Effects of Fermentation Time and Type of Tea on the Content of Micronutrients in Kombucha Fermented Tea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of Kombucha
2.3. Fermentation of Kombucha
2.4. Determining Elements Content in Infusions
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nyhan, L.M.; Lynch, K.M.; Sahin, A.W.; Arendt, E.K. Advances in Kombucha Tea Fermentation: A Review. Appl. Microbiol. 2022, 2, 73–103. [Google Scholar] [CrossRef]
- Jayabalan, R.; Malini, K.; Sathishkumar, M.; Swaminathan, K.; Yun, S.-E. Biochemical Characteristics of Tea Fungus Produced during Kombucha Fermentation. Food Sci. Biotechnol. 2010, 19, 843–847. [Google Scholar] [CrossRef]
- Jayabalan, R.; Malbaša, R.V.; Lončar, E.S.; Vitas, J.S.; Sathishkumar, M. A Review on Kombucha Tea—Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. Compr. Rev. Food Sci. Food Saf. 2014, 13, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.-P.; Taillandier, P. Understanding Kombucha Tea Fermentation: A Review. J. Food Sci. 2018, 83, 580–588. [Google Scholar] [CrossRef]
- Chakravorty, S.; Bhattacharya, S.; Chatzinotas, A.; Chakraborty, W.; Bhattacharya, D.; Gachhui, R. Kombucha Tea Fermentation: Microbial and Biochemical Dynamics. Int. J. Food Microbiol. 2016, 220, 63–72. [Google Scholar] [CrossRef]
- Gaggìa, F.; Baffoni, L.; Galiano, M.; Nielsen, D.S.; Jakobsen, R.R.; Castro-Mejía, J.L.; Bosi, S.; Truzzi, F.; Musumeci, F.; Dinelli, G.; et al. Kombucha Beverage from Green, Black and Rooibos Teas: A Comparative Study Looking at Microbiology, Chemistry and Antioxidant Activity. Nutrients 2019, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Jakubczyk, K.; Kałduńska, J.; Kochman, J.; Janda, K. Chemical Profile and Antioxidant Activity of the Kombucha Beverage Derived from White, Green, Black and Red Tea. Antioxidants 2020, 9, 447. [Google Scholar] [CrossRef]
- Antolak, H.; Piechota, D.; Kucharska, A. Kombucha Tea—A Double Power of Bioactive Compounds from Tea and Symbiotic Culture of Bacteria and Yeasts (SCOBY). Antioxidants 2021, 10, 1541. [Google Scholar] [CrossRef]
- Greenwalt, C.J.; Steinkraus, K.H.; Ledford, R.A. Kombucha, the Fermented Tea: Microbiology, Composition, and Claimed Health Effects. J. Food Prot. 2000, 63, 976–981. [Google Scholar] [CrossRef]
- Malbaša, R.; Lončar, E.; Djurić, M. Comparison of the Products of Kombucha Fermentation on Sucrose and Molasses. Food Chem. 2008, 106, 1039–1045. [Google Scholar] [CrossRef]
- Hasan, B.J.M.M.; Osman, F.; Muhamad, R.; Sapawi, C.W.N.S.C.W.; Anzian, A.; Voon, W.W.Y.; Hussin, A.M. Effects of Sugar Sources and Fermentation Time on the Properties of Tea Fungus (Kombucha) Beverage. Int. Food Res. J. 2019, 26, 481–487. [Google Scholar]
- Llamas-Arriba, M.; Hernández-Alcántara, A.; Yépez, A.; Aznar, R.; Dueñas, M.; López, P. Functional and nutritious beverages produced by lactic acid bacteria. In Nutrients in Beverages; Academic Press: Cambridge, MA, USA, 2019; pp. 419–465. ISBN 978-0-12-816842-4. [Google Scholar]
- Kim, J.; Adhikari, K. Current Trends in Kombucha: Marketing Perspectives and the Need for Improved Sensory Research. Beverages 2020, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Jakubczyk, K.; Gutowska, I.; Antoniewicz, J.; Janda, K. Evaluation of Fluoride and Selected Chemical Parameters in Kombucha Derived from White, Green, Black and Red Tea. Biol. Trace Elem. Res. 2021, 199, 3547–3552. [Google Scholar] [CrossRef] [PubMed]
- Zhenjun, Z.; Yucheng, S.; Huawei, W.; Caibi, Z.; Xianchun, H.; Jian, Z. Flavour Chemical Dynamics during Fermentation of Kombucha Tea. Emir. J. Food Agric. 2018, 30, 732–741. [Google Scholar]
- Jafari, R.; Naghavi, N.S.; Khosravi-Darani, K.; Doudi, M.; Shahanipour, K. Kombucha Microbial Starter with Enhanced Production of Antioxidant Compounds and Invertase. Biocatal. Agric. Biotechnol. 2020, 29, 101789. [Google Scholar] [CrossRef]
- Cardoso, R.R.; Neto, R.O.; Dos Santos D’Almeida, C.T.; do Nascimento, T.P.; Pressete, C.G.; Azevedo, L.; Martino, H.S.D.; Cameron, L.C.; Ferreira, M.S.L.; de Barros, F.A.R. Kombuchas from Green and Black Teas Have Different Phenolic Profile, Which Impacts Their Antioxidant Capacities, Antibacterial and Antiproliferative Activities. Food Res. Int. 2020, 128, 108782. [Google Scholar] [CrossRef]
- Kapp, J.M.; Sumner, W. Kombucha: A Systematic Review of the Empirical Evidence of Human Health Benefit. Ann. Epidemiol. 2019, 30, 66–70. [Google Scholar] [CrossRef]
- Kaewkod, T.; Bovonsombut, S.; Tragoolpua, Y. Efficacy of Kombucha Obtained from Green, Oolong, and Black Teas on Inhibition of Pathogenic Bacteria, Antioxidation, and Toxicity on Colorectal Cancer Cell Line. Microorganisms 2019, 7, E700. [Google Scholar] [CrossRef] [Green Version]
- Castellone, V.; Bancalari, E.; Rubert, J.; Gatti, M.; Neviani, E.; Bottari, B. Eating Fermented: Health Benefits of LAB-Fermented Foods. Foods 2021, 10, 2639. [Google Scholar] [CrossRef]
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health Benefits of Fermented Foods: Microbiota and Beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef]
- Martínez, Y.; Más, D. Role of herbs and medicinal spices as modulators of gut microbiota. In Herbs Spices; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Dingeo, G.; Brito, A.; Samouda, H.; Iddir, M.; La Frano, M.R.; Bohn, T. Phytochemicals as Modifiers of Gut Microbial Communities. Food Funct. 2020, 11, 8444–8471. [Google Scholar] [CrossRef] [PubMed]
- Adebo, O.A.; Gabriela Medina-Meza, I. Impact of Fermentation on the Phenolic Compounds and Antioxidant Activity of Whole Cereal Grains: A Mini Review. Molecules 2020, 25, 927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, X.; Bao, Q.; Di, S.; Zhao, Y.; Zhao, S.; Zhang, H.; Lian, F.; Tong, X. The Interaction between the Gut Microbiota and Herbal Medicines. Biomed Pharm. 2019, 118, 109252. [Google Scholar] [CrossRef]
- Zhou, D.-D.; Saimaiti, A.; Luo, M.; Huang, S.-Y.; Xiong, R.-G.; Shang, A.; Gan, R.-Y.; Li, H.-B. Fermentation with Tea Residues Enhances Antioxidant Activities and Polyphenol Contents in Kombucha Beverages. Antioxidants 2022, 11, 155. [Google Scholar] [CrossRef] [PubMed]
- Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Bujak, T.; Zagórska-Dziok, M.; Wójciak, M.; Sowa, I. Effect of Fermentation Time on the Content of Bioactive Compounds with Cosmetic and Dermatological Properties in Kombucha Yerba Mate Extracts. Sci. Rep. 2021, 11, 18792. [Google Scholar] [CrossRef]
- Karahan, F.; Ozyigit, I.I.; Saracoglu, I.A.; Yalcin, I.E.; Ozyigit, A.H.; Ilcim, A. Heavy Metal Levels and Mineral Nutrient Status in Different Parts of Various Medicinal Plants Collected from Eastern Mediterranean Region of Turkey. Biol. Trace Elem. Res. 2019, 197, 316–329. [Google Scholar] [CrossRef]
- Senila, M.; Drolc, A.; Pintar, A.; Senila, L.; Levei, E. Validation and Measurement Uncertainty Evaluation of the ICP-OES Method for the Multi-Elemental Determination of Essential and Nonessential Elements from Medicinal Plants and Their Aqueous Extracts. J. Anal. Sci. Technol. 2014, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Ivanišová, E.; Meňhartová, K.; Terentjeva, M.; Harangozo, Ľ.; Kántor, A.; Kačániová, M. The Evaluation of Chemical, Antioxidant, Antimicrobial and Sensory Properties of Kombucha Tea Beverage. J. Food Sci. Technol. 2020, 57, 1840–1846. [Google Scholar] [CrossRef]
- Watawana, M.I.; Jayawardena, N.; Gunawardhana, C.B.; Waisundara, V.Y. Health, Wellness, and Safety Aspects of the Consumption of Kombucha. J. Chem. 2015, 2015, e591869. [Google Scholar] [CrossRef] [Green Version]
- Gombart, A.F.; Pierre, A.; Maggini, S. A Review of Micronutrients and the Immune System–Working in Harmony to Reduce the Risk of Infection. Nutrients 2020, 12, 236. [Google Scholar] [CrossRef] [Green Version]
- Veronese, N.; Barbagallo, M. Magnesium and Micro-Elements in Older Persons. Nutrients 2021, 13, 847. [Google Scholar] [CrossRef] [PubMed]
- Manganese Metabolism in Humans. Available online: https://pubmed.ncbi.nlm.nih.gov/29293455/ (accessed on 15 April 2022).
- Jarosz, M.; Szczygła, A. Normy Żywienia Dla Populacji Polskiej—Nowelizacja; Instytut Żywności i Żywienia: Warszawa, Poland, 2012; ISBN 978-83-86060-83-2. [Google Scholar]
- Copper Deficiency Anemia: Review Article. Available online: https://pubmed.ncbi.nlm.nih.gov/29959467/ (accessed on 15 April 2022).
- Current Understanding of Iron Homeostasis|The American Journal of Clinical Nutrition|Oxford Academic. Available online: https://academic.oup.com/ajcn/article/106/suppl_6/1559S/4823167 (accessed on 15 April 2022).
- Żwierełło, W.; Styburski, D.; Maruszewska, A.; Piorun, K.; Skórka-Majewicz, M.; Czerwińska, M.; Maciejewska, D.; Baranowska-Bosiacka, I.; Krajewski, A.; Gutowska, I. Bioelements in the Treatment of Burn Injuries—The Complex Review of Metabolism and Supplementation (Copper, Selenium, Zinc, Iron, Manganese, Chromium and Magnesium). J. Trace Elem. Med. Biol. 2020, 62, 126616. [Google Scholar] [CrossRef] [PubMed]
- Jarząb, S. Characterisation and application of zinc in cosmetology and dietetics. Aesthetic Cosmetol. 2021, 10, 189–193. [Google Scholar]
- Huang, Y.-Y.; Qin, X.-K.; Dai, Y.-Y.; Huang, L.; Huang, G.-R.; Qin, Y.-C.; Wei, X.; Huang, Y.-Q. Preparation and Hypoglycemic Effects of Chromium- and Zinc-Rich Acetobacter Aceti. World J. Diabetes 2022, 13, 442–453. [Google Scholar] [CrossRef]
- Antoniewicz, J.; Jakubczyk, K.; Kupnicka, P.; Bosiacki, M.; Chlubek, D.; Janda, K. Analysis of Selected Minerals in Homemade Grape Vinegars Obtained by Spontaneous Fermentation. Biol. Trace Elem. Res. 2022, 200, 910–919. [Google Scholar] [CrossRef]
- Bauer-Petrovska, B.; Petrushevska-Tozi, L. Mineral and Water Soluble Vitamin Content in the Kombucha Drink. Int. J. Food Sci. Technol. 2000, 35, 201–205. [Google Scholar] [CrossRef]
- Karak, T.; Kutu, F.R.; Nath, J.R.; Sonar, I.; Paul, R.K.; Boruah, R.K.; Sanyal, S.; Sabhapondit, S.; Dutta, A.K. Micronutrients (B, Co, Cu, Fe, Mn, Mo, and Zn) Content in Made Tea (Camellia Sinensis L.) and Tea Infusion with Health Prospect: A Critical Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2996–3034. [Google Scholar] [CrossRef] [PubMed]
- Milani, R.F.; Silvestre, L.K.; Morgano, M.A.; Cadore, S. Investigation of Twelve Trace Elements in Herbal Tea Commercialized in Brazil. J. Trace Elem. Med. Biol. 2019, 52, 111–117. [Google Scholar] [CrossRef]
- Koch, W.; Kukula-Koch, W.; Czop, M.; Baj, T.; Kocki, J.; Bawiec, P.; Casasnovas, R.O.; Głowniak-Lipa, A.; Głowniak, K. Analytical Assessment of Bioelements in Various Types of Black Teas from Different Geographical Origins in View of Chemometric Approach. Molecules 2021, 26, 6017. [Google Scholar] [CrossRef]
- Brzezicha-Cirocka, J.; Grembecka, M.; Ciesielski, T.; Flaten, T.P.; Szefer, P. Evaluation of Macro- and Microelement Levels in Black Tea in View of Its Geographical Origin. Biol. Trace Elem. Res. 2017, 176, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Street, R.; Szakova, J.; Drabek, O.; Mladkova, L. The Status of Micronutrients (Cu, Fe, Mn, Zn) in Tea and Tea Infusions in Selected Samples Imported to the Czech Republic. Czech J. Food Sci. UZPI 2006, 24, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Matysek-Nawrocka, M.; Cyrankiewicz, P. Substancje biologicznie aktywne pozyskiwane z herbaty, kawy i kakao oraz ich zastosowanie w kosmetykach. Post. Fitoter. 2016, 17, 139–144. [Google Scholar]
- Sady, S.; Sielicka, M.; Pawłowski, T. Ocena potencjału przeciwutleniającego zielonej herbaty z dodatkiem miodu i cukru. Farm. Współczesna 2016, 9, 169–175. [Google Scholar]
- Miazga-Sławińska, M.; Grzegorczyk, A. Herbaty—Rodzaje, właściwości, jakość i zafałszowania. Kosmos 2014, 63, 473–479. [Google Scholar]
- Samtiya, M.; Aluko, R.E.; Puniya, A.K.; Dhewa, T. Enhancing Micronutrients Bioavailability through Fermentation of Plant-Based Foods: A Concise Review. Fermentation 2021, 7, 63. [Google Scholar] [CrossRef]
- Gupta, R.; Gangoliya, S.; Singh, N. Reduction of Phytic Acid and Enhancement of Bioavailable Micronutrients in Food Grains. J. Food Sci. Technol. 2013, 52, 676–684. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Plant Food Anti-Nutritional Factors and Their Reduction Strategies: An Overview|Food Production, Processing and Nutrition|Full Text. Available online: https://fppn.biomedcentral.com/articles/10.1186/s43014-020-0020-5 (accessed on 30 October 2022).
- Fermentation of Pseudocereals Quinoa, Canihua, and Amaranth to Improve Mineral Accessibility through Degradation of Phytate. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771823/ (accessed on 30 October 2022).
- Cuvas-Limon, R.B.; Nobre, C.; Cruz, M.; Rodriguez-Jasso, R.M.; Ruíz, H.A.; Loredo-Treviño, A.; Texeira, J.A.; Belmares, R. Spontaneously Fermented Traditional Beverages as a Source of Bioactive Compounds: An Overview. Crit. Rev. Food Sci.Nutr. 2021, 61, 2984–3006. [Google Scholar] [CrossRef]
- Mamisahebei, S.; Khaniki, G.R.J.; Torabian, A.; Nasseri, S.; Naddafi, K. Removal of arsenic from an aqueous solution by pretreated waste tea fungal biomass. J. Environ. Health Sci. Eng. 2007, 4, 85–92. [Google Scholar]
- Rekha, C.R.; Vijayalakshmi, G. Bioconversion of Isoflavone Glycosides to Aglycones, Mineral Bioavailability and Vitamin B Complex in Fermented Soymilk by Probiotic Bacteria and Yeast. J. Appl. Microbiol. 2010, 109, 1198–1208. [Google Scholar] [CrossRef]
- Bahaciu, G.V.; Nicolae, C.G.; Șuler, A.D.; Segal, R. Germinated and Lactic Fermented Soybean Seeds, a Natural Alternative for Healthy Bones. A Scientific Approach. Bull. Univ. Agric. Sci. Vet. Med. Cluj Napoca Food Sci. Technol. 2018, 75, 8–14. [Google Scholar] [CrossRef]
- Castro-Alba, V.; Lazarte, C.E.; Perez-Rea, D.; Sandberg, A.-S.; Carlsson, N.-G.; Almgren, A.; Bergenståhl, B.; Granfeldt, Y. Effect of Fermentation and Dry Roasting on the Nutritional Quality and Sensory Attributes of Quinoa. Food Sci. Nutr. 2019, 7, 3902–3911. [Google Scholar] [CrossRef] [PubMed]
Element | Certified [mg/L] | Measured [mg/L] (n = 3) | LOD [mg/L] | %RSD Range |
---|---|---|---|---|
Mn | 0.37 ± 0.09 | 0.43 | 0.00026 | 1.0–6.2 |
Zn | 142 ± 14 | 138 | 0.00065 | 1.5–5.7 |
Cu | 2.84 ± 0.45 | 3.06 | 0.00186 | 2.4–8.2 |
Fe | 71.2 ± 9.2 | 76.1 | 0.00022 | 1.8–6.7 |
Cr | 0.071 ± 0.038 | 0.080 | 0.00044 | 3.9–9.2 |
Mn (mg/L) | Cu (mg/L) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Kombucha | Time Points-Day | Mean | SD | % RDA Men | % RDA Women | Mean | SD | % RDA Men | % RDA Women | ||
BK | 1 a | 0.43 *,b,c,d,g | ± | 0.04 | 18.87 | 24.11 | 0.12 *,c | ± | 0.03 | 13.00 | 13.00 |
7 b | 0.67 *,a,e | ± | 0.13 | 29.00 | 37.05 | 0.13 *,c | ± | 0.07 | 14.89 | 14.89 | |
14 c | 0.68 *,a,f | ± | 0.03 | 29.48 | 37.66 | 0.25 *,a,b,f,i | ± | 0.01 | 28.21 | 28.21 | |
GK | 1 d | 1.18 *,a,e,f,j | ± | 0.08 | 51.25 | 65.48 | 0.10 *,f | ± | 0.06 | 11.26 | 11.26 |
7 e | 1.40 *,b,d,k | ± | 0.08 | 61.03 | 77.98 | 0.09 *,f | ± | 0.04 | 10.17 | 10.17 | |
14 f | 1.40 *,c,d,l | ± | 0.02 | 60.88 | 77.79 | 0.20 *,c,d,e,l | ± | 0.00 | 22.20 | 22.20 | |
RK | 1 g | 0.93 *,a,i | ± | 0.06 | 40.35 | 51.56 | 0.12 | ± | 0.07 | 12.89 | 12.89 |
7 h | 0.92 *,i | ± | 0.06 | 39.86 | 50.93 | 0.07 *,i | ± | 0.03 | 7.29 | 7.29 | |
14 i | 1.21 *,g,h | ± | 0.02 | 52.66 | 67.29 | 0.17 *,c,h | ± | 0.00 | 18.88 | 18.88 | |
WK | 1 j | 0.57 *,d | ± | 0.07 | 24.97 | 31.91 | 0.19 *,l | ± | 0.06 | 20.90 | 20.90 |
7 k | 0.63 *,e | ± | 0.08 | 27.42 | 35.04 | 0.12 | ± | 0.05 | 13.70 | 13.70 | |
14 l | 0.71 *,f | ± | 0.00 | 30.78 | 30.78 | 0.064 *,c,f,j | ± | 0.00 | 7.13 | 7.13 |
Fe (mg/L) | Cr (mg/L) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Kombucha | Time Points-Day | Mean | SD | % RDA Men | % RDA Women | Mean | SD | % RDA Men | % RDA Women | ||
BK | 1 a | 0.23 *,c | ± | 0.04 | 2.27 | 1.26 | 0.07 | ± | 0.02 | 167.19 | 167.19 |
7 b | 0.24 *,c,e | ± | 0.03 | 2.44 | 1.36 | 0.04 *,c | ± | 0.01 | 99.34 | 99.34 | |
14 c | 0.36 *,a,b,f | ± | 0.01 | 3.60 | 2.00 | 0.07 *,b,f | ± | 0.00 | 174.09 | 174.09 | |
GK | 1 d | 0.25 | ± | 0.09 | 2.52 | 1.40 | 0.04 *,f | ± | 0.02 | 95.72 | 95.72 |
7 e | 0.27 *,h | ± | 0.07 | 2.68 | 1.49 | 0.03 *,f | ± | 0.01 | 76.28 | 76.28 | |
14 f | 0.25 *,c,l | ± | 0.01 | 2.49 | 1.39 | 0.09 *,c,d,e,l | ± | 0.00 | 231.63 | 231.63 | |
RK | 1 g | 0.44 *,h,j | ± | 0.24 | 4.35 | 2.42 | 0.05 | ± | 0.01 | 132.21 | 132.21 |
7 h | 0.18 *,b,e,g,i | ± | 0.01 | 1.81 | 1.01 | 0.03 *,i | ± | 0.02 | 74.53 | 74.53 | |
14 i | 0.32 *,h,l | ± | 0.00 | 3.22 | 1.79 | 0.09 *,h,l | ± | 0.00 | 217.51 | 217.51 | |
WK | 1 j | 0.19 *,g,l | ± | 0.04 | 1.90 | 1.06 | 0.04 | ± | 0.03 | 102.34 | 102.34 |
7 k | 0.21 *,l | ± | 0.02 | 2.11 | 1.17 | 0.07 | ± | 0.04 | 180.09 | 180.09 | |
14 l | 0.46 *,f,i,j,k | ± | 0.00 | 4.6 | 2.56 | 0.06 *,f,i | ± | 0.00 | 160.32 | 160.32 |
Zn (mg/L) | ||||||
---|---|---|---|---|---|---|
Kombucha | Time Points-Day | Mean | SD | % RDA Men | % RDA Women | |
BK | 1 a | 0.44 *,a,b | ± | 0.30 | 3.98 | 5.47 |
7 b | 0.74 *,a | ± | 0.63 | 6.73 | 9.25 | |
14 c | 2.08 *,a,b,f,i | ± | 0.09 | 18.87 | 25.95 | |
GK | 1 d | 0.75 | ± | 0.52 | 6.80 | 9.35 |
7 e | 1.11 | ± | 0.76 | 10.13 | 13.92 | |
14 f | 0.54 *,c,l | ± | 0.01 | 4.91 | 6.76 | |
RK | 1 g | 0.88 | ± | 0.65 | 8.04 | 11.06 |
7 h | 0.38 | ± | 0.29 | 3.44 | 4.73 | |
14 i | 0.62 *,c | ± | 0.00 | 5.63 | 7.74 | |
WK | 1 j | 0.36 *,l | ± | 0.35 | 3.26 | 4.48 |
7 k | 0.36 *,l | ± | 0.22 | 3.24 | 4.46 | |
14 l | 0.99 *,f,j,k | ± | 0.00 | 8.99 | 12.36 |
Kombucha | (mg/L) | Mn | Zn | Cu | Fe | Cr |
---|---|---|---|---|---|---|
BK a | mean | 0.582 *,b,c | 1.139 | 0.185 | 0.276 | 0.057 |
SD | 0.135 | 0.855 | 0.088 | 0.066 | 0.022 | |
GK b | mean | 1.329 *,a,d | 0.747 | 0.128 | 0.253 | 0.047 |
SD | 0.129 | 0.585 | 0.064 | 0.065 | 0.028 | |
RK c | mean | 1.034 *,a,d | 0.647 | 0.117 | 0.319 | 0.053 |
SD | 0.179 | 0.428 | 0.063 | 0.179 | 0.026 | |
WK d | mean | 0.629 *,b,c | 0.595 | 0.127 | 0.285 | 0.056 |
SD | 0.075 | 0.366 | 0.068 | 0.126 | 0.031 |
BK: | Mn | Zn | Cu | Fe | Cr | GK | Mn | Zn | Cu | Fe | Cr |
---|---|---|---|---|---|---|---|---|---|---|---|
Mn | 1.00 | 0.05 | 0.48 * | 0.37 | −0.14 | Mn | 1.00 | −0.08 | 0.37 | −0.24 | 0.18 |
Zn | 0.05 | 1.00 | 0.66 * | 0.74 * | 0.29 | Zn | −0.08 | 1.00 | 0.00 | 0.78 * | 0.04 |
Cu | 0.48 * | 0.66 * | 1.00 | 0.52 * | 0.30 | Cu | 0.37 | 0.00 | 1.00 | 0.16 | 0.88 * |
Fe | 0.37 | 0.74 * | 0.52 * | 1.00 | 0.28 | Fe | −0.24 | 0.78 * | 0.16 | 1.00 | 0.17 |
Cr | −0.14 | 0.29 | 0.30 | 0.28 | 1.00 | Cr | 0.18 | 0.04 | 0.88 * | 0.17 | 1.00 |
RK | Mn | Zn | Cu | Fe | Cr | WK | Mn | Zn | Cu | Fe | Cr |
Mn | 1.00 | −0.19 | 0.50 * | 0.33 | 0.63 * | Mn | 1.00 | 0.82 * | −0.28 | 0.76 * | 0.37 |
Zn | −0.19 | 1.00 | 0.04 | 0.51 * | 0.25 | Zn | 0.82 * | 1.00 | −0.57 * | 0.91 * | 0.45 |
Cu | 0.50 * | 0.04 | 1.00 | 0.31 | 0.45 | Cu | −0.28 | −0.57 * | 1.00 | −0.51 * | −0.04 |
Fe | 0.33 | 0.51 | 0.31 | 1.00 | 0.53 * | Fe | 0.76 * | 0.91 * | −0.51 * | 1.00 | 0.42 |
Cr | 0.63 * | 0.25 | 0.45 | 0.53 * | 1.00 | Cr | 0.37 | 0.45 | −0.04 | 0.42 | 1.00 |
BK | GK | RK | WK | |
---|---|---|---|---|
Mn | 0.712 * | 0.712 * | 0.659 * | 0.554 * |
Zn | 0.712 * | NS | NS | 0.791 * |
Cu | 0.765 * | 0.712 * | NS | −0.844 * |
Fe | 0.791 * | NS | NS | 0.805 * |
Cr | NS | 0.594 * | 0.580 * | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubczyk, K.; Kupnicka, P.; Melkis, K.; Mielczarek, O.; Walczyńska, J.; Chlubek, D.; Janda-Milczarek, K. Effects of Fermentation Time and Type of Tea on the Content of Micronutrients in Kombucha Fermented Tea. Nutrients 2022, 14, 4828. https://doi.org/10.3390/nu14224828
Jakubczyk K, Kupnicka P, Melkis K, Mielczarek O, Walczyńska J, Chlubek D, Janda-Milczarek K. Effects of Fermentation Time and Type of Tea on the Content of Micronutrients in Kombucha Fermented Tea. Nutrients. 2022; 14(22):4828. https://doi.org/10.3390/nu14224828
Chicago/Turabian StyleJakubczyk, Karolina, Patrycja Kupnicka, Klaudia Melkis, Oliwia Mielczarek, Joanna Walczyńska, Dariusz Chlubek, and Katarzyna Janda-Milczarek. 2022. "Effects of Fermentation Time and Type of Tea on the Content of Micronutrients in Kombucha Fermented Tea" Nutrients 14, no. 22: 4828. https://doi.org/10.3390/nu14224828
APA StyleJakubczyk, K., Kupnicka, P., Melkis, K., Mielczarek, O., Walczyńska, J., Chlubek, D., & Janda-Milczarek, K. (2022). Effects of Fermentation Time and Type of Tea on the Content of Micronutrients in Kombucha Fermented Tea. Nutrients, 14(22), 4828. https://doi.org/10.3390/nu14224828