Fresh-Cut Eruca Sativa Treated with Plasma Activated Water (PAW): Evaluation of Antioxidant Capacity, Polyphenolic Profile and Redox Status in Caco2 Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Raw Material, Handling, and Storage
2.3. Plasma Activated Water (PAW) Generation, Sample Preparation, and Plasma Treatments
2.4. Total Phenolic Content and Antioxidant Activity
2.5. Polyphenols Extract Preparation for UHPLC-MS/MS Analysis and Cell Line Experiments
2.6. UHPLC-ESI-MS/MS Analysis
2.7. Cell Culture and Treatments
2.7.1. Assessment of Cell Viability
2.7.2. Assessment of Reactive Oxygen Species (ROS)
2.7.3. Assessment of NO
2.8. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Activity of Rocket Salad upon Exposure to PAW
3.2. Qualitative and Quantitative Analysis of E. sativa Extracts
3.3. Effect of PAW-Rocket Salad Extract on Cell Viability
3.4. Effect of PAW-Rocket Salad Extract on Cellular Redox Homeostasis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bell, L.; Wagstaff, C. Glucosinolates, myrosinase hydrolysis products, and flavonols found in rocket (Eruca sativa and Diplotaxis tenuifolia). J. Agric. Food Chem. 2014, 62, 4481–4492. [Google Scholar] [CrossRef] [PubMed]
- Jideani, A.I.O.; Silungwe, H.; Takalani, T.; Omolola, A.O.; Udeh, H.O.; Anyasi, T.A. Antioxidant-rich natural fruit and vegetable products and human health. Int. J. Food Prop. 2021, 24, 41–67. [Google Scholar] [CrossRef]
- Shukla, M.K.; Singh, S.K.; Pandey, S.; Gupta, P.K.; Choudhary, A.; Jindal, D.K.; Dua, K.; Kumar, D. Potential Immunomodulatory Activities of Plant Products. South Afr. J. Bot. 2022, 149, 937–943. [Google Scholar] [CrossRef]
- Yoon, J.H.; Lee, S.Y. Review: Comparison of the effectiveness of decontaminating strategies for fresh fruits and vegetables and related limitations. Crit. Rev. Food Sci. Nutr. 2018, 58, 3189–3208. [Google Scholar] [CrossRef]
- Hernández-Torres, C.J.; Reyes-Acosta, Y.K.; Chávez-González, M.L.; Dávila-Medina, M.D.; Kumar Verma, D.; Martínez-Hernández, J.L.; Narro-Céspedes, R.I.; Aguilar, C.N. Recent trends and technological development in plasma as an emerging and promising technology for food biosystems. Saudi J. Biol. Sci. 2022, 29, 1957–1980. [Google Scholar] [CrossRef]
- Thirumdas, R.; Kothakota, A.; Annapure, U.; Siliveru, K.; Blundell, R.; Gatt, R.; Valdramidis, V.P. Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci. Technol. 2018, 77, 21–31. [Google Scholar] [CrossRef]
- Kaushik, N.K.; Ghimire, B.; Li, Y.; Adhikari, M.; Veerana, M.; Kaushik, N.; Jha, N.; Adhikari, B.; Lee, S.J.; Masur, K.; et al. Biological and medical applications of plasmaactivated. Biol. Chem. 2018, 400, 39–62. [Google Scholar] [CrossRef]
- Sajib, S.A.; Billah, M.; Mahmud, S.; Miah, M.; Hossain, F.; Omar, F.B.; Roy, N.C.; Hoque, K.M.F.; Talukder, M.R.; Kabir, A.H.; et al. Plasma activated water: The next generation eco-friendly stimulant for enhancing plant seed germination, vigor and increased enzyme activity, a study on black gram (Vigna mungo L.). Plasma Chem. Plasma Process 2020, 40, 119–143. [Google Scholar] [CrossRef]
- Baier, M.; Görgen, M.; Ehlbeck, J.; Knorr, D.; Herppich, W.B.; Schlüter, O. Non-thermal atmospheric pressure plasma: Screening for gentle process conditions and antibacterial efficiency on perishable fresh produce. Innov. Food Sci. Emerg. Technol. 2014, 22, 147–157. [Google Scholar] [CrossRef]
- Giannoglou, M.; Stergiou, P.; Dimitrakellis, P.; Gogolides, E.; Stoforos, N.G.; Katsaros, G. Effect of Cold Atmospheric Plasma processing on quality and shelf-life of ready-to-eat rocket leafy salad. Innov. Food Sci. Emerg. Technol. 2020, 66, 102502. [Google Scholar] [CrossRef]
- Hertrich, S.M.; Boyd, G.; Sites, J.; Niemira, B.A. Cold plasma inactivation of salmonella in prepackaged, mixed salads is influenced by cross-contamination sequence. J. Food Prot. 2017, 80, 2132–2136. [Google Scholar] [CrossRef] [PubMed]
- Silvetti, T.; Pedroni, M.; Brasca, M.; Vassallo, E.; Cocetta, G.; Ferrante, A.; De Noni, I.; Piazza, L.; Morandi, S. Assessment of possible application of an atmospheric pressure plasma jet for shelf-life extension of fresh-cut salad. Foods 2021, 10, 513. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, C.; Jiang, A.; Sun, X.; Guan, Q.; Hu, W. Effects of plasma-activated water on microbial growth and storage quality of fresh-cut apple. Innov. Food Sci. Emerg. Technol. 2020, 59, 102256. [Google Scholar] [CrossRef]
- Chen, C.; Liu, C.; Jiang, A.; Guan, Q.; Sun, X.; Liu, S.; Hao, K.; Hu, W. The Effects of Cold Plasma-Activated Water Treatment on the Microbial Growth and Antioxidant Properties of Fresh-Cut Pears. Food Bioproc. Technol. 2019, 12, 1842–1851. [Google Scholar] [CrossRef]
- Xu, Y.; Tian, Y.; Ma, R.; Liu, Q.; Zhang, J. Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chem. 2016, 197, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Laurita, R.; Gozzi, G.; Tappi, S.; Capelli, F.; Bisag, A.; Laghi, G.; Gherardi, M.; Cellini, B.; Abouelenein, D.; Vittori, S.; et al. Effect of plasma activated water (PAW) on rocket leaves decontamination and nutritional value. Innov. Food Sci. Emerg. Technol. 2021, 73, 102805. [Google Scholar] [CrossRef]
- Sarangapani, C.; O’Toole, G.; Cullen, P.J.; Bourke, P. Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innov. Food Sci. Emerg. Technol. 2017, 44, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Tappi, S.; Ramazzina, I.; Rizzi, F.; Sacchetti, G.; Ragni, L.; Rocculi, P. Effect of plasma exposure time on the polyphenolic profile and antioxidant activity of fresh-cut apples. Appl. Sci. 2018, 8, 1939. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Liu, X.; Ma, Y.; Xiang, Q. Effects of plasma-activated water treatment on seed germination and growth of mung bean sprouts. J. Taibah Univ. Sci. 2020, 14, 823–830. [Google Scholar] [CrossRef]
- Ramazzina, I.; Berardinelli, A.; Rizzi, F.; Tappi, S.; Ragni, L.; Sacchetti, G.; Rocculi, P. Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biol. Technol. 2015, 107, 55–65. [Google Scholar] [CrossRef]
- Pasini, F.; Verardo, V.; Caboni, M.F.; D’Antuono, L.F. Determination of glucosinolates and phenolic compounds in rocket salad by HPLC-DAD–MS: Evaluation of Eruca sativa Mill. and Diplotaxis tenuifolia L. genetic resources. Food Chem. 2012, 133, 1025–1033. [Google Scholar] [CrossRef]
- MassBank of North America. Available online: https://mona.fiehnlab.ucdavis.edu/ (accessed on 18 February 2022).
- ReSpect for Phytochemicals. Available online: http://spectra.psc.riken.jp/menta.cgi/respect/index (accessed on 18 February 2022).
- Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic compounds in Brassica vegetables. Molecules 2011, 16, 251–280. [Google Scholar] [CrossRef] [PubMed]
- Ramazzina, I.; Tappi, S.; Rocculi, P.; Sacchetti, G.; Berardinelli, A.; Marseglia, A.; Rizzi, F. Effect of Cold Plasma Treatment on the Functional Properties of Fresh-Cut Apples. J. Agric. Food Chem. 2016, 64, 8010–8018. [Google Scholar] [CrossRef] [PubMed]
- Bonasia, A.; Conversa, G.; Lazzizera, C.; Elia, A. Post-harvest performance of ready-to-eat wild rocket salad as affected by growing period, soilless cultivation system and genotype. Postharvest Biol. Technol. 2019, 156, 110909. [Google Scholar] [CrossRef]
- Alothman, M.; Kaur, B.; Fazilah, A.; Bhat, R.; Karim, A.A. Ozone-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innov. Food Sci. Emerg. Technol. 2010, 11, 666–671. [Google Scholar] [CrossRef]
- Perinban, S.; Orsat, V.; Lyew, D.; Raghavan, V. Effect of plasma activated water on Escherichia coli disinfection and quality of kale and spinach. Food Chem. 2022, 397, 133793. [Google Scholar] [CrossRef]
- Sut, S.; Boschiero, I.; Solana, M.; Malagoli, M.; Bertucco, A.; Dall’Acqua, S. Supercritical CO2 Extraction of Eruca sativa Using Cosolvents: Phytochemical Composition by LC-MS Analysis. Molecules 2018, 23, 3240. [Google Scholar] [CrossRef] [Green Version]
- Bell, L.; Oruna-Concha, M.J.; Wagstaff, C. Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC-MS: Highlighting the potential for improving nutritional value of rocket crops. Food Chem. 2015, 172, 852–861. [Google Scholar] [CrossRef] [Green Version]
- Connolly, E.L.; Sim, M.; Travica, N.; Marx, W.; Beasy, G.; Lynch, G.S.; Bondonno, C.P.; Lewis, J.R.; Hodgson, J.M.; Blekkenhorst, L.C. Glucosinolates from Cruciferous Vegetables and Their Potential Role in Chronic Disease: Investigating the Preclinical and Clinical Evidence. Front. Pharmacol. 2021, 12, 767975. [Google Scholar] [CrossRef]
- Russo, M.; Spagnuolo, C.; Russo, G.L.; Skalicka-Woźniak, K.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment. Crit. Rev. Food Sci. Nutr. 2018, 58, 1391–1405. [Google Scholar] [CrossRef]
- Soundararajan, P.; Kim, J.S. Anti-carcinogenic glucosinolates in cruciferous vegetables and their antagonistic effects on prevention of cancers. Molecules 2018, 23, 2983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abouelenein, D.; Angeloni, S.; Caprioli, G.; Genovese, J.; Mustafa, A.M.; Nzekoue, F.K.; Petrelli, R.; Rocculi, P.; Sagratini, G.; Tappi, S.; et al. Effect of Plasma Activated Water on Selected Chemical Compounds of Rocket-Salad (Eruca sativa Mill.) Leaves. Molecules 2021, 26, 7691. [Google Scholar] [CrossRef] [PubMed]
- Cocetta, G.; Mishra, S.; Raffaelli, A.; Ferrante, A. Effect of heat root stress and high salinity on glucosinolates metabolism in wild rocket. J. Plant Physiol. 2018, 231, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Azzini, E.; Lazzè, M.C.; Raguzzini, A.; Pizzala, R.; Maiani, G. Italian wild rocket [Diplotaxis tenuifolia (L.) DC.]: Influence of agricultural practices on antioxidant molecules and on cytotoxicity and antiproliferative effects. Agriculture 2013, 3, 285–298. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Choi, Y.E.; Kim, H.S. Eruca sativa and its flavonoid components, quercetin and isorhamnetin, improveskin barrier function by activation of peroxisome proliferator-activated receptor (PPAR)-α and suppression of inflammatory cytokines. Phytother. Res. 2014, 28, 1359–1366. [Google Scholar] [CrossRef]
- Radziejewska-Kubzdela, E.; Olejnik, A.; Biegańska-Marecik, R. Effect of pretreatment on bioactive compounds in wild rocket juice. J. Food Sci. Technol. 2019, 56, 5234–5242. [Google Scholar] [CrossRef] [Green Version]
- Azarenko, O.; Jordan, M.A.; Wilson, L. Erucin, the major isothiocyanate in Arugula (Eruca sativa), inhibits proliferation of MCF7 tumor cells by suppressing microtubule dynamics. PLoS ONE 2014, 9, e100599. [Google Scholar] [CrossRef] [Green Version]
- Azarenko, O.; Okouneva, T.; Singletary, K.W.; Jordan, M.A.; Wilson, L. Suppression of microtubule dynamic instability and turnover in MCF7 breast cancer cells by sulforaphane. Carcinogenesis 2008, 29, 2360–2368. [Google Scholar] [CrossRef] [Green Version]
- Melchini, A.; Costa, C.; Traka, M.; Miceli, N.; Mithen, R.; De Pasquale, R.; Trovato, A. Erucin, a new promising cancer chemopreventive agent from rocket salads, shows anti-proliferative activity on human lung carcinoma A549 cells. Food Chem. Toxicol. 2009, 47, 1430–1436. [Google Scholar] [CrossRef]
- He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell. Physiol. Biochem. 2017, 44, 532–553. [Google Scholar] [CrossRef]
- Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef] [PubMed]
- Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012, 33, 829–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, K.; Yu, S.; Kitts, D.D. The role of nitric oxide in regulating intestinal redox status and intestinal epithelial cell functionality. Int. J. Mol. Sci. 2019, 20, 1755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taviano, M.F.; Melchini, A.; Filocamo, A.; Costa, C.; Catania, S.; Raciti, R.; Saha, S.; Needs, P.; Bisignano, G.G.; Miceli, N. Contribution of the Glucosinolate Fraction to the Overall Antioxidant Potential, Cytoprotection against Oxidative Insult and Antimicrobial Activity of Eruca sativa Mill. Leaves Extract. Pharmacogn. Mag. 2017, 13, 738–743. [Google Scholar] [CrossRef]
- Jin, J.; Koroleva, O.A.; Gibson, T.; Swanston, J.; Maganj, J.; Zhang, Y.A.N.; Rowland, I.R.; Wagstaff, C. Analysis of phytochemical composition and chemoprotective capacity of rocket (Eruca sativa and Diplotaxis tenuifolia) leafy salad following cultivation in different environments. J. Agric. Food Chem. 2009, 57, 5227–5234. [Google Scholar] [CrossRef]
- Lamy, E.; Schröder, J.; Paulus, S.; Brenk, P.; Stahl, T.; Mersch-Sundermann, V. Antigenotoxic properties of Eruca sativa (rocket plant), erucin and erysolin in human hepatoma (HepG2) cells towards benzo(a)pyrene and their mode of action. Food Chem. Toxicol. 2008, 46, 2415–2421. [Google Scholar] [CrossRef]
- Jacob, C.; Jamier, V.; Ba, L.A. Redox active secondary metabolites. Curr. Opin. Chem. Biol. 2011, 15, 149–155. [Google Scholar] [CrossRef]
Sample | Time (min) | RSAABTS (µmol TE g−1 DM) | RSADPPH (µmol TE g−1 DM) | FRAP (µmol Fe2+ g−1 DM) | TPC (µmol GAE g−1 DM) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hydrophilic Extract | Amphiphilic Extract | Amphiphilic Extract | Amphiphilic Extract | Hydrophilic Extract | Amphiphilic Extract | ||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
UT | - | 44 b | 4 | 50 a,b,c | 6 | 29 a | 7 | 39 a,b,c | 6 | 22 b | 2 | 26 a | 5 |
CL | - | 54 b | 4 | 42 a,b | 11 | 34.4 a,b,c | 0.8 | 53 c | 9 | 25 b | 1 | 62 c | 6 |
PAW | 2 | 31 a | 3 | 65 c | 3 | 42 c | 1 | 32 a | 2 | 14 a | 1 | 34 a,b | 5 |
PAW | 5 | 43 a,b | 4 | 44 a,b | 1 | 27 a | 2 | 36 a,b | 5 | 21 b | 2 | 29 a | 3 |
PAW | 10 | 53 b | 7 | 56 b,c | 6 | 40 b,c | 2 | 45 a,b,c | 4 | 24 b | 2 | 32 a | 5 |
PAW | 20 | 51 b | 4 | 39 a | 3 | 31 a,b | 3 | 47 b,c | 2 | 19 a,b | 3 | 46 b | 6 |
Peak | Compound 1 | RT (min) | [M-H]− (m/z) | MS/MS Ions (m/z) 2 | References |
---|---|---|---|---|---|
1 | glucoraphanin | 1.11 | 436 | 97, 96, 178, 194, 227, 259, 275 | [29] |
2 | glucoerucin | 5.64 | 420 | 97, 96, 75, 259, 275, 178, 227, 242,195 | [29] |
3 | isorhamnetin-o-hexoside | 7.15 | 477 | 314, 315, 285, 271, 299, 300, 243 | [22] |
4 | kaempferol-o-dihexoside | 6.45 | 609 | 446, 284, 285, 283, 483, 327 | [21] |
5 | quercetin-o-dihexoside | 6.40 | 625 | 463, 301, 300 | [23] |
6 | isorhamnetin-o-dihexoside i | 6.47 | 639 | 315, 313, 476, 477 | [21] |
7 | isorhamnetin-o-dihexoside ii | 7.03 | 639 | 315 | [21] |
8 | quercetin-o-trihexoside | 6.11 | 787 | 463, 625, 301 | [21] |
9 | quercetin-o-dihexoside-o-feruloyl-o-hexoside i | 6.74 | 963 | 801, 639, 463, 301, 625 | [21] |
10 | quercetin-o-dihexoside-o-feruloyl-o-hexoside ii | 7.03 | 963 | 801, 639, 463 | [21] |
11 | quercetin-o-dihexoside-o-sinapoyl-o-hexoside | 6.66 | 993 | 831, 626, 670, 463, 301, 669 | [21] |
12 | kaempferol-o-hexoside | 7.06 | 447 | 284, 285, 255, 257 | [22] |
Compounds | UT | PAW-20 | Sig. 1 | ||
---|---|---|---|---|---|
Mean (µmol/L) | SD | Mean (µmol/L) | SD | ||
kaempferol-o-hexoside | n.q. | - | n.d. | - | - |
isorhamnetin-o-hexoside | 78 | 6 | 13 | 4 | * |
kaempferol-o-dihexoside | 126 | 6 | 118 | 19 | - |
quercetin-o-dihexoside | 101 | 13 | 73 | 3 | * |
isorhamnetin-dihexoside i | 194 | 18 | 223 | 22 | - |
isorhamnetin-dihexoside ii | n.q. | - | n.q. | - | - |
quercetin-o-trihexoside | 845 | 69 | 749 | 54 | - |
quercetin-o-dihexoside-o-feruloyl-o-hexoside i | 21 | 3 | 22 | 8 | - |
quercetin-o-dihexoside-o-feruloyl-o-hexoside ii | n.q. | - | n.q. | - | - |
quercetin-o-dihexoside-o-sinapoyl-o-hexoside | 833 | 105 | 838 | 154 | - |
total polyphenols | 2198 | 219 | 2036 | 264 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramazzina, I.; Lolli, V.; Lacey, K.; Tappi, S.; Rocculi, P.; Rinaldi, M. Fresh-Cut Eruca Sativa Treated with Plasma Activated Water (PAW): Evaluation of Antioxidant Capacity, Polyphenolic Profile and Redox Status in Caco2 Cells. Nutrients 2022, 14, 5337. https://doi.org/10.3390/nu14245337
Ramazzina I, Lolli V, Lacey K, Tappi S, Rocculi P, Rinaldi M. Fresh-Cut Eruca Sativa Treated with Plasma Activated Water (PAW): Evaluation of Antioxidant Capacity, Polyphenolic Profile and Redox Status in Caco2 Cells. Nutrients. 2022; 14(24):5337. https://doi.org/10.3390/nu14245337
Chicago/Turabian StyleRamazzina, Ileana, Veronica Lolli, Karen Lacey, Silvia Tappi, Pietro Rocculi, and Massimiliano Rinaldi. 2022. "Fresh-Cut Eruca Sativa Treated with Plasma Activated Water (PAW): Evaluation of Antioxidant Capacity, Polyphenolic Profile and Redox Status in Caco2 Cells" Nutrients 14, no. 24: 5337. https://doi.org/10.3390/nu14245337
APA StyleRamazzina, I., Lolli, V., Lacey, K., Tappi, S., Rocculi, P., & Rinaldi, M. (2022). Fresh-Cut Eruca Sativa Treated with Plasma Activated Water (PAW): Evaluation of Antioxidant Capacity, Polyphenolic Profile and Redox Status in Caco2 Cells. Nutrients, 14(24), 5337. https://doi.org/10.3390/nu14245337