Effect of an (–)-Epicatechin Intake on Cardiometabolic Parameters—A Systematic Review of Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Study Selection, Data Extraction, and Risk of Bias Assessment
3. Results
3.1. Study Selection and Study Characteristics
3.2. Effects of (–)-Epicatechin on Cardiometabolic Biomarkers
3.2.1. Vascular Function
Acute Studies
Long-Term Studies
Acute-on-Chronic Study
3.2.2. Glucose and Lipid Metabolism
3.2.3. Inflammation
3.2.4. Antioxidant Status and Oxidative Stress
3.2.5. Appetite Sensations, Food Intake and Body Weight
Study (Country) | Design | n1 | Participants 2 | Intervention | Results 3 | Details |
---|---|---|---|---|---|---|
Schroeter et al. [22] (Germany) | RCT investigator-blind, crossover | 6 | Healthy men Exclusion criteria: diabetes, hypertension, hypercholesterolemia, acute inflammation, use of dietary supplements Gender (m/f): 6/0 Age: 25−32 y BMI: 19−23 kg/m² | I1 (n = 3): 1 mg EC/kg BW dissolved in 3 mL/kg BW of water I2 (n = 3): 2 mg EC/kg BW dissolved in 3 mL/kg BW of water C (n = 6): water only (3 mL/kg BW) | Vascular Parameters
| Instructions:
|
Loke et al. [23] (Australia) | RCT crossover, 1 wk washout | 12 | Healthy men Exclusion criteria: chronic diseases; > 20 g alcohol/d; use of medications, vitamin supplements or antioxidants Gender (m/f): 12/0 Age: 43 ± 15 y BMI: 25.1 ± 2.8 kg/m² SBP: 123 ± 7 mmHg DBP: 78 ± 7 mmHg TGs: 1.7 ± 1.6 mmol/L TC: 4.9 ± 1.0 mmol/L LDL-C: 2.7 ± 1.1 mmol/L HDL-C: 1.5 ± 0.8 mmol/L | I: 200 mg EC dissolved in 300 mL of water C: water only (300 mL) Setting: postprandial | Vascular Parameters
| Instructions:
|
Dower et al. [24] (The Netherlands) | RCT double-blind, crossover, 2 wk washout | 20 | Healthy male non-smokers (age: 40–80 y, BMI: >20 and ≤30 kg/m²) Exclusion criteria 4: diabetes mellitus; cardiovascular, gastrointestinal, or liver diseases; antihypertensive or cholesterol-lowering medication; adherence to a prescribed diet; unstable weight in the last 2 months; moderate physical activity (>10 h/wk) Gender (m/f): 20/0 Age: 62 ± 9 y BMI: 25.1 ± 2.1 kg/m² SBP: 122 ± 15 mmHg DBP: 74 ± 6 mmHg FMD: 3.0 ± 1.6 % AIx75: 19.3 ± 11.9 % | I: 100 mg EC (2 × 50 mg, 2 capsules) + 75 g white chocolate C: placebo (2 capsules) + 75 g white chocolate | Vascular Parameters
| Instructions:
|
Greenberg et al. [25] (USA) | RCT double-blind, crossover, 1 wk washout | 28 (30) | Healthy male non-smokers (BMI: 18.5–30.0 kg/m²) Exclusion criteria 4: intake of coffee, tea, sodas containing caffeine (>1 serving/d) or alcohol (≥2 drinks/d); vigorous physical activity; appetite-affecting medications; allergy to chocolate, cocoa, or pizza; weight changes (≥ 5% in the past 6 months) Gender (m/f): 28/0 Age: 23 ± 4 y BMI: 23.3 ± 2.4 kg/m² WC: 81.4 ± 7.4 cm WHR: 0.81 ± 0.05 | I: 1.0 mg EC/kg BW + alkalized, EC-free cocoa dissolved in 2.96 mL/kg BW of warm water C: alkalized, EC-free cocoa dissolved in 2.96 mL/kg BW of warm water | Appetite Sensations
| Instructions:
|
Greenberg et al. [25] (USA) | RCT double-blind, parallel | 14 | Subgroup of the crossover study (details see above) | I: 1.0 mg EC/kg BW + non-alkalized cocoa with 0.6 mg EC/kg BW dissolved in 2.96 mL/kg BW of warm water C: non-alkalized cocoa with 0.6 mg EC/kg BW dissolved in 2.96 mL/kg BW of warm water | Appetite Sensations
| See above |
Ward et al. [26] (Australia) | RCT double-blind, crossover, 1 wk washout | 14 (16) | Healthy non-smokers with impaired endothelial function (peak FMD: 3–8%) Exclusion criteria: chronic diseases, SBP: < 100 or > 160 mmHg, DBP: < 50 or > 100 mmHg, elevated cholesterol, BMI: < 18 or > 35 kg/m², antihypertensive or cholesterol-lowering medications, recent weight changes (> 6% of BW), food allergies, pregnancy or lactation Gender (m/f): 6/10 Age: 60 ± 8 y BMI: 24.7 ± 3.3 kg/m² SBP: 115 ± 9 mmHg DBP: 68 ± 7 mmHg FMD: 5.4 ± 1.2 % | I: 200 mg EC + 1 g maltodextrin dissolved in 200 mL of warm water C: 1 g maltodextrin dissolved in 200 mL of warm water Setting: postprandial | Vascular Parameters ↔ FMD peak and continuous response (t1 h, t4 h), SBP and DBP (t0.5 h, t1 h, t1.5 h, t2 h, t2.5 h, t3 h, t3.5 h, t4 h), plasma nitrite (t1 h, t4 h) | Instructions:
|
Alañón et al. [27] (United Kingdom) | RCT double-blind, crossover, 2 wk washout | 20 | Healthy male non-smokers (age: 18–40 y, BMI: 20.0–27.5 kg/m²) Exclusion criteria 4: cardiovascular-related (e.g., hypertension, BP: ≥ 140/90 mmHg) or metabolic (diabetes) disorders; abnormal hematological parameters (liver enzymes, hemoglobin, hematocrit and leukocyte counts); antihypertensive, anti-inflammatory medication or antibiotics within 2 months prior trial; extreme exercise routine; vegetarian or vegan diet; use of nutritional supplements within 2 months prior trial Gender (m/f): 20/0 Age: 23 ± 6 y BMI: 23.2 ± 6.8 kg/m² SBP: 124 ± 5 mmHg DBP: 66 ± 5 mmHg TGs: 1.0 ± 0.4 mmol/L TC: 4.5 ± 0.7 mmol/L FMD: 5.9 ± 1.1 % | I1: 0.1 mg EC/kg BW dissolved in 3 mL/kg BW of low-nitrate water I2: 0.5 mg EC/kg BW dissolved in 3 mL/kg BW of low-nitrate water I3: 1.0 mg EC/kg BW dissolved in 3 mL/kg BW of low-nitrate water C: water only | Vascular Parameters
| Instructions:
|
Study (Country) | Design | n1 | Participants 2 | Intervention | Duration | Results 3 | Details |
---|---|---|---|---|---|---|---|
Dower et al. [28] (The Netherlands) | RCT double-blind, crossover, 4 wk washout | 35 (37) | Healthy non-smokers (age: 40–80 y, BMI: 20–40 kg/m², SBP: 125–160 mmHg) 4 Exclusion criteria 4: diabetes mellitus; cardiovascular, gastrointestinal, or liver diseases; antihypertensive or cholesterol-lowering medication or corticosteroids; adherence to a prescribed diet; unstable weight in the last 2 months; moderate to vigorous physical activity (≥10 h/wk, ≥3 metabolic equivalent tasks); pregnancy or lactation Gender (m/f): 25/12 Age: 66 ± 8 y BMI: 26.7 ± 3.3 kg/m² SBP: 129 ± 14 mmHg DBP: 75 ± 10 mmHg FPG: 5.7 ± 0.7 mmol/L Insulin: 6.1 ± 3.8 mU/L HOMA-IR: 1.6 ± 1.0 TGs: 1.3 ± 0.6 mmol/L TC: 5.6 ± 0.9 mmol/L LDL-C: 3.5 ± 0.8 mmol/L HDL-C: 1.5 ± 0.4 mmol/L PWV: 12.9 ± 1.9 m/s AIx75: 25.9 ± 7.6 % | I: 100 mg EC (2 × 50 mg; 2 capsules, 1 for breakfast and dinner each) C: placebo (2 capsules) | 4 wk | Vascular Parameters
| Instructions: ο 1 wk prior and throughout the study period: no EC-rich foods (e.g., cocoa-containing products, red wine and apples), limit coffee and tea (≤ 1 cup/d)
|
Dower et al. [29] (The Netherlands) | For details (design, n, participants, intervention and duration), see Dower et al. [28] | Inflammation
| See Dower et al. [28] | ||||
Gutiérrez-Salmeán et al. [30] (India) | RCT double-blind, parallel | 30 | Hypertriglyceridemic (age: 18–55 y, TGs: 5.2–13.0 mmol/L) without pharmacologic treatment or with a stable dose of statins ≥ 6 wk prior to screening Exclusion criteria: high cardiovascular risk, arterial hypertension (SBP ≥ 140 and/or DBP ≥ 90 mmHg), stroke, transient ischemic attack, unstable cardiac disease, abnormal ECG, pancreatitis, uncontrolled diabetes (HbA1c > 9% and/or fasting glycemia > 200 mg/dL), hypoglycemia, renal failure (GFR < 60 mL/min), HIV, hepatitis B or C infection or coagulopathy; ≥ 14 alcoholic drinks/wk; use of insulin, anticoagulant, anti-platelet or anti-clotting therapy (e.g., daily aspirin, coumadin), atypical antipsychotics, beta-blockers, glucocorticoids, isotretinoin, and tamoxifene; participation in another clinical trial (≤ 30 d) Gender (m/f): n. a. Age: 18–55 y BMI: n. a. SBP: 122 ± 6 mmHg DBP: 81 ± 4 mmHg FPG: 8.3 ± 3.4 mmol/L Fructosamine: 314.3 ± 107.3 μmol/L TGs: 3.2 ± 1.1 mmol/L TC: 5.31 ± 12.6 mmol/L LDL-C: 3.5 ± 1.1 mmol/L HDL-C: 4.4 ± 1.1 mmol/L | I (n = 20): 100 mg EC/d (4 × 25 mg, 2 capsules each 30 min before lunch and dinner) C (n = 10): placebo capsules | 4 wk | Vascular Parameters 5
| Instructions:
|
van den Eynde et al. [31] (The Netherlands) | For details (design, n, participants, intervention and duration), see Dower et al. [28] | Glucose Metabolism ↔ Plasma dicarbonyls (MGO, GO, 3-DG); plasma AGEs (free and/or protein-bound CML, CEL, MG-H1, pentosidine) | See Dower et al. [28] | ||||
Kirch et al. [20] (Germany) | RCT double-blind, crossover, 2 wk washout | 47 (48) | Overweight or obese (BMI: ≥ 25 kg/m²) non-smokers at cardiovascular risk (SBP ≥ 130 or DBP ≥ 85 mmHg, and FPG > 5.55 mmol/L or fasting TGs > 1.69 mmol/L or TC > 5.2 mmol/L) Exclusion criteria: chronic diseases (e.g., cardiovascular, hepatic, renal, pulmonary), intake of antihypertensive/glucose- or cholesterol-lowering medications, regular use of nutritional supplements, planned weight reduction, drug or alcohol dependency, pregnancy or lactation Gender (m/f): 25/22 Age: 36 ± 14 y BMI: 32.8 ± 5.6 kg/m² SBP: 135 ± 12 mmHg DBP: 89 ± 9 mmHg FPG: 5.8 ± 0.6 mmol/L Insulin: 12.5 ± 6.8 mU/L HOMA-IR: 3.3 ± 1.9 TGs: 2.0 ± 1.1 mmol/L TC: 5.9 ± 1.0 mmol/L LDL-C: 3.7 ± 0.8 mmol/L HDL-C: 1.3 ± 0.3 mmol/L | I: 25 mg EC/d (capsule) C: placebo (capsule) | 2 wk | Vascular Parameters
| Instructions:
|
Study (Country) | Design | n1 | Participants | Intervention | Results 2 | Details |
---|---|---|---|---|---|---|
Dower et al. [28] (The Netherlands) | RCT double-blind, crossover, 4 wk washout | 35 (37) | See Table 2 | Acute-on-chronic: at the end of the long-term treatment (4 wk,Table 2), subjects received an additional daily dose (see below) I: 100 mg EC (2 capsules) C: placebo (2 capsules) | Vascular Parameters
| See Table 2 |
3.3. Risk of Bias Assessment
Acute Studies | Long-Term Studies | Acute-on-Chronic Study | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Schroeter et al. [22] | Loke et al. [23] | Dower et al. [24] | Greenberg et al. [25] (crossover design) | Greenberg et al. [25] (parallel design) | Ward et al. [26] | Alañón et al. [27] | Dower et al. [28]; Dower et al. [29]; van den Eynde et al. [31] | Gutiérrez-Salmeán et al. [30] | Kirch et al. [20] | Dower et al. [28] | |
Study design | |||||||||||
Controlled | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Crossover | ✓ | ✓ | ✓ | ✓ | ✕ | ✓ | ✓ | ✓ | ✕ | ✓ | ✓ |
Parallel group | ✕ | ✕ | ✕ | ✕ | ✓ | ✕ | ✕ | ✕ | ✓ | ✕ | ✕ |
Randomized | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
List generated before study started | ? | ✓ | ✓ | ? | ? | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Adequate randomization method | ? | ✓ | ✓ | ? | ? | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Allocation concealment | ? | ? | ? | ? | ? | ? | ? | ✓ | ? | ? | ✓ |
Blinded | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Participants | ? | ? | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Investigators | ✓ | ? | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Outcome assessments | ? | ? | ✓ | ✓ | ✓ | ✓ | ? | ✓ | ? | ✓1 | ✓ |
Prior registration of the study protocol | ✕ | ✕ | ✓ | ✓ | ✕ | ✕ | ✓ | ✓ | ✕ | ✓ | ✕ |
Methods | |||||||||||
Details on intervention | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Details on the investigation of outcome markers | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Considering potential confounders | |||||||||||
Compliance | ✕ | ✕ | ✕ | ✓ | ✓ | ✕ | ✕ | ✓ | ✕ | ✓ | ✕ |
Nutritional behavior | ✕ | (✓) | (✓) | ✓ | ✓ | (✓) | (✓) | (✓) | (✓) | ✓ | (✓) |
Physical activity | ✕ | (✓) | (✓) | (✓) | (✓) | ✕ | (✓) | (✓) | ✕ | (✓) | (✓) |
Body weight/body composition | ✕/✕ | ✕/✕ | ✕/✕ | ✕/✕ | ✕/✕ | ✕/✕ | ✕/✕ | ✓/✕ | ✕/✕ | ✓/✓ | ✓/✕ |
Medication | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Statistics | |||||||||||
Sample size calculation performed | ✕ | ✕ | ✓2 | ✕3 | ✕ | ✕ | ✓2 | ✓2 | ✓4 | ✓5 | ✕ |
Details on statistical analysis described | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Intention-to-treat analysis | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Per-protocol analysis | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ | ✕ |
Results | |||||||||||
Dropout, reasons reported | ✕, N/R | ✕, N/R | ✕, N/R | ✓, ✕ | ? | ✓, ✓ | ✕, N/R | ✓, ✓ | ✕, N/R | ✓, ✓ | ✓, ✓ |
Outcomes reported according to registration | − | − | ✓6 | ✓7 | − | − | ✓8 | ✓9 | − | ✓10 | − |
4. Discussion
4.1. Cardiometabolic Efficacy
4.2. (−)-Epicatechin—Not (Solely) Responsible for the Well-Known Effects of Cocoa?
4.3. Study Quality and Consideration of Potential Confounders
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 4 July 2022).
- Hooper, L.; Kay, C.; Abdelhamid, A.; Kroon, P.A.; Cohn, J.S.; Rimm, E.B.; Cassidy, A. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: A systematic review and meta-analysis of randomized trials. Am. J. Clin. Nutr. 2012, 95, 740–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrime, M.G.; Bauer, S.R.; McDonald, A.C.; Chowdhury, N.H.; Coltart, C.E.M.; Ding, E.L. Flavonoid-rich cocoa consumption affects multiple cardiovascular risk factors in a meta-analysis of short-term studies. J. Nutr. 2011, 141, 1982–1988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Zhang, I.; Li, A.; Manson, J.E.; Sesso, H.D.; Wang, L.; Liu, S. Cocoa flavanol intake and biomarkers for cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials. J. Nutr. 2016, 146, 2325–2333. [Google Scholar] [CrossRef] [Green Version]
- Ried, K.; Sullivan, T.R.; Fakler, P.; Frank, O.R.; Stocks, N.P. Effect of cocoa on blood pressure. Cochrane Database Syst. Rev. 2012, 8, CD008893. [Google Scholar] [CrossRef]
- Tokede, O.A.; Gaziano, J.M.; Djoussé, L. Effects of cocoa products/dark chocolate on serum lipids: A meta-analysis. Eur. J. Clin. Nutr. 2011, 65, 879–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehrabani, S.; Arab, A.; Mohammadi, H.; Amani, R. The effect of cocoa consumption on markers of oxidative stress: A systematic review and meta-analysis of interventional studies. Complementary Ther. Med. 2020, 48, 102240. [Google Scholar] [CrossRef] [PubMed]
- Kord-Varkaneh, H.; Ghaedi, E.; Nazary-Vanani, A.; Mohammadi, H.; Shab-Bidar, S. Does cocoa/dark chocolate supplementation have favorable effect on body weight, body mass index and waist circumference? A systematic review, meta-analysis and dose-response of randomized clinical trials. Crit. Rev. Food Sci. Nutr. 2019, 59, 2349–2362. [Google Scholar] [CrossRef]
- Hernández-González, T.; González-Barrio, R.; Escobar, C.; Madrid, J.A.; Periago, M.J.; Collado, M.C.; Scheer, F.A.J.L.; Garaulet, M. Timing of chocolate intake affects hunger, substrate oxidation, and microbiota: A randomized controlled trial. FASEB J. 2021, 35, e21649. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific opinion on the modification of the authorisation of a health claim related to cocoa flavanols and maintenance of normal endothelium dependent vasodilation pursuant to Article 13(5) of Regulation (EC) No 1924/2006 following request in accordance with Article 19 of Regulation (EC) No 1924/2006. EFSA J. 2014, 12, 3654. [Google Scholar] [CrossRef] [Green Version]
- Sesso, H.D.; Manson, J.E.; Aragaki, A.K.; Rist, P.M.; Johnson, L.G.; Friedenberg, G.; Copeland, T.; Clar, A.; Mora, S.; Moorthy, M.V.; et al. Effect of cocoa flavanol supplementation for the prevention of cardiovascular disease events: The COcoa Supplement and Multivitamin Outcomes Study (COSMOS) randomized clinical trial. Am. J. Clin. Nutr. 2022, 115, 1490–1500. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture (USDA). USDA Database for the Flavonoid Content of Selected Foods. Release 3.2 (November 2015). Available online: https://data.nal.usda.gov/dataset/usda-database-flavonoid-content-selected-foods-release-32-november-2015 (accessed on 4 July 2022).
- Ottaviani, J.I.; Momma, T.Y.; Heiss, C.; Kwik-Uribe, C.; Schroeter, H.; Keen, C.L. The stereochemical configuration of flavanols influences the level and metabolism of flavanols in humans and their biological activity in vivo. Free Radic. Biol. Med. 2011, 50, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Ellinger, S.; Reusch, A.; Stehle, P.; Helfrich, H.-P. Epicatechin ingested via cocoa products reduces blood pressure in humans: A nonlinear regression model with a Bayesian approach. Am. J. Clin. Nutr. 2012, 95, 1365–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraga, C.G.; Oteiza, P.I.; Galleano, M. Plant bioactives and redox signaling: (–)-Epicatechin as a paradigm. Mol. Asp. Med. 2018, 61, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Cremonini, E.; Fraga, C.G.; Oteiza, P.I. (–)-Epicatechin in the control of glucose homeostasis: Involvement of redox-regulated mechanisms. Free Radic. Biol. Med. 2019, 130, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Cremonini, E.; Iglesias, D.E.; Kang, J.; Lombardo, G.E.; Mostofinejad, Z.; Wang, Z.; Zhu, W.; Oteiza, P.I. (−)-Epicatechin and the comorbidities of obesity. Arch. Biochem. Biophys. 2020, 690, 108505. [Google Scholar] [CrossRef]
- Osakabe, N. Flavan 3-ols improve metabolic syndrome risk factors: Evidence and mechanisms. J. Clin. Biochem. Nutr. 2013, 52, 186–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef]
- Kirch, N.; Berk, L.; Liegl, Y.; Adelsbach, M.; Zimmermann, B.F.; Stehle, P.; Stoffel-Wagner, B.; Ludwig, N.; Schieber, A.; Helfrich, H.P.; et al. A nutritive dose of pure (−)-epicatechin does not beneficially affect increased cardiometabolic risk factors in overweight-to-obese adults: A randomized, placebo-controlled, double-blind crossover study. Am. J. Clin. Nutr. 2018, 107, 948–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [Green Version]
- Schroeter, H.; Heiss, C.; Balzer, J.; Kleinbongard, P.; Keen, C.L.; Hollenberg, N.K.; Sies, H.; Kwik-Uribe, C.; Schmitz, H.H.; Kelm, M. (−)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc. Natl. Acad. Sci. USA 2006, 203, 1024–1029. [Google Scholar] [CrossRef]
- Loke, W.M.; Hodgson, J.M.; Proudfoot, J.M.; McKinley, A.J.; Puddey, I.B.; Croft, K.D. Pure dietary flavonoids quercetin and (−)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am. J. Clin. Nutr. 2008, 88, 1018–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dower, J.I.; Geleijnse, J.M.; Kroon, P.A.; Philo, M.; Mensink, M.; Kromhout, D.; Hollman, P.C.H. Does epicatechin contribute to the acute vascular function effects of dark chocolate? A randomized, crossover study. Mol. Nutr. Food Res. 2016, 60, 2379–2386. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, J.A.; O’Donnell, R.; Shurpin, M.; Kordunova, D. Epicatechin, procyanidins, cocoa, and appetite: A randomized controlled trial. Am. J. Clin. Nutr. 2016, 104, 613–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, N.C.; Hodgson, J.M.; Woodman, R.J.; Zimmermann, D.; Poquet, L.; Leveques, A.; Actis-Goretta, L.; Puddey, I.B.; Croft, K.D. Acute effects of chlorogenic acids on endothelial function and blood pressure in healthy men and women. Food Funct. 2016, 7, 2197–2203. [Google Scholar] [CrossRef] [Green Version]
- Alañón, M.E.; Castle, S.M.; Serra, G.; Lévèques, A.; Poquet, L.; Actis-Goretta, L.; Spencer, J.P.E. Acute study of dose-dependent effects of (−)-epicatechin on vascular function in healthy male volunteers: A randomized controlled trial. Clin. Nutr. 2020, 39, 746–754. [Google Scholar] [CrossRef]
- Dower, J.I.; Geleijnse, J.M.; Gijsbers, L.; Zock, P.L.; Kromhout, D.; Hollman, P.C.H. Effects of the pure flavonoids epicatechin and quercetin on vascular function and cardiometabolic health: A randomized, double-blind, placebo-controlled, crossover trial. Am. J. Clin. Nutr. 2015, 101, 914–921. [Google Scholar] [CrossRef] [Green Version]
- Dower, J.I.; Geleijnse, J.M.; Gijsbers, L.; Schalkwijk, C.; Kromhout, D.; Hollman, P.C. Supplementation of the pure flavonoids epicatechin and quercetin affects some biomarkers of endothelial dysfunction and inflammation in (pre)hypertensive adults: A randomized double-blind, placebo-controlled, crossover trial. J. Nutr. 2015, 145, 1459–1463. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Salmeán, G.; Meaney, E.; Lanaspa, M.A.; Cicerchi, C.; Johnson, R.J.; Dugar, S.; Taub, P.; Ramírez-Sánchez, I.; Villarreal, F.; Schreiner, G.; et al. A randomized, placebo-controlled, double-blind study on the effects of (−)-epicatechin on the triglyceride/HDLc ratio and cardiometabolic profile of subjects with hypertriglyceridemia: Unique in vitro effects. Int. J. Cardiol. 2016, 223, 500–506. [Google Scholar] [CrossRef]
- Van den Eynde, M.D.G.; Geleijnse, J.M.; Scheijen, J.L.J.M.; Hanssen, N.M.J.; Dower, J.I.; Afman, L.A.; Stehouwer, C.D.A.; Hollman, P.C.H.; Schalkwijk, C.G. Quercetin, but not epicatechin, decreases plasma concentrations of methylglyoxal in adults in a randomized, double-blind, placebo-controlled, crossover trial with pure flavonoids. J. Nutr. 2018, 148, 1911–1916. [Google Scholar] [CrossRef]
- Ottaviani, J.I.; Borges, G.; Momma, T.Y.; Spencer, J.P.E.; Keen, C.L.; Crozier, A.; Schroeter, H. The metabolome of [2-14C](−)-epicatechin in humans: Implications for the assessment of efficacy, safety, and mechanisms of action of polyphenolic bioactives. Sci. Rep. 2016, 6, 29034. [Google Scholar] [CrossRef]
- Parker, B.A.; Ridout, S.J.; Proctor, D.N. Age and flow-mediated dilation: A comparison of dilatory responsiveness in the brachial and popliteal arteries. Am. J. Physiol.-Heart Circ. Physiol. 2006, 291, H3043–H3049. [Google Scholar] [CrossRef] [PubMed]
- Ottaviani, J.I.; Momma, T.Y.; Kuhnle, G.K.; Keen, C.L.; Schroeter, H. Structurally related (−)-epicatechin metabolites in humans: Assessment using de novo chemically synthesized authentic standards. Free Radic. Biol. Med. 2012, 52, 1403–1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esser, D.; Geleijnse, J.M.; Matualatupauw, J.C.; Dower, J.I.; Kromhout, D.; Hollman, P.C.H.; Afman, L.A. Pure flavonoid epicatechin and whole genome gene expression profiles in circulating immune cells in adults with elevated blood pressure: A randomised double-blind, placebo-controlled, crossover trial. PLoS ONE 2018, 13, e0194229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlachojannis, J.; Erne, P.; Zimmermann, B.; Chrubasik-Hausmann, S. The impact of cocoa flavanols on cardiovascular health. Phytother. Res. 2016, 30, 1641–1657. [Google Scholar] [CrossRef]
- Sansone, R.; Ottaviani, J.I.; Rodriguez-Mateos, A.; Heinen, Y.; Noske, D.; Spencer, J.P.; Crozier, A.; Merx, M.W.; Kelm, M.; Schroeter, H.; et al. Methylxanthines enhance the effects of cocoa flavanols on cardiovascular function: Randomized, double-masked controlled studies. Am. J. Clin. Nutr. 2017, 105, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Smolders, L.; Mensink, R.P.; Boekschoten, M.V.; de Ridder, R.J.J.; Plat, J. Theobromine does not affect postprandial lipid metabolism and duodenal gene expression, but has unfavorable effects on postprandial glucose and insulin responses in humans. Clin. Nutr. 2018, 37, 719–727. [Google Scholar] [CrossRef]
- Neufingerl, N.; Zebregs, Y.E.M.P.; Schuring, E.A.H.; Trautwein, E.A. Effect of cocoa and theobromine consumption on serum HDL-cholesterol concentrations: A randomized controlled trial. Am. J. Clin. Nutr. 2013, 97, 1201–1209. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Mateos, A.; Weber, T.; Skene, S.S.; Ottaviani, J.I.; Crozier, A.; Kelm, M.; Schroeter, H.; Heiss, C. Assessing the respective contributions of dietary flavanol monomers and procyanidins in mediating: Randomized, controlled, double-masked intervention trial cardiovascular effects in humans. Am. J. Clin. Nutr. 2018, 108, 1229–1237. [Google Scholar] [CrossRef] [Green Version]
- Hariton, E.; Locascio, J.J. Randomised controlled trials—The gold standard for effectiveness research. BJOG 2018, 125, 1716. [Google Scholar] [CrossRef] [Green Version]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. BMJ 2010, 340, c332. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dicks, L.; Haddad, Z.; Deisling, S.; Ellinger, S. Effect of an (–)-Epicatechin Intake on Cardiometabolic Parameters—A Systematic Review of Randomized Controlled Trials. Nutrients 2022, 14, 4500. https://doi.org/10.3390/nu14214500
Dicks L, Haddad Z, Deisling S, Ellinger S. Effect of an (–)-Epicatechin Intake on Cardiometabolic Parameters—A Systematic Review of Randomized Controlled Trials. Nutrients. 2022; 14(21):4500. https://doi.org/10.3390/nu14214500
Chicago/Turabian StyleDicks, Lisa, Zeina Haddad, Stefanie Deisling, and Sabine Ellinger. 2022. "Effect of an (–)-Epicatechin Intake on Cardiometabolic Parameters—A Systematic Review of Randomized Controlled Trials" Nutrients 14, no. 21: 4500. https://doi.org/10.3390/nu14214500
APA StyleDicks, L., Haddad, Z., Deisling, S., & Ellinger, S. (2022). Effect of an (–)-Epicatechin Intake on Cardiometabolic Parameters—A Systematic Review of Randomized Controlled Trials. Nutrients, 14(21), 4500. https://doi.org/10.3390/nu14214500