Fibre Intake in Chronic Kidney Disease: What Fibre Should We Recommend?
Abstract
:1. Introduction
2. Fibre: Definition and Sources
3. Recommended Dose
4. Fibre Types, Classification
5. Benefits of Fibre for Chronic Kidney Patients
5.1. Preventive Effect, Acting on CKD Risk Factors
- -
- Improves blood pressure. Several mechanisms may explain this action, such as modifying arterial contraction due to its effect on the smooth muscle of the artery, influencing the activity of the angiotensin-converting enzyme (ACE) or retaining minerals such as potassium and magnesium in its matrix [5,20].
- -
- Improves glycemic control. In diabetic patients, fibre can delay gastric emptying, reduce glucose absorption after meals, give a lower glycemic response, produce greater satiety, and improve insulin sensitivity. Diabetes mellitus is one of the leading causes of CKD, and improving glycemic control is a fundamental goal in these patients [21,22].
- -
- Improves the lipid profile. Soluble fibres with high viscosity decrease cholesterol absorption and can bind to bile acids, increasing their faecal excretion. Bacterial fermentation in the colon produces short-chain fatty acids that can inhibit cholesterol production in the liver. As a result, total and LDL cholesterol are reduced [18].
- -
- Improves weight control Some factors that can influence weight loss are: increased satiety, helping to reduce energy intake, the slower absorption of some nutrients in the intestine, helping reduce inflammation, and improving constipation. Current guidelines recommend increasing fruit and vegetable intake at stages 1–4 to decrease body weight [5].
5.2. Changes in the Composition of the Intestinal Microbiota
5.3. Effect on Inflammation and Oxidative Stress
5.4. Reduced Metabolic Acidosis
5.5. Laxative Effect
6. Contribution of Nutrients. Influence on the Composition of the Diet
6.1. Regarding Macronutrients
- -
- Carbohydrates: High-fibre foods are rich in complex carbohydrates, providing a healthy energy source and a suitable substrate for saccharolytic fermentation [19].
- -
- Lipids: By increasing the consumption of vegetables, the consumption of saturated and trans fats decreases and that of monounsaturated and polyunsaturated fats increases. Vegetable fats (except coconut oil) have a more favourable lipid profile for preventing cardiovascular events [36].
- -
- Proteins: The ratio between the amount of protein and fibre ingested can increase the risk of kidney disease because both nutrients have opposite effects on cardiometabolic risk factors. Hence, an excess of protein in the diet concerning the intake of fibre increases cardiovascular events in these patients [26,37].
6.2. Regarding Micronutrients
6.3. Concerning Other Components
7. Evidence of These Effects on Actual Kidney Function
8. Recommendations to Increase Fibre Consumption
8.1. Increased Consumption of Individual High-Fibre Foods
8.2. Fortified Foods/Supplements
8.3. High-Fibre Dietary Patterns
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- AIRG-E, E.K.P.F.; ALCER, F.; REDINREN, R.; SET, O. The burden of disease invisible to research funders. Nefrología 2022, 42, 65–84. [Google Scholar]
- GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [Green Version]
- Thomas, B.; Matsushita, K.; Abate, K.H.; Al-Aly, Z.; Ärnlöv, J.; Asayama, K.; Atkins, R.; Badawi, A.; Ballew, S.H.; Banerjee, A.; et al. Global Cardiovascular and Renal Outcomes of Reduced GFR. J. Am. Soc. Nephrol. 2017, 28, 2167–2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalantar-Zadeh, K.; Joshi, S.; Schlueter, R.; Cooke, J.; Brown-Tortorici, A.; Donnelly, M.; Schulman, S.; Lau, W.-L.; Rhee, C.M.; Streja, E.; et al. Plant-Dominant Low-Protein Diet for Conservative Management of Chronic Kidney Disease. Nutrients 2020, 12, 1931. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.-J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76 (Suppl. 1), S1–S107. [Google Scholar] [CrossRef]
- Osuna-Padilla, I.A.; Leal-Escobar, G. Kidney-gut axis disruption in chronic kidney disease: Causes, consequences and treatment strategies. Rev. Esp. Nutr. Hum. Diet. 2017, 21, 174–183. [Google Scholar] [CrossRef] [Green Version]
- Carrero, J.J.; González-Ortiz, A.; Avesani, C.M.; Bakker, S.J.L.; Bellizzi, V.; Chauveau, P.; Clase, C.M.; Cupisti, A.; Espinosa-Cuevas, A.; Molina, P.; et al. Plant-based diets to manage the risks and complications of chronic kidney disease. Nat. Rev. Nephrol. 2020, 16, 525–542. [Google Scholar] [CrossRef] [PubMed]
- Dahl, W.J. Shopping for Health: Foods with Added Fiber: FSHN13-11/FS235, 11/2013. EDIS. 2013. Available online: https://journals.flvc.org/edis/article/view/125902 (accessed on 3 April 2022).
- European Food Safety Authority; EFSA Panel on Dietetic Products, Nutrition, and Allergies. Scientific opinion on dietary reference values for carbohydrates and dietary fibre. EFSA J. 2010, 8, 1462. [Google Scholar]
- Su, G.; Qin, X.; Yang, C.; Sabatino, A.; Kelly, J.T.; Avesani, C.M.; Carrero, J.J. Fiber intake and health in people with chronic kidney disease. Clin. Kidney J. 2021, 15, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Evenepoel, P.; Meijers, B.K. Dietary fiber and protein: Nutritional therapy in chronic kidney disease and beyond. Kidney Int. 2012, 81, 227–229. [Google Scholar] [CrossRef] [PubMed]
- Naber, T.; Purohit, S. Chronic Kidney Disease: Role of Diet for a Reduction in the Severity of the Disease. Nutrients 2021, 13, 3277. [Google Scholar] [CrossRef]
- McRorie, J.W., Jr.; McKeown, N.M. Understanding the Physics of Functional Fibers in the Gastrointestinal Tract: An Evidence-Based Approach to Resolving Enduring Misconceptions about Insoluble and Soluble Fiber. J. Acad. Nutr. Diet. 2017, 117, 251–264. [Google Scholar] [CrossRef]
- Rebello, C.J.; Chu, Y.-F.; Johnson, W.D.; Martin, C.K.; Han, H.; Bordenave, N.; Shi, Y.; O’Shea, M.; Greenway, F.L. The role of meal viscosity and oat β-glucan characteristics in human appetite control: A randomised crossover trial. Nutr J. 2014, 13, 49. [Google Scholar] [CrossRef] [PubMed]
- Dahl, W.J.; Stewart, M.L. Position of the Academy of Nutrition and Dietetics: Health Implications of Dietary Fiber. J. Acad. Nutr. Diet. 2015, 115, 1861–1870. [Google Scholar] [CrossRef] [PubMed]
- Stephen, A.M.; Champ, M.M.-J.; Cloran, S.J.; Fleith, M.; Van Lieshout, L.; Mejborn, H.; Burley, V.J. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 2017, 30, 149–190. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Almaraz, R.; Martín, M.; Palma, S.; López, B.; Bermejo, L.M.; Gómez-Candela, C. Indicaciones de diferentes tipos de fibra en distintas patologías. Nutr. Hosp. 2015, 31, 2372–2383. [Google Scholar] [PubMed]
- Trautwein, E.A.; McKay, S. The Role of Specific Components of a Plant-Based Diet in Management Dyslipidemia and the Impact on Cardiovascular Risk. Nutrients 2020, 12, 2671. [Google Scholar] [CrossRef] [PubMed]
- Chiavaroli, L.; Mirrahimi, A.; Sievenpiper, J.L.; A Jenkins, D.J.; Darling, P.B. Dietary fiber effects in chronic kidney disease: A systematic review and meta-analysis of controlled feeding trials. Eur. J. Clin. Nutr. 2015, 69, 761–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Muniz, F.J. Dietary fibre and cardiovascular health. Nutr. Hosp. 2012, 27, 31–45. [Google Scholar] [PubMed]
- Tuttle, K.R.; Bakris, G.L.; Bilous, R.W.; Chiang, J.L.; de Boer, I.H.; Goldstein-Fuchs, J.; Hirsch, I.B.; Kalantar-Zadeh, K.; Narva, A.S.; Navaneethan, S.D.; et al. Diabetic kidney disease: A report from an ADA Consensus Conference. Diabetes Care 2014, 37, 2864–2883. [Google Scholar] [CrossRef] [Green Version]
- Kalantar-Zadeh, K.; Rhee, C.M.; Joshi, S.; Brown-Tortorici, A.; Kramer, H.M. Medical nutrition therapy using plant-focused low-protein meal plans for management of chronic kidney disease in diabetes. Curr. Opin. Nephrol. Hypertens. 2022, 31, 26–35. [Google Scholar] [CrossRef]
- Salmean, Y.A.; Segal, M.S.; Palii, S.P.; Dahl, W.J. Fiber supplementation lowers plasma p-cresol in chronic kidney disease patients. J. Ren. Nutr. 2015, 25, 316–320. [Google Scholar] [CrossRef]
- Cigarran Guldris, S.; González Parra, E.; Cases Amenos, A. Microbiota intestinal en la enfermedad renal crónica. Nefrologia 2017, 37, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noce, A.; Marchetti, M.; Marrone, G.; Di Renzo, L.; Di Lauro, M.; Di Daniele, F.; Albanese, M.; Di Daniele, N.; De Lorenzo, A. Link between gut microbiota dysbiosis and Chronic Kidney disease. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 2057–2074. [Google Scholar] [PubMed]
- Rossi, M.; Johnson, D.; Xu, H.; Carrero, J.; Pascoe, E.; French, C.; Campbell, K. Dietary protein-fiber ratio associates with circulating levels of indoxyl sulfate and p-cresyl sulfate in chronic kidney disease patients. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 860–865. [Google Scholar] [CrossRef] [PubMed]
- Snelson, M.; Clarke, R.E.; Coughlan, M.T. Stirring the Pot: Can Dietary Modification Alleviate the Burden of CKD? Nutrients 2017, 9, 265. [Google Scholar] [CrossRef]
- Demirci, B.G.; Tutal, E.; Eminsoy, I.O.; Kulah, E.; Sezer, S. Dietary Fiber Intake: Its Relation With Glycation End Products and Arterial Stiffness in End-Stage Renal Disease Patients. J. Ren. Nutr. 2019, 29, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, V.M.; Wei, G.; Baird, B.C.; Murtaugh, M.; Chonchol, M.B.; Raphael, K.L.; Greene, T.; Beddhu, S. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int. 2012, 81, 300–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Huang, X.; Risérus, U.; Krishnamurthy, V.M.; Cederholm, T.; Arnlöv, J.; Sjögren, P.; Carrero, J.J. Dietary fiber, kidney function, inflammation, and mortality risk. Clin. J. Am. Soc. Nephrol. 2014, 9, 2104–2110. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.Y.-M.; Sea, M.M.-M.; Ng, K.; Wang, M.; Chan, I.H.-S.; Lam, C.W.-K.; Sanderson, J.E.; Woo, J. Dietary Fiber Intake, Myocardial Injury, and Major Adverse Cardiovascular Events Among End-Stage Kidney Disease Patients: A Prospective Cohort Study. Kidney Int. Rep. 2019, 4, 814–823. [Google Scholar] [CrossRef] [Green Version]
- Noce, A.; Marrone, G.; Jones, G.W.; Di Lauro, M.; Zaitseva, A.P.; Ramadori, L.; Celotto, R.; Mitterhofer, A.; Di Daniele, N. Nutritional Approaches for the Management of Metabolic Acidosis in Chronic Kidney Disease. Nutrients 2021, 13, 2534. [Google Scholar] [CrossRef]
- Goraya, N.; Simoni, J.; Jo, C.-H.; Wesson, D.E. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney Int. 2014, 86, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Cases, A.; Cigarrán-Guldrís, S.; Mas, S.; Gonzalez-Parra, E. Vegetable-Based Diets for Chronic Kidney Disease? It Is Time to Reconsider. Nutrients 2019, 11, 1263. [Google Scholar] [CrossRef] [Green Version]
- Sumida, K.; Yamagata, K.; Kovesdy, C.P. Constipation in CKD. Kidney Int. Rep. 2019, 5, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Eyres, L.; Eyres, M.F.; Chisholm, A.; Brown, R.C. Coconut oil consumption and cardiovascular risk factors in humans. Nutr. Rev. 2016, 74, 267–280. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Rossi, M.; Campbell, K.L.; Sencion, G.L.; Ärnlöv, J.; Cederholm, T.; Sjögren, P.; Risérus, U.; Lindholm, B.; Carrero, J.J. Excess protein intake relative to fiber and cardiovascular events in elderly men with chronic kidney disease. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 597–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cupisti, A.; D’Alessandro, C.; Gesualdo, L.; Cosola, C.; Gallieni, M.; Egidi, M.F.; Fusaro, M. Non-Traditional Aspects of Renal Diets: Focus on Fiber, Alkali and Vitamin K1 Intake. Nutrients 2017, 9, 444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalantar-Zadeh, K. Patient Education for Phosphorus Management in Chronic Kidney Disease. Patient Prefer Adherence 2013, 7, 379–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buades Fuster, J.M.; Sanchís Cortés, P.; Perelló Bestard, J.; Grases Freixedas, F. Fostatos de origen vegetal, fitato y calcificaciones patológicas en la enfermedad renal crónica. Nefrología 2017, 37, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Elliott, P.; Stamler, J.; Dyer, A.; Appel, L.; Dennis, B.; Kesteloot, H.; Ueshima, H.; Okayama, A.; Chan, Q.; Garside, D.B.; et al. Association between Protein Intake and Blood Pressure: The INTERMAP Study. Arch. Intern. Med. 2006, 166, 79–87. [Google Scholar] [CrossRef]
- Serafini, M.; Peluso, I. Functional Foods for Health: The Interrelated Antioxidant and Anti-Inflammatory Role of Fruits, Vegetables, Herbs, Spices and Cocoa in Humans. Curr. Pharm. Des. 2016, 22, 6701–6715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tresserra-Rimbau, A.; Rimm, E.B.; Medina-Remón, A.; Martínez-González, M.A.; de la Torre, R.; Corella, D.; Salas-Salvadó, J.; Gómez-Gracia, E.; Lapetra, J.; Arós, F.; et al. Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.J.; Dwyer, J.T.; Jacques, P.F.; McCullough, M.L. Associations between flavonoids and cardiovascular disease incidence or mortality in European and US populations. Nutr. Rev. 2012, 70, 491–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marx, W.; Kelly, J.; Marshall, S.; Nakos, S.; Campbell, K.; Itsiopoulos, C. The Effect of Polyphenol-Rich Interventions on Cardiovascular Risk Factors in Haemodialysis: A Systematic Review and Meta-Analysis. Nutrients 2017, 9, 1345. [Google Scholar] [CrossRef] [Green Version]
- Herber-Gast, G.M.; Boersma, M.; Verschuren, W.M.M.; Stehouwer, C.D.A.; Gansevoort, R.T.; Bakker, S.J.L.; Spijkerman, A.M.W. Consumption of whole grains, fruit and vegetables is not associated with índices of renal function in the population-based longitudinal Doetinchem study. Br. J. Nutr. 2017, 118, 375–382. [Google Scholar] [CrossRef] [Green Version]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean Diet Foundation Expert Group. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.T.; Palmer, S.C.; Wai, S.N.; Ruospo, M.; Carrero, J.-J.; Campbell, K.L.; Strippoli, G.F.M. Healthy dietary patterns and risk of mortality and ESRD in CKD: A meta-analysis of cohort studies. Clin. J. Am. Soc. Nephrol. 2017, 12, 272–279. [Google Scholar] [CrossRef] [Green Version]
- Cupisti, A.; Kovesdy, C.P.; DÁlessandro, C.; Kalantar-Zadeh, K. Dietary Approach to Recurrent or Chronic Hiperkalaemia in Patients With Decreased Kidney Function. Nutrients 2018, 10, 261. [Google Scholar] [CrossRef] [Green Version]
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Tablas de Composición de Alimentos, 19th ed.; Pirámide: Madrid, Spain, 2018. [Google Scholar]
- Department of Agriculture (USDA). Nutritional Composition 2017–2018 Data Adapted from U.S. 2018. Available online: https://fdc.nal.usda.gov (accessed on 26 May 2022).
- Tubili, C.; Di Folco, U.; Hassan, O.; Agrigento, S.; Carta, G.; Pandolfo, M.M.; Nardone, M.R. Fiber Enriched Protein-free Pasta and Bread: Is It a Useful Tool in Chronic Kidney Disease in Type 2 Diabetes? Mediterr. J. Nutr. Metab. 2016, 9, 95–99. [Google Scholar] [CrossRef]
- Salmean, Y.A.; Segal, M.S.; Langkamp-Henken, B.; Canales, M.T.; Zello, G.A.; Dahl, W.J. Foods with added fiber lower serum creatinine levels in patients with chronic kidney disease. J. Ren. Nutr. 2013, 23, e29–e32. [Google Scholar] [CrossRef]
- Yang, H.-L.; Feng, P.; Xu, Y.; Hou, Y.-Y.; Ojo, O.; Wang, X.-H. The Role of Dietary Fiber Supplementation in Regulating Uremic Toxins in Patients With Chronic Kidney Disease: A Meta-Analysis of Randomized Controlled Trials. J. Ren. Nutr. 2021, 31, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.-M.; Ge, Y.-Y.; Huang, X.; Zhang, Y.-Q.; Li, J.-X. Effects of fermentable dietary fiber supplementation on oxidative and inflammatory status in hemodialysis patients. Int. J. Clin. Exp. Med. 2015, 8, 1363–1369. [Google Scholar] [PubMed]
- Díaz-López, A.; Bulló, M.; Martínez-González, M.Á.; Guasch-Ferré, M.; Ros, E.; Basora, J.; Covas, M.I.; del Carmen López-Sabater, M.; Salas-Salvadó, J.; Investigators, P.R.S.; et al. Effects of Mediterranean diets on kidney function: A report from the PREDIMED trial. Am. J. Kidney Dis. 2012, 60, 380–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Jiménez-Moleón, J.J.; Lindholm, B.; Cederholm, T.; Ärnlöv, J.; Risérus, U.; Sjögren, P.; Carrero, J.J. Mediterranean diet, kidney function, and mortality in men with CKD. Clin. J. Am. Soc. Nephrol. 2013, 8, 1548–1555. [Google Scholar] [CrossRef] [Green Version]
- Chrysohoou, C.; Panagiotakos, D.B.; Pitsavos, C.; Skoumas, J.; Zeimbekis, A.; Kastorini, C.-M.; Stefanadis, C. Adherence to the mediterranean diet is associated with renal function among healthy adults: The ATTICA study. J. Ren. Nutr. 2010, 20, 176–184. [Google Scholar] [CrossRef]
- Khatri, M.; Moon, Y.P.; Scarmeas, N.; Gu, Y.; Gardener, H.; Cheung, K.; Wright, C.B.; Sacco, R.L.; Nickolas, T.L.; Elkind, M.S.V. The association between a Mediterranean-style diet and kidney function in the Northern Manhattan Study cohort. Clin. J. Am. Soc. Nephrol. 2014, 9, 1868–1875. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Lobene, A.J.; Wang, Y.; Gallant, K.M.H. The DASH Diet and Cardiometabolic Health and Chronic Kidney Disease: A Narrative Review of the Evidence in East Asian Countries. Nutrients 2021, 13, 984. [Google Scholar] [CrossRef]
- Rebholz, C.M.; Crews, D.C.; Grams, M.E.; Steffen, L.M.; Levey, A.S.; Miller, E.R., III; Appel, L.J.; Coresh, J. DASH (Dietary Approaches to Stop hypertension) diet and risk of subsequent kidney disease. Am. J. Kidney Dis. 2016, 68, 853–861. [Google Scholar] [CrossRef] [Green Version]
- Tyson, C.C.; Kuchibhatla, M.; Patel, U.D.; Pun, P.H.; Chang, A.; Nwankwo, C.; Joseph, M.A.; Svetkey, L.P. Impact of Kidney Function on Effects of the Dietary Approaches to Stop Hypertension (Dash) Diet. J. Hypertens. 2014, 3, 1000168. [Google Scholar]
- Patel, K.P.; Luo, F.J.-G.; Plummer, N.S.; Hostetter, T.H.; Meyer, T.W. The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores. Clin. J. Am. Soc. Nephrol. 2012, 7, 982–988. [Google Scholar] [CrossRef] [Green Version]
- Kandouz, S.; Mohamed, A.M.S.; Zheng, Y.; Sandeman, S.; Davenport, A. Reduced protein bound uraemic toxins in vegetarian kidney failure patients treated by haemodiafiltration. Hemodial. Int. 2016, 20, 610–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, K.; Cui, X.; Wang, B.; Tang, Q.; Cai, J.; Shen, X. Healthy adult vegetarians have better renal function than matched omnivores: A cross-sectional study in China. BMC Nephrol. 2020, 21, 268. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, O.M.; Muntner, P.; Rizk, D.V.; McClellan, W.M.; Warnock, D.G.; Newby, P.K.; Judd, S.E. Dietary patterns and risk of death and progression to ESRD in individuals with CKD: A cohort study. Am. J. Kidney Dis. 2014, 64, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. DASH Collaborative Research Group. A clinical trial of the effects of dietary patterns on blood pressure. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guasch-Ferré, M.; Liu, G.; Li, Y.; Sampson, L.; Manson, J.E.; Salas-Salvadó, J.; Martínez-González, M.A.; Stampfer, M.J.; Willett, W.C.; Sun, Q.; et al. Olive Oil Consumption and Cardiovascular Risk in U.S. Adults. J. Am. Coll. Cardiol. 2020, 75, 1729–1739. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.J.; Mangels, A.R.; Fresán, U.; Marsh, K.; Miles, F.L.; Saunders, A.V.; Haddad, E.H.; Heskey, C.E.; Johnston, P.; Larson-Meyer, E.; et al. The Safe and Effective Use of Plant-Based Diets with Guidelines for Health Professionals. Nutrients 2021, 13, 4144. [Google Scholar] [CrossRef] [PubMed]
- Ko, G.-J.; Kalantar-Zadeh, K. How important is dietary management in chronic kidney disease progression? A role for low protein diets. Korean J. Intern. Med. 2021, 36, 795–806. [Google Scholar] [CrossRef] [PubMed]
SHORT CHAIN CARBOHYDRATES |
Resistant oligosaccharides FOS and GOS. They are soluble and highly fermentable. |
LONG-CHAIN CARBOHYDRATES |
Resistant starch (RS): Soluble and highly fermentable. |
Non-starch polysaccharides (NSP): |
Soluble |
-Highly fermentable: Pectins, Inulin, dextrin, glucomannan and gums (such as guar gum). |
-Partially fermentable: mucilages such as psyllium seeds and beta-glucan. |
Insoluble |
-Wheat bran (barely fermentable). |
-Cellulose and hemicellulose (non-fermentable or poorly fermentable). |
Lignin |
Insoluble and poorly fermentable. |
Food Groups | TDF g/100 g | Soluble Fibre (%TDF) | Insoluble Fibre (%TDF) |
---|---|---|---|
Whole wheat bread | 5.6–7.2 | 27 | 73 |
Oat porridge | 1–7 | 52 | 48 |
Rye-based products | 3.9–5.9 | 44 | 56 |
Vegetables | 0.5–6 | 37 | 63 |
Fruits | 0.4–10.4 | 43 | 57 |
Nuts and seeds | 1.3–14.4 | 32 | 68 |
Legumes | 4.2–10.6 | 25 | 75 |
Potatoes | 0.5–8 | 48 | 52 |
Author/s | Year | Aims | Results |
---|---|---|---|
Kalantar-Zadeh K et al. [4] | 2020 | A low-protein diet with a predominance of vegetables (>50% plant-based protein, PLADO) Plant-Dominant Low Protein-Diet. | PLADO diet administered by a specialised CKD dietician may improve prevention or delay the start of dialysis. |
Carrero JJ et al. [7] | 2020 | To review the effects of plant-based diets in people with chronic kidney disease. | With adequate dietary advice, plant-based diets could benefit patients with CKD, such as increased fibre, changing intestinal microbiota profile, and reduced production of uremic toxins or metabolic acidosis. |
Su G et al. [10] | 2021 | Review on the benefits of fibre to improve the progression of chronic kidney disease | High fibre intake regulates the intestine, favours healthy bacteria growth, and improves the intestinal barrier effect. |
Chiavaroli et al. [19] | 2014 | Systematic review and meta-analysis of the effect of dietary fibre intake on urea and creatinine as markers of kidney health in patients with CKD. | Demonstrates the potential beneficial effects of dietary fibre on the reduction of serum urea and creatinine. |
Salmean et al. [23] | 2015 | To determine the effects of a fibre supplement, in a single-blind supplement, on plasma p-cresol production, stool frequency and quality of life (QoL) in patients with chronic kidney disease. | The production of p-cresol decreases, and the frequency of bowel movements increases; no changes are observed in the general quality of life. |
Rossi et al. [26] | 2015 | To conduct a randomised controlled trial of synbiotic therapy in patients with CKD to study the influence of fibre intake on the generation of IS and PCS toxins. | The dietary protein-fibre ratio is associated with serum levels of IS toxins and PCS rather than with each of them individually. |
Demirci BG et al. [28] | 2019 | To analyse the relationship between the effect of total dietary fibre intake on C-reactive protein (CRP) and oxidative stress parameters, such as advanced glycation products (AGE) in serum, superoxide dismutase (SOD), malondialdehyde and arterial stiffness by pulse wave velocity (PWv) in a patient on maintenance hemodialysis. | Adequate fibre intake could prevent cardiovascular events and inflammatory processes in patients undergoing maintenance hemodialysis. |
Krishnamurthy VM et al. [29] | 2012 | To determine if fibre intake is associated with decreased inflammation and mortality. The National Health and Nutrition Examination Survey III has a 5.8% prevalence of kidney disease. | In the population without chronic kidney disease, higher fibre intake was associated with lower inflammation but not with lower mortality. People with chronic kidney disease were associated with less inflammation and lower mortality. |
Goraya N et al. [33] | 2014 | To analyse the treatment of metabolic acidosis in patients with chronic kidney disease, stage 3, with oral bicarbonate or ingestion of fruits and vegetables in a randomised but unblinded trial. | At a 3-year follow-up, fruit and vegetable intake reduced renal angiotensin II activity and maintained a glomerular filtration rate similar to bicarbonate administration. |
Xu H et al. [37] | 2016 | Demonstrate that CVD events in CKD may be associated with dietary patterns aligned with excess dietary protein relative to fibre. A prospective cohort study from the Uppsala Longitudinal Study of Adult Men. | A high protein intake relative to fibre intake was more strongly and independently associated with the incidence of CVD events. In isolation, fibre or protein intake was not significantly related to cardiovascular events. |
Buades Fuster JM et al. [40] | 2017 | To review the role of plant-based phosphates in patients with chronic kidney disease. | The consumption of plant foods increases blood phosphorus levels and provides fibre and phytic acid that can reduce vascular calcifications. |
Kelly et al. [48] | 2017 | A systematic review assesses the association between dietary patterns and mortality among adults with CKD. | Healthy dietary patterns (a higher intake of fruits, vegetables, legumes, and fish and a reduction in the intake of red meat, sodium and refined sugar) are associated with lower mortality in people with CKD. |
Yang HL [54] | 2021 | A meta-analysis using only randomised controlled trials (RCA) to assess the influence of fibre on uremic toxins. | Fibre supplementation can significantly reduce the levels of uremic toxins in patients with CKD, this effect being more evident in non-diabetic patients on dialysis. |
Xie LM et al. [55] | 2015 | A randomised placebo-controlled trial that analysed the effects of dietary fibre supplementation on oxidative and inflammatory status in hemodialysis patients. | Fermentable fibre supplementation in the diet improved the lipid profile and oxidative status and decreased the systemic inflammatory status of hemodialysis patients. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cigarrán Guldris, S.; Latorre Catalá, J.A.; Sanjurjo Amado, A.; Menéndez Granados, N.; Piñeiro Varela, E. Fibre Intake in Chronic Kidney Disease: What Fibre Should We Recommend? Nutrients 2022, 14, 4419. https://doi.org/10.3390/nu14204419
Cigarrán Guldris S, Latorre Catalá JA, Sanjurjo Amado A, Menéndez Granados N, Piñeiro Varela E. Fibre Intake in Chronic Kidney Disease: What Fibre Should We Recommend? Nutrients. 2022; 14(20):4419. https://doi.org/10.3390/nu14204419
Chicago/Turabian StyleCigarrán Guldris, Secundino, Juan Antonio Latorre Catalá, Ana Sanjurjo Amado, Nicolás Menéndez Granados, and Eva Piñeiro Varela. 2022. "Fibre Intake in Chronic Kidney Disease: What Fibre Should We Recommend?" Nutrients 14, no. 20: 4419. https://doi.org/10.3390/nu14204419