes in Chinese Adults—Results from the China Health and Nutrition Survey. Nutrients. 2023; 15(1):116. https://doi.org/10.3390/nu15010116
Chicago/Turabian StyleSun, Xiaomin, Yingxin Chen, Jing Shu, Zhongying Li, Dongmei Yu, Wen Peng, Alice F. Yan, Youfa Wang, and Zumin Shi. 2023. "The Association between Methionine Intake and Diabetes in Chinese Adults—Results from the China Health and Nutrition Survey" Nutrients 15, no. 1: 116. https://doi.org/10.3390/nu15010116
APA StyleSun, X., Chen, Y., Shu, J., Li, Z., Yu, D., Peng, W., Yan, A. F., Wang, Y., & Shi, Z. (2023). The Association between Methionine Intake and Diabetes in Chinese Adults—Results from the China Health and Nutrition Survey. Nutrients, 15(1), 116. https://doi.org/10.3390/nu15010116