Effect of Intake of Leucine-Rich Protein Supplement in Parallel with Resistance Exercise on the Body Composition and Function of Healthy Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Randomization and Blinding
2.3. Blood Analysis
2.4. Intervention
2.5. Assessment
2.5.1. Primary Outcome: Body Composition and Muscle Mass
2.5.2. Secondary Outcome: Muscle Strength
2.5.3. Secondary Outcome: Physical Performance
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Participants
3.2. Changes within the Control Group during the 12-Week Study Period
3.3. Changes within the Intervention Group during the 12-Week Study Period
3.4. Comparison of Changes over 12 Weeks in the Control Group and Intervention Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cruz-Jentoft, A. European Working Group on Sarcopenia in Older People: Sarcopenia: European consensus on definition and diagnosis. Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visser, M.; Pahor, M.; Tylavsky, F.; Kritchevsky, S.B.; Cauley, J.A.; Newman, A.B.; Blunt, B.A.; Harris, T.B. One-and two-year change in body composition as measured by DXA in a population-based cohort of older men and women. J. Appl. Physiol. 2003, 94, 2368–2374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanza, I.; Short, D.; Short, K.; Raghavakaimal, S.; Basu, R.; Joyner, M.; McConnell, J.; Nair, K. Endurance exercise as a countermeasure for aging. Diabetes 2008, 57, 2933–2942. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, I.H. Sarcopenia: Origins and clinical relevance. J. Nutr. 1997, 127, 990S–991S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houston, D.K.; Nicklas, B.J.; Ding, J.; Harris, T.B.; Tylavsky, F.A.; Newman, A.B.; Lee, J.S.; Sahyoun, N.R.; Visser, M.; Kritchevsky, S.B. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: The Health, Aging, and Body Composition (Health ABC) Study. Am. J. Clin. Nutr. 2008, 87, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Castaneda, C.; Charnley, J.M.; Evans, W.J.; Crim, M.C. Elderly women accommodate to a low-protein diet with losses of body cell mass, muscle function, and immune response. Am. J. Clin. Nutr. 1995, 62, 30–39. [Google Scholar] [CrossRef]
- Campbell, W.W.; Trappe, T.A.; Wolfe, R.R.; Evans, W.J. The recommended dietary allowance for protein may not be adequate for older people to maintain skeletal muscle. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M373–M380. [Google Scholar] [CrossRef] [Green Version]
- Dangin, M.; Guillet, C.; Garcia-Rodenas, C.; Gachon, P.; Bouteloup-Demange, C.; Reiffers-Magnani, K.; Fauquant, J.; Ballèvre, O.; Beaufrère, B. The rate of protein digestion affects protein gain differently during aging in humans. J. Physiol. 2003, 549, 635–644. [Google Scholar] [CrossRef]
- Katsanos, C.S.; Kobayashi, H.; Sheffield-Moore, M.; Aarsland, A.; Wolfe, R.R. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E381–E387. [Google Scholar] [CrossRef] [Green Version]
- Sancak, Y.; Peterson, T.R.; Shaul, Y.D.; Lindquist, R.A.; Thoreen, C.C.; Bar-Peled, L.; Sabatini, D.M. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008, 320, 1496–1501. [Google Scholar] [CrossRef]
- Borack, M.S.; Volpi, E. Efficacy and safety of leucine supplementation in the elderly. J. Nutr. 2016, 146, 2625S–2629S. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Børsheim, E.; Bui, Q.-U.T.; Tissier, S.; Kobayashi, H.; Ferrando, A.A.; Wolfe, R.R. Effect of amino acid supplementation on muscle mass, strength and physical function in elderly. Clin. Nutr. 2008, 27, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.K.; Suzuki, T.; Saito, K.; Yoshida, H.; Kobayashi, H.; Kato, H.; Katayama, M. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: A randomized controlled trial. J. Am. Geriatr. Soc. 2012, 60, 16–23. [Google Scholar] [CrossRef]
- Solerte, S.B.; Gazzaruso, C.; Bonacasa, R.; Rondanelli, M.; Zamboni, M.; Basso, C.; Locatelli, E.; Schifino, N.; Giustina, A.; Fioravanti, M. Nutritional supplements with oral amino acid mixtures increases whole-body lean mass and insulin sensitivity in elderly subjects with sarcopenia. Am. J. Cardiol. 2008, 101, S69–S77. [Google Scholar] [CrossRef]
- Leenders, M.; Verdijk, L.B.; van der Hoeven, L.; van Kranenburg, J.; Hartgens, F.; Wodzig, W.K.; Saris, W.H.; van Loon, L.J. Prolonged leucine supplementation does not augment muscle mass or affect glycemic control in elderly type 2 diabetic men. J. Nutr. 2011, 141, 1070–1076. [Google Scholar] [CrossRef] [Green Version]
- Glover, E.I.; Phillips, S.M.; Oates, B.R.; Tang, J.E.; Tarnopolsky, M.A.; Selby, A.; Smith, K.; Rennie, M.J. Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion. J. Physiol. 2008, 586, 6049–6061. [Google Scholar] [CrossRef]
- Breen, L.; Stokes, K.A.; Churchward-Venne, T.A.; Moore, D.R.; Baker, S.K.; Smith, K.; Atherton, P.J.; Phillips, S.M. Two weeks of reduced activity decreases leg lean mass and induces “anabolic resistance” of myofibrillar protein synthesis in healthy elderly. J. Clin. Endocrinol. Metab. 2013, 98, 2604–2612. [Google Scholar] [CrossRef] [Green Version]
- Orsatti, F.L.; Nahas, E.A.; Maesta, N.; Nahas-Neto, J.; Burini, R.C. Plasma hormones, muscle mass and strength in resistance-trained postmenopausal women. Maturitas 2008, 59, 394–404. [Google Scholar] [CrossRef]
- Cribb, P.J.; Hayes, A. Effects of supplement-timing and resistance exercise on skeletal muscle hypertrophy. Med. Sci. Sport. Exerc. 2006, 38, 1918–1925. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Contreras, B.; Vigotsky, A.D.; Peterson, M. Differential effects of heavy versus moderate loads on measures of strength and hypertrophy in resistance-trained men. J. Sport. Sci. Med. 2016, 15, 715. [Google Scholar]
- Peterson, M.D.; Gordon, P.M. Resistance exercise for the aging adult: Clinical implications and prescription guidelines. Am. J. Med. 2011, 124, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-G.; Nam, H.-K. The effect of thera band exercise on muscle flexibility, balance ability, muscle strength in elderly women. J. Korean Acad. Community Health Nurs. 2011, 22, 451–457. [Google Scholar] [CrossRef]
- Brown, L.E. Isokinetics in Human Performance, 1st ed.; Human Kinetics: Champaign, IL, USA, 2000; pp. 25–41. [Google Scholar]
- Esmarck, B.; Andersen, J.; Olsen, S.; Richter, E.; Mizuno, M.; Kjaer, M. Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J. Physiol. 2001, 535, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Kimura, M.; Nakamura, E.; Masuo, Y.; Oda, S. Limb muscle mass decrease with aging in Japanese men and women aged 15–97 yr. Jpn. J. Phys. Fit. Sport Med. 2007, 56, 461–472. [Google Scholar]
- Kang, Y.; Kim, N.; Choi, Y.J.; Lee, Y.; Yun, J.; Park, S.J.; Park, H.S.; Chung, Y.-S.; Park, Y.K. Leucine-enriched protein supplementation increases lean body mass in healthy Korean adults aged 50 years and older: A randomized, double-blind, placebo-controlled trial. Nutrients 2020, 12, 1816. [Google Scholar] [CrossRef]
- American College of Sports Medicine, ACSM’s Guidelines for Exercise Testing and Prescription, 9th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; pp. 280–289.
- Villanueva, M.G.; He, J.; Schroeder, E.T. Periodized resistance training with and without supplementation improve body composition and performance in older men. Eur. J. Appl. Physiol. 2014, 114, 891–905. [Google Scholar] [CrossRef]
- Nabuco, H.C.; Tomeleri, C.M.; Sugihara Junior, P.; Fernandes, R.R.; Cavalcante, E.F.; Antunes, M.; Ribeiro, A.S.; Teixeira, D.C.; Silva, A.M.; Sardinha, L.B. Effects of whey protein supplementation pre-or post-resistance training on muscle mass, muscular strength, and functional capacity in pre-conditioned older women: A randomized clinical trial. Nutrients 2018, 10, 563. [Google Scholar] [CrossRef] [Green Version]
- Junior, P.S.; Ribeiro, A.S.; Nabuco, H.C.; Fernandes, R.R.; Tomeleri, C.M.; Cunha, P.M.; Venturini, D.; Barbosa, D.S.; Schoenfeld, B.J.; Cyrino, E.S. Effects of whey protein supplementation associated with resistance training on muscular strength, hypertrophy, and muscle quality in preconditioned older women. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 528–535. [Google Scholar] [CrossRef]
- Borg, G. A category scale with ratio properties for intermodal and interindividual comparisons. In Psychophysical Judgment and the Process of Perception.; Geissler, H.-G., Petzold, P., Eds.; Deutscher Verlag der Wissenschaften: Berlin, Germany, 1982; pp. 25–34. [Google Scholar]
- Rikli, R.E.; Jones, C.J. Senior Fitness Test Manual; Human Kinetics: Campaign, IL, USA, 2001; pp. 61–62. [Google Scholar]
- Newman, A.B.; Lee, J.S.; Visser, M.; Goodpaster, B.H.; Kritchevsky, S.B.; Tylavsky, F.A.; Nevitt, M.; Harris, T.B. Weight change and the conservation of lean mass in old age: The Health, Aging and Body Composition Study. Am. J. Clin. Nutr. 2005, 82, 872–878. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, K.F.; Booth, T.L. Age, body mass index, and functional illness. J. Gerontol. Ser. B: Psychol. Sci. Soc. Sci. 1999, 54, S339–S348. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.J.; Shin, J.H. Association between functional decline and weight change in elderly population. Korean J. Fam. Pract. 2020, 10, 436–442. [Google Scholar] [CrossRef]
- Evans, W.J.; Morley, J.E.; Argilés, J.; Bales, C.; Baracos, V.; Guttridge, D.; Jatoi, A.; Kalantar-Zadeh, K.; Lochs, H.; Mantovani, G. Cachexia: A new definition. Clin. Nutr. 2008, 27, 793–799. [Google Scholar] [CrossRef]
- Kyle, U.G.; Zhang, F.F.; Morabia, A.; Pichard, C. Longitudinal study of body composition changes associated with weight change and physical activity. Nutrition 2006, 22, 1103–1111. [Google Scholar] [CrossRef]
- Egan, B.; Zierath, J.R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013, 17, 162–184. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, M.; Esser, K.A. Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals. J. Appl. Physiol. 2009, 106, 1367–1373. [Google Scholar] [CrossRef] [Green Version]
- Cribb, P.J.; Williams, A.D.; Stathis, C.; Carey, M.F.; Hayes, A. Effects of whey isolate, creatine and resistance training on muscle hypertrophy. Med. Sci. Sport. Exerc. 2007, 39, 298–307. [Google Scholar] [CrossRef] [Green Version]
- Jewell, J.L.; Russell, R.C.; Guan, K.-L. Amino acid signalling upstream of mTOR. Nat. Rev. Mol. Cell Biol. 2013, 14, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.J.; Kim, J.H.; Cho, W.J. The effect of skeletal muscle mass and growth hormone, testosterone, insulin like growth Factor-1 by the protein supplements intake period during to resistance exercise. J. Wellness 2017, 12, 371–379. [Google Scholar]
- Szulc, P.; Duboeuf, F.; Marchand, F.; Delmas, P.D. Hormonal and lifestyle determinants of appendicular skeletal muscle mass in men: The MINOS study. Am. J. Clin. Nutr. 2004, 80, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Roth, S.M.; Metter, E.J.; Ling, S.; Ferrucci, L. Inflammatory factors in age-related muscle wasting. Curr. Opin. Rheumatol. 2006, 18, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Moller, N.; Vendelbo, M.H.; Kampmann, U.; Christensen, B.; Madsen, M.; Norrelund, H.; Jorgensen, J.O. Growth hormone and protein metabolism. Clin. Nutr. 2009, 28, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Cappola, A.R.; Bandeen-Roche, K.; Wand, G.S.; Volpato, S.; Fried, L.P. Association of IGF-I levels with muscle strength and mobility in older women. J. Clin. Endocrinol. Metab. 2001, 86, 4139–4146. [Google Scholar] [CrossRef] [PubMed]
- Sytze van Dam, P.; Smid, H.E.; de Vries, W.R.; Niesink, M.; Bolscher, E.; Waasdorp, E.J.; Dieguez, C.; Casanueva, F.F.; Koppeschaar, H.P. Reduction of free fatty acids by acipimox enhances the growth hormone (GH) responses to GH-releasing peptide 2 in elderly men. J. Clin. Endocrinol. Metab. 2000, 85, 4706–4711. [Google Scholar] [CrossRef] [PubMed]
- Chargé, S.B.; Rudnicki, M.A. Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 2004, 84, 209–238. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M. Free Radicals in Biology and Medicine; Oxford Clarendon Press: New York, NY, USA, 1989; pp. 86–122. [Google Scholar]
- Min, K.; Smuder, A.J.; Kwon, O.-s.; Kavazis, A.N.; Szeto, H.H.; Powers, S.K. Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy. J. Appl. Physiol. 2011, 111, 1459–1466. [Google Scholar] [CrossRef] [Green Version]
- Powers, S.K.; Criswell, D.; Lawler, J.; Martin, D.; Ji, L.L.; Herb, R.A.; Dudley, G. Regional training-induced alterations in diaphragmatic oxidative and antioxidant enzymes. Respir. Physiol. 1994, 95, 227–237. [Google Scholar] [CrossRef]
- Powers, S.K.; Criswell, D.; Lawler, J.; Ji, L.L.; Martin, D.; Herb, R.A.; Dudley, G. Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1994, 266, R375–R380. [Google Scholar] [CrossRef]
- Laughlin, M.; Simpson, T.; Sexton, W.; Brown, O.; Smith, J.; Korthuis, R. Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training. J. Appl. Physiol. 1990, 68, 2337–2343. [Google Scholar] [CrossRef]
- Revan, S.; Balci, S.; Pepe, H.; Kurtoglu, F.; Erol, A.E.; Akkus, H. Short duration exhaustive running exercise does not modify lipid hydroperoxide, glutathione peroxidase and catalase. J. Sport. Med. Phys. Fit. 2010, 50, 235. [Google Scholar]
- Bodine, S.C.; Baehr, L.M. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am. J. Physiol. Endocrinol. Metab. 2014, 307, E469–E484. [Google Scholar] [CrossRef] [Green Version]
- Ebert, S.M.; Al-Zougbi, A.; Bodine, S.C.; Adams, C.M. Skeletal muscle atrophy: Discovery of mechanisms and potential therapies. Physiology 2019, 34, 232–239. [Google Scholar] [CrossRef]
Order | Time (min) | Contents | Duration (weeks) | Intensity |
---|---|---|---|---|
Warm-up | 10′ | Dynamic stretching | 1–12 | <RPE 5 |
Resistance exercise | 30′ | Body-weight training 1. Sit-to-stand 2. Body twist 3. Push-up against the wall 4. Sit and lift legs 5. Bridge exercise 6. Y raise 7. Knee extension 8. Back extension | 1–4 | RPE 5–6 8 reps each |
TheraBand exercises 1. Chest press 2. Bicep curl 3. Tricep extension 4. Side lateral raise 5. Front raise 6. Shoulder blade squeeze 7. Crunch 8. Trunk rotation 9. Squat 10. Leg press 11. Knee extension 12. Hip abduction | 5–8 | RPE 5–6 10 reps each | ||
9–12 | RPE 5–6 12 reps each | |||
Circuit training | 10′ | 1. Chest press 2. Front raise 3. Squat 4. Crunch | 1–12 | RPE 7–8 |
Cool-down | 10′ | Static stretching | 1–12 | <RPE 5 |
Test Item | Test Description |
---|---|
Chair stand (number of stands) | Number of full stands in 30 s with arms folded across the chest |
Arm curl (number of reps) | Number of bicep curls in 30 s holding a hand weight (men, 8 lb; women, 5 lb) |
Chair sit-and-reach (cm +/−) | From a sitting position in front of a chair, with legs extended and hands reaching toward the toes, number of cm (+/−) from the extended fingers to the tip of the toes |
Back scratch (cm +/−) | With one hand reaching over the shoulder and one up the middle of the back, number of cm between the extended middle fingers (+/−) |
2.44 m up-and-go (s) | Number of seconds required to stand up from a seated position, walk 2.44 m, turn, and return to a seated position on a chair |
2 min step (number of steps) | Number of full steps completed in 2 min, raising each knee to a point midway between the patella and iliac crest (number of times the right knee reaches the target) |
Mean ± S.E | Z | p | ||
---|---|---|---|---|
Intervention (n = 21) | Control (n = 20) | |||
Height (m) | 1.62 ± 0.08 | 1.62 ± 0.07 | −0.065 | 0.948 |
Weight (kg) | 61.65 ± 12.58 | 63.64 ± 12.26 | −0.717 | 0.473 |
BMI (kg/m2) | 23.26 ± 3.16 | 24.00 ± 3.09 | −0.978 | 0.328 |
Waist circumference (cm) | 79.52 ± 9.96 | 77.83 ± 17.95 | −0.444 | 0.657 |
SBP (mmHg) | 127.57 ± 18.38 | 125.55 ± 16.21 | −0.235 | 0.814 |
DBP (mmHg) | 83.19 ± 9.98 | 82.00 ± 11.40 | −0.405 | 0.686 |
Body composition and muscle mass (Inbody-720) | ||||
Body fat mass (kg) | 16.95 ± 4.86 | 19.10 ± 4.58 | −1.174 | 0.240 |
Body fat (%) | 27.48 ± 6.28 | 30.17 ± 5.37 | −1.448 | 0.148 |
Fat-free mass (kg) | 44.69 ± 10.16 | 44.49 ± 9.79 | −0.300 | 0.764 |
Lean body mass (kg) | 42.17 ± 9.61 | 41.97 ± 9.31 | −0.287 | 0.774 |
Lean body mass index (kg/m2) | 15.87 ± 2.22 | 15.76 ± 2.30 | −0.496 | 0.620 |
Skeletal muscle mass (kg) | 24.62 ± 6.17 | 24.46 ± 5.97 | −0.391 | 0.696 |
Skeletal muscle mass index (kg/m2) | 9.25 ± 1.49 | 9.17 ± 1.54 | −0.652 | 0.514 |
Body composition and muscle mass (DXA) | ||||
Lean body mass (kg) | 41.79 ± 9.15 | 41.57 ± 9.82 | −0.156 | 0.876 |
Lean body mass index (kg/m2) | 15.64 ± 2.37 | 15.71 ± 2.40 | −0.052 | 0.958 |
Body fat mass (kg) | 17.55 ± 4.51 | 19.28 ± 3.81 | −0.991 | 0.322 |
Body fat (%) | 29.76 ± 6.07 | 31.80 ± 4.23 | −1.148 | 0.251 |
Bone mineral density (g/cm2) | 1.17 ± 0.15 | 1.15 ± 0.10 | −0.404 | 0.686 |
T-score | 0.75 ± 1.38 | 0.54 ± 0.70 | −0.183 | 0.855 |
Muscle strength | ||||
Hand grip strength (kg) | 28.67 ± 9.05 | 28.73 ± 10.17 | −0.170 | 0.865 |
Push-ups (reps) | 18.86 ± 14.14 | 17.95 ± 15.74 | −0.379 | 0.705 |
Plank (s) | 125.90 ± 67.44 | 135.45 ± 73.58 | −0.235 | 0.814 |
Physical performance (senior fitness test) | ||||
Chair stand test (reps/30 s) | 18.67 ± 4.76 | 16.85 ± 5.10 | −0.929 | 0.353 |
Bicep curl test (reps/30 s) | 22.00 ± 7.20 | 18.10 ± 6.11 | −1.672 | 0.095 |
2.44 m up-and-go test (s) | 4.62 ± 0.68 | 4.76 ± 0.93 | −0.196 | 0.845 |
Chair sit-and-reach test (cm) | 9.67 ± 11.21 | 8.96 ± 9.40 | −0.522 | 0.601 |
Back scratch test (cm) | −5.31 ± 11.34 | −3.80 ± 10.48 | −0.731 | 0.465 |
2 min step test (steps/2 min) | 110.90 ± 17.39 | 109.75 ± 17.44 | −0.575 | 0.565 |
Mean ± S.E | Z | p | ||
---|---|---|---|---|
Intervention (n = 21) | Control (n = 20) | |||
Hb (g/dL) | 13.30 ± 1.33 | 14.14 ± 1.26 | −1.880 | 0.060 |
WBC (×103 cells/μL) | 5.82 ± 1.51 | 5.55 ± 1.80 | −0.574 | 0.566 |
AST (U/L) | 28.39 ± 11.01 | 29.82 ± 20.80 | −0.013 | 0.990 |
ALT (U/L) | 25.63 ± 17.68 | 24.36 ± 10.38 | −0.130 | 0.896 |
HbA1c (%) | 5.67 ± 0.45 | 5.77 ± 0.45 | −0.694 | 0.487 |
BUN (mg/dL) | 17.30 ± 4.55 | 17.09 ± 3.29 | −0.143 | 0.886 |
LDL (mg/dL) | 103.40 ± 27.57 | 100.42 ± 30.96 | −0.469 | 0.639 |
TG (mg/dL) | 129.71 ± 122.64 | 117.80 ± 72.70 | −0.404 | 0.686 |
Mean ± S.E | Z | p | ||
---|---|---|---|---|
Baseline | 12 Weeks | |||
Hb (g/dL) | 13.30 ± 1.33 | 13.39 ± 1.23 | −0.806 | 0.420 |
WBC (×103 cells/μL) | 5.82 ± 1.51 | 5.95 ± 1.56 | −0.817 | 0.414 |
AST (U/L) | 28.39 ± 11.01 | 26.65 ± 6.87 | −0.504 | 0.614 |
ALT (U/L) | 25.63 ± 17.68 | 24.49 ± 11.09 | −0.278 | 0.781 |
HbA1c (%) | 5.67 ± 0.45 | 5.60 ± 0.31 | −0.088 | 0.930 |
BUN (mg/dL) | 17.30 ± 4.55 | 19.39 ± 4.38 | −1.808 | 0.071 |
LDL (mg/dL) | 103.40 ± 27.57 | 108.60 ± 32.29 | −1.356 | 0.175 |
TG (mg/dL) | 129.71 ± 122.64 | 155.29 ± 186.00 | −0.417 | 0.677 |
Mean ± S.E | Z | p | ||
---|---|---|---|---|
Baseline | 12 Weeks | |||
Weight (kg) | 63.64 ± 12.26 | 62.67 ± 11.68 | −2.296 | 0.022 * |
BMI (kg/m2) | 24.00 ± 3.09 | 23.57 ± 2.94 | −2.515 | 0.012 * |
Waist circumference (cm) | 77.83 ± 17.95 | 80.46 ± 9.42 | −1.457 | 0.145 |
Body composition and muscle mass (Inbody-720) | ||||
Body fat mass (kg) | 19.10 ± 4.58 | 17.81 ± 4.38 | −3.436 | 0.001 ** |
Body fat (%) | 30.17 ± 5.37 | 28.54 ± 5.50 | −3.585 | <0.001 *** |
Fat-free mass (kg) | 44.49 ± 9.79 | 44.86 ± 9.67 | −1.945 | 0.052 |
Lean body mass (kg) | 41.97 ± 9.31 | 42.35 ± 9.21 | −2.113 | 0.035 * |
Lean body mass index (kg/m2) | 15.76 ± 2.30 | 15.90 ± 2.23 | −2.128 | 0.033 * |
Skeletal muscle mass (kg) | 24.46 ± 5.97 | 24.75 ± 5.94 | −2.218 | 0.027 * |
Skeletal muscle mass index (kg/m2) | 9.17 ± 1.54 | 9.28 ± 1.50 | −2.133 | 0.033 * |
Body composition and muscle mass (DXA) | ||||
Lean body mass (kg) | 41.57 ± 9.82 | 41.97 ± 9.27 | −0.971 | 0.332 |
Lean body mass index (kg/m2) | 15.71 ± 2.40 | 15.77 ± 2.43 | −0.896 | 0.370 |
Body fat mass (kg) | 19.28 ± 3.81 | 19.13 ± 3.37 | −0.299 | 0.765 |
Body fat (%) | 31.80 ± 4.23 | 31.64 ± 4.36 | −1.090 | 0.276 |
Bone mineral density (g/cm2) | 1.15 ± 0.10 | 1.14 ± 0.11 | −1.139 | 0.255 |
T-score | 0.54 ± 0.70 | 0.39 ± 1.12 | −1.101 | 0.271 |
Muscle strength | ||||
Hand grip strength (kg) | 28.73 ± 10.17 | 29.79 ± 8.43 | −1.248 | 0.212 |
Push-ups (reps) | 17.95 ± 15.74 | 35.90 ± 16.12 | −3.921 | <0.001 *** |
Plank (s) | 135.45 ± 73.58 | 140.85 ± 64.41 | −0.483 | 0.629 |
Physical performance (senior fitness test) | ||||
Chair stand test (reps/30 s) | 16.85 ± 5.10 | 23.55 ± 4.99 | −3.779 | <0.001 *** |
Bicep curl test (reps/30 s) | 18.10 ± 6.11 | 23.40 ± 3.93 | −3.303 | 0.001 ** |
2.44 m up-and-go test (s) | 4.76 ± 0.93 | 4.81 ± 0.78 | −0.093 | 0.926 |
Chair sit-and-reach test (cm) | 8.96 ± 9.40 | 12.83 ± 9.00 | −2.704 | 0.007 ** |
Back scratch test (cm) | −3.80 ± 10.48 | −4.15 ± 11.38 | −0.078 | 0.938 |
2 min step test (steps/2 min) | 109.75 ± 17.44 | 137.85 ± 16.98 | −3.920 | <0.001 *** |
Mean ± S.E | Z | p | ||
---|---|---|---|---|
Baseline | 12 Weeks | |||
Weight (kg) | 61.65 ± 12.58 | 61.59 ± 12.80 | −0.168 | 0.866 |
BMI (kg/m2) | 23.26 ± 3.16 | 23.26 ± 3.14 | −0.357 | 0.721 |
Waist circumference (cm) | 79.52 ± 9.96 | 77.59 ± 9.78 | −2.883 | 0.004 ** |
Body composition and muscle mass (Inbody-720) | ||||
Body fat mass (kg) | 16.95 ± 4.86 | 15.90 ± 4.84 | −3.494 | <0.001 *** |
Body fat (%) | 27.48 ± 6.28 | 25.80 ± 6.43 | −3.669 | <0.001 *** |
Fat-free mass (kg) | 44.69 ± 10.16 | 45.74 ± 10.63 | −3.423 | 0.001 ** |
Lean body mass (kg) | 42.17 ± 9.61 | 43.12 ± 9.95 | −3.436 | 0.001 ** |
Lean body mass index (kg/m2) | 15.87 ± 2.22 | 16.22 ± 2.28 | −3.397 | 0.001 ** |
Skeletal muscle mass (kg) | 24.62 ± 6.17 | 25.31 ± 6.42 | −3.576 | <0.001 *** |
Skeletal muscle mass index (kg/m2) | 9.25 ± 1.49 | 9.51 ± 1.54 | −3.572 | <0.001 *** |
Body composition and muscle mass (DXA) | ||||
Lean body mass (kg) | 41.79 ± 9.15 | 42.58 ± 10.33 | −3.389 | 0.001 ** |
Lean body mass index (kg/m2) | 15.64 ± 2.37 | 16.01 ± 2.48 | −3.389 | 0.001 ** |
Body fat mass (kg) | 17.55 ± 4.51 | 17.39 ± 4.30 | −0.678 | 0.498 |
Body fat (%) | 29.76 ± 6.07 | 29.20 ± 5.98 | −2.051 | 0.040 * |
Bone mineral density (g/cm2) | 1.17 ± 0.15 | 1.16 ± 0.14 | −1.905 | 0.057 |
T-score | 0.75 ± 1.38 | 0.91 ± 1.35 | −1.170 | 0.242 |
Muscle strength | ||||
Hand grip strength (kg) | 28.67 ± 9.05 | 30.50 ± 9.56 | −1.248 | 0.029 * |
Push-ups (reps) | 18.86 ± 14.14 | 38.10 ± 15.70 | −3.921 | <0.001 *** |
Plank (s) | 125.90 ± 67.44 | 177.90 ± 76.54 | −3.442 | 0.001 ** |
Physical performance (senior fitness test) | ||||
Chair stand test (reps/30 s) | 18.67 ± 4.76 | 26.43 ± 4.15 | −4.025 | <0.001 *** |
Bicep curl test (reps/30 s) | 22.00 ± 7.20 | 28.10 ± 4.97 | −3.359 | 0.001 ** |
2.44 m up-and-go test (s) | 4.62 ± 0.68 | 4.36 ± 0.44 | −0.956 | 0.339 |
Chair sit-and-reach test (cm) | 9.67 ± 11.21 | 13.17 ± 10.86 | −2.660 | 0.008 ** |
Back scratch test (cm) | −5.31 ± 11.34 | −3.82 ± 10.29 | −0.825 | 0.409 |
2 min step test (steps/2 min) | 110.90 ± 17.39 | 145.71 ± 28.37 | −3.859 | <0.001 *** |
Mean ± S.E | Z | p | ||
---|---|---|---|---|
Intervention (n = 21) | Control (n = 20) | |||
Δ Weight (kg) | −0.06 ± 1.29 | −0.97 ± 2.07 | −1.972 | 0.049 * |
Δ BMI (kg/m2) | 0.00 ± 0.42 | −0.43 ± 0.77 | −2.212 | 0.027 * |
Δ Waist circumference (cm) | −1.94 ± 3.12 | 2.64 ± 18.11 | −0.575 | 0.565 |
Body composition and muscle mass (Inbody-720) | ||||
Δ Body fat mass (kg) | −1.05 ± 0.84 | −1.29 ± 1.63 | −0.196 | 0.845 |
Δ Body fat (%) | −1.67 ± 1.14 | −1.63 ± 1.83 | −1.109 | 0.267 |
Δ Fat-free mass (kg) | 1.06 ± 1.00 | 0.37 ± 1.10 | −2.194 | 0.028 * |
Δ Lean body mass (kg) | 0.95 ± 0.91 | 0.38 ± 1.06 | −2.025 | 0.043 * |
Δ Lean body mass index (kg/m2) | 0.35 ± 0.33 | 0.14 ± 0.38 | −2.087 | 0.037 * |
Δ Skeletal muscle mass (kg) | 0.69 ± 0.58 | 0.29 ± 0.65 | −2.066 | 0.039 * |
Δ Skeletal muscle mass index (kg/m2) | 0.26 ± 0.21 | 0.11 ± 0.24 | −2.153 | 0.031 * |
Body composition and muscle mass (DXA) | ||||
Δ Lean body mass (kg) | 1.01 ± 1.16 | 0.18 ± 1.16 | −1.917 | 0.055 |
Δ Lean body mass index (kg/m2) | 0.37 ± 0.40 | 0.06 ± 0.44 | −1.956 | 0.050 |
Δ Body fat mass (kg) | −0.16 ± 0.82 | −0.16 ± 1.56 | −0.261 | 0.794 |
Δ Body fat (%) | −0.57 ± 1.12 | −0.16 ± 2.00 | −0.744 | 0.457 |
Δ Bone mineral density (g/cm2) | −0.01 ± 0.02 | 0.00 ± 0.02 | −0.457 | 0.648 |
Δ T-score | 0.16 ± 0.42 | −0.15 ± 0.65 | −1.526 | 0.127 |
Muscle strength | ||||
Δ Hand grip strength (kg) | 1.82 ± 3.43 | 1.07 ± 4.37 | −0.457 | 0.648 |
Δ Push-ups (reps) | 19.24 ± 8.98 | 17.95 ± 9.81 | −0.405 | 0.685 |
Δ Plank (s) | 52.00 ± 50.37 | 5.40 ± 63.36 | −2.530 | 0.011 * |
Physical performance (senior fitness test) | ||||
Δ Chair stand test (reps/30 s) | 7.76 ± 3.86 | 6.70 ± 4.54 | −0.760 | 0.447 |
Δ Bicep curl test (reps/30 s) | 6.10 ± 6.11 | 5.32 ± 5.40 | −0.380 | 0.704 |
Δ 2.44 m up-and-go test (s) | −0.27 ± 0.81 | 0.04 ± 0.74 | −0.626 | 0.531 |
Δ Chair sit-and-reach test (cm) | 3.50 ± 6.47 | 3.87 ± 5.48 | −0.118 | 0.906 |
Δ Back scratch test (cm) | 1.49 ± 6.90 | −0.35 ± 4.03 | −0.707 | 0.480 |
Δ 2 min step test (steps/2 min) | 34.81 ± 28.97 | 28.10 ± 16.90 | −0.652 | 0.514 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, G.S.; Lee, J.-h.; Byun, K.; Kim, D.-I.; Park, K.D. Effect of Intake of Leucine-Rich Protein Supplement in Parallel with Resistance Exercise on the Body Composition and Function of Healthy Adults. Nutrients 2022, 14, 4501. https://doi.org/10.3390/nu14214501
Oh GS, Lee J-h, Byun K, Kim D-I, Park KD. Effect of Intake of Leucine-Rich Protein Supplement in Parallel with Resistance Exercise on the Body Composition and Function of Healthy Adults. Nutrients. 2022; 14(21):4501. https://doi.org/10.3390/nu14214501
Chicago/Turabian StyleOh, Gyu Seok, Ju-hak Lee, Kyunghee Byun, Dong-Il Kim, and Ki Deok Park. 2022. "Effect of Intake of Leucine-Rich Protein Supplement in Parallel with Resistance Exercise on the Body Composition and Function of Healthy Adults" Nutrients 14, no. 21: 4501. https://doi.org/10.3390/nu14214501
APA StyleOh, G. S., Lee, J. -h., Byun, K., Kim, D. -I., & Park, K. D. (2022). Effect of Intake of Leucine-Rich Protein Supplement in Parallel with Resistance Exercise on the Body Composition and Function of Healthy Adults. Nutrients, 14(21), 4501. https://doi.org/10.3390/nu14214501