Diagnostic Utility of Temporal Muscle Thickness as a Monitoring Tool for Muscle Wasting in Neurocritical Care
Abstract
:1. Introduction
2. Materials and Methods
2.1. Screening and Eligibility
2.2. Clinical Management
2.3. Imaging Protocols
2.4. Sample Size and Statistical Analysis
3. Results
3.1. Study Demographics and Nutritional Characteristics
3.2. Muscular Atrophy Characteristics
3.3. Inter-Rater Agreement
3.4. Correlation of TMT Muscle Loss between Ultrasound and CT Measurement
3.5. Analysis of Variance for Possible Confounders
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Appleton, R.T.; Kinsella, J.; Quasim, T. The Incidence of Intensive Care Unit-Acquired Weakness Syndromes: A Systematic Review. J. Intensive Care Soc. 2015, 16, 126–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kress, J.P.; Hall, J.B. ICU-Acquired Weakness and Recovery from Critical Illness. N. Engl. J. Med. 2014, 370, 1626–1635. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Xu, C.; Ma, X.; Zhang, X.; Xie, P. Intensive Care Unit-Acquired Weakness: A Review of Recent Progress with a Look Toward the Future. Front. Med. 2020, 7, 559789. [Google Scholar] [CrossRef] [PubMed]
- Curcio, F.; Ferro, G.; Basile, C.; Liguori, I.; Parrella, P.; Pirozzi, F.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Tocchetti, C.G.; et al. Biomarkers in Sarcopenia: A Multifactorial Approach. Exp. Gerontol. 2016, 85, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Bear, D.; Patel, B.; Puthucheary, Z. Clinical Application of Ultrasound in Intensive Care Unit-Acquired Weakness. Ultraschall Med.-Eur. J. Ultrasound 2020, 41, 244–266. [Google Scholar] [CrossRef] [PubMed]
- Formenti, P.; Umbrello, M.; Coppola, S.; Froio, S.; Chiumello, D. Clinical Review: Peripheral Muscular Ultrasound in the ICU. Ann. Intensive Care 2019, 9, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanhorebeek, I.; Latronico, N.; Van den Berghe, G. ICU-Acquired Weakness. Intensive Care Med. 2020, 46, 637–653. [Google Scholar] [CrossRef]
- Liu, F.; Xing, D.; Zha, Y.; Wang, L.; Dong, W.; Li, L.; Gong, W.; Hu, L. Predictive Value of Temporal Muscle Thickness Measurements on Cranial Magnetic Resonance Images in the Prognosis of Patients with Primary Glioblastoma. Front. Neurol. 2020, 11, 523292. [Google Scholar] [CrossRef] [PubMed]
- Furtner, J.; Nenning, K.-H.; Roetzer, T.; Gesperger, J.; Seebrecht, L.; Weber, M.; Grams, A.; Leber, S.L.; Marhold, F.; Sherif, C.; et al. Evaluation of the Temporal Muscle Thickness as an Independent Prognostic Biomarker in Patients with Primary Central Nervous System Lymphoma. Cancers 2021, 13, 566. [Google Scholar] [CrossRef] [PubMed]
- Onodera, H.; Mogamiya, T.; Matsushima, S.; Sase, T.; Kawaguchi, K.; Nakamura, H.; Sakakibara, Y. High Protein Intake after Subarachnoid Hemorrhage Improves Oral Intake and Temporal Muscle Volume. Clin. Nutr. 2021, 40, 4187–4191. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, Y.; Yoshida, M.; Sato, A.; Fujimoto, Y.; Minematsu, T.; Sugama, J.; Sanada, H. A Change in Temporal Muscle Thickness Is Correlated with Past Energy Adequacy in Bedridden Older Adults: A Prospective Cohort Study. BMC Geriatr. 2021, 21, 182. [Google Scholar] [CrossRef]
- Anand, R.K.; Bhattacharjee, A.; Baidya, D.K.; Subramaniam, R.; Rewari, V.; Ray, B.R.; Khanna, P.; Jana, M. Feasibility of anterior temporalis muscle ultrasound for assessing muscle wasting in ICU: A prospective cohort study. J. Ultrasound. 2022; Epub ahead of print. [Google Scholar] [CrossRef]
- Freitag, E.; Edgecombe, G.; Baldwin, I.; Cottier, B.; Heland, M. Determination of Body Weight and Height Measurement for Critically Ill Patients Admitted to the Intensive Care Unit: A Quality Improvement Project. Aust. Crit. Care 2010, 23, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.J.; Park, S.-H.; Jeong, H.-B.; Ha, E.J.; Cho, W.S.; Kang, H.-S.; Kim, J.E.; Ko, S.-B. Optimizing Nitrogen Balance Is Associated with Better Outcomes in Neurocritically Ill Patients. Nutrients 2020, 12, 3137. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN Guideline on Clinical Nutrition in the Intensive Care Unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galindo Martín, C.A.; Monares Zepeda, E.; Lescas Méndez, O.A. Bedside Ultrasound Measurement of Rectus Femoris: A Tutorial for the Nutrition Support Clinician. J. Nutr. Metab. 2017, 2017, 2767232. [Google Scholar] [CrossRef] [PubMed]
- Pardo, E.; El Behi, H.; Boizeau, P.; Verdonk, F.; Alberti, C.; Lescot, T. Reliability of Ultrasound Measurements of Quadriceps Muscle Thickness in Critically Ill Patients. BMC Anesthesiol. 2018, 18, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, P.-H.; Chen, Y.-J.; Chang, K.-V.; Wu, W.-T.; Özçakar, L. Ultrasound Measurements of Superficial and Deep Masticatory Muscles in Various Postures: Reliability and Influencers. Sci. Rep. 2020, 10, 14357. [Google Scholar] [CrossRef]
- Katsuki, M.; Yamamoto, Y.; Uchiyama, T.; Wada, N.; Kakizawa, Y. Clinical Characteristics of Aneurysmal Subarachnoid Hemorrhage in the Elderly over 75; Would Temporal Muscle Be a Potential Prognostic Factor as an Indicator of Sarcopenia? Clin. Neurol. Neurosurg. 2019, 186, 105535. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 3 June 2022).
- Terwee, C.B.; Bot, S.D.M.; de Boer, M.R.; van der Windt, D.A.W.M.; Knol, D.L.; Dekker, J.; Bouter, L.M.; de Vet, H.C.W. Quality Criteria Were Proposed for Measurement Properties of Health Status Questionnaires. J. Clin. Epidemiol. 2007, 60, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Willemse, L.; Wouters, E.J.M.; Pisters, M.F.; Vanwanseele, B. Intra-Assessor Reliability and Measurement Error of Ultrasound Measures for Foot Muscle Morphology in Older Adults Using a Tablet-Based Ultrasound Machine. J. Foot Ankle Res. 2022, 15, 6. [Google Scholar] [CrossRef] [PubMed]
- Pirri, C.; Fede, C.; Fan, C.; Guidolin, D.; Macchi, V.; De Caro, R.; Stecco, C. Ultrasound Imaging of Head/Neck Muscles and Their Fasciae: An Observational Study. Front. Rehabil. Sci. 2021, 2, 743553. [Google Scholar] [CrossRef] [PubMed]
- Puthucheary, Z.A.; Rawal, J.; McPhail, M.; Connolly, B.; Ratnayake, G.; Chan, P.; Hopkinson, N.S.; Padhke, R.; Dew, T.; Sidhu, P.S.; et al. Acute Skeletal Muscle Wasting in Critical Illness. JAMA 2013, 310, 1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parry, S.M.; El-Ansary, D.; Cartwright, M.S.; Sarwal, A.; Berney, S.; Koopman, R.; Annoni, R.; Puthucheary, Z.; Gordon, I.R.; Morris, P.E.; et al. Ultrasonography in the Intensive Care Setting Can Be Used to Detect Changes in the Quality and Quantity of Muscle and Is Related to Muscle Strength and Function. J. Crit. Care 2015, 30, 1151.e9–1151.e14. [Google Scholar] [CrossRef] [PubMed]
- Wollersheim, T.; Woehlecke, J.; Krebs, M.; Hamati, J.; Lodka, D.; Luther-Schroeder, A.; Langhans, C.; Haas, K.; Radtke, T.; Kleber, C.; et al. Dynamics of Myosin Degradation in Intensive Care Unit-Acquired Weakness during Severe Critical Illness. Intensive Care Med. 2014, 40, 528–538. [Google Scholar] [CrossRef] [PubMed]
- Korfage, J.A.M.; Van Eijden, T.M.G.J. Regional Differences in Fibre Type Composition in the Human Temporalis Muscle. J. Anat. 1999, 194, 355–362. [Google Scholar] [CrossRef]
- Sakai, K.; Katayama, M.; Nakajima, J.; Inoue, S.; Koizumi, K.; Okada, S.; Suga, S.; Nomura, T.; Matsuura, N. Temporal Muscle Thickness Is Associated with the Severity of Dysphagia in Patients with Acute Stroke. Arch. Gerontol. Geriatr. 2021, 96, 104439. [Google Scholar] [CrossRef]
- Steindl, A.; Leitner, J.; Schwarz, M.; Nenning, K.-H.; Asenbaum, U.; Mayer, S.; Woitek, R.; Weber, M.; Schöpf, V.; Berghoff, A.S.; et al. Sarcopenia in Neurological Patients: Standard Values for Temporal Muscle Thickness and Muscle Strength Evaluation. J. Clin. Med. 2020, 9, 1272. [Google Scholar] [CrossRef]
- Bhatt, R.; Khanna, P. Role of Ultrasound in Neurocritical Care. J. Neuroanaesth. Crit. Care 2021, 08, 106–111. [Google Scholar] [CrossRef]
- Katsuki, M.; Kakizawa, Y.; Nishikawa, A.; Yamamoto, Y.; Uchiyama, T.; Agata, M.; Wada, N.; Kawamura, S.; Koh, A. Temporal Muscle and Stroke—A Narrative Review on Current Meaning and Clinical Applications of Temporal Muscle Thickness, Area, and Volume. Nutrients 2022, 14, 687. [Google Scholar] [CrossRef]
- Perkisas, S.; Baudry, S.; Bauer, J.; Beckwée, D.; De Cock, A.-M.; Hobbelen, H.; Jager-Wittenaar, H.; Kasiukiewicz, A.; Landi, F.; Marco, E.; et al. Application of Ultrasound for Muscle Assessment in Sarcopenia: Towards Standardized Measurements. Eur. Geriatr. Med. 2018, 9, 739–757. [Google Scholar] [CrossRef]
Parameter | n = 40 |
---|---|
Age (years), median [IQR] | 60 [52.75–73.5] |
Male, n (%) | 31 (78%) |
BMI (kg/m2), mean (SD) | 29.3 (4.3) |
APACHE II score at ICU admission, median [IQR] | 12 [9–18] |
NUTRIC score at ICU admission, median [IQR] | 3 [2–5] |
pMRS = 0 upon admission, n (%) | 34 (85%) |
Heckmatt score upon admission, median [IQR] | 2 [2–3] |
ICU admission diagnosis, n (%) | |
Intracerebral hemorrhage | 12 (20%) |
Ischemic stroke | 10 (25%) |
Subarachnoid hemorrhage | 9 (22.5%) |
Meningitis/Encephalitis/other neuro-infectious disease | 6 (15%) |
Status epilepticus | 2 (5%) |
Cerebral venous sinus thrombosis | 1 (2.5%) |
Time to baseline ultrasound measurement, days, mean (SD) | 0.98 (0.77) |
ICU LOS, days, median [IQR] | 20 [13–34] |
Duration of mechanical ventilation, days, median (IQR) | 11.5 [8.5–22.25] |
Hospital LOS days, median [IQR] | 24 [19–38] |
ICU mortality, n (%) | 4 (10%) |
Nutritional parameters: | |
Mean achieved calories from day 1 to 10 in kcal/day (SD) | 983.05 (310.12) |
Mean achieved protein from day 1 to 10 in g/kg/day (SD) | 0.66 (0.42) |
Nitrogen balance on day 10 in g/day (SD) | −8.5 (7.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maskos, A.; Schmidbauer, M.L.; Kunst, S.; Rehms, R.; Putz, T.; Römer, S.; Iankova, V.; Dimitriadis, K. Diagnostic Utility of Temporal Muscle Thickness as a Monitoring Tool for Muscle Wasting in Neurocritical Care. Nutrients 2022, 14, 4498. https://doi.org/10.3390/nu14214498
Maskos A, Schmidbauer ML, Kunst S, Rehms R, Putz T, Römer S, Iankova V, Dimitriadis K. Diagnostic Utility of Temporal Muscle Thickness as a Monitoring Tool for Muscle Wasting in Neurocritical Care. Nutrients. 2022; 14(21):4498. https://doi.org/10.3390/nu14214498
Chicago/Turabian StyleMaskos, Andreas, Moritz L. Schmidbauer, Stefan Kunst, Raphael Rehms, Timon Putz, Sebastian Römer, Vassilena Iankova, and Konstantinos Dimitriadis. 2022. "Diagnostic Utility of Temporal Muscle Thickness as a Monitoring Tool for Muscle Wasting in Neurocritical Care" Nutrients 14, no. 21: 4498. https://doi.org/10.3390/nu14214498
APA StyleMaskos, A., Schmidbauer, M. L., Kunst, S., Rehms, R., Putz, T., Römer, S., Iankova, V., & Dimitriadis, K. (2022). Diagnostic Utility of Temporal Muscle Thickness as a Monitoring Tool for Muscle Wasting in Neurocritical Care. Nutrients, 14(21), 4498. https://doi.org/10.3390/nu14214498