How Repeatable Is the Ergogenic Effect of Caffeine? Limited Reproducibility of Acute Caffeine (3 mg.kg−1) Ingestion on Muscular Strength, Power, and Muscular Endurance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. RM
2.4. Familiarisation
2.5. Countermovement Jump
2.6. Drop Jump
2.7. Isometric Mid-Thigh Pull
2.8. Resistance Exercise
2.9. Experimental Trials
2.10. Data Analysis
3. Results
3.1. Effect of Experimental Trials on Maximal Strength
3.2. Effect of Caffeine on Arousal and Motivation
3.3. Effect of Caffeine on Countermovement Jump Performance
3.4. Effect of Caffeine on Drop Jump Performance
3.5. Effects of Caffeine on Isometric Mid-Thigh Pull
3.6. Effect of Caffeine on Repetition until Failure
3.7. Effect of Caffeine on Rate of Perceived Exertion
4. Discussion
4.1. Acute Effect of Caffeine on Muscular Strength and Power
4.2. Reliability and Repeatability of Acute Caffeine Ingestion on Muscular Strength and Power
5. Limitations and Future Direction
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Warren, G.L.; Park, N.D.; Maresca, R.D.; McKibans, K.I.; Millard-Stafford, M.L. Effect of caffeine ingestion on muscular strength and endurance: A meta-analysis. Med. Sci. Sports Exerc. 2010, 42, 1375–1387. [Google Scholar] [CrossRef]
- Grgic, J.; Grgic, I.; Pickering, C.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. Wake up and smell the coffee: Caffeine supplementation and exercise performance—An umbrella review of 21 published meta-analyses. Br. J. Sports Med. 2020, 54, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M. Caffeine and sports performance. Appl. Physiol. Nutr. Metab. 2008, 33, 1319–1334. [Google Scholar] [CrossRef] [PubMed]
- Astorino, T.A.; Terzi, M.N.; Roberson, D.W.; Burnett, T.R. Effect of two doses of caffeine on muscular function during isokinetic exercise. Med. Sci. Sports Exerc. 2010, 42, 2205–2210. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2018, 15, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polito, M.D.; Souza, D.B.; Casonatto, J.; Farinatti, P. Acute effect of caffeine consumption on isotonic muscular strength and endurance: A systematic review and meta-analysis. Sci. Sports 2016, 31, 119–128. [Google Scholar] [CrossRef]
- Grgic, J.; Pickering, C. The effects of caffeine ingestion on isokinetic muscular strength: A meta-analysis. J. Sci. Med. Sport 2019, 22, 353–360. [Google Scholar] [CrossRef]
- Southward, K.; Rutherfurd-Markwick, K.J.; Ali, A. The effect of acute caffeine ingestion on endurance performance: A systematic review and meta–analysis. Sports Med. 2018, 48, 1913–1928. [Google Scholar] [CrossRef]
- Salinero, J.J.; Lara, B.; Del Coso, J. Effects of acute ingestion of caffeine on team sports performance: A systematic review and meta-analysis. Res. Sports Med. 2019, 27, 238–256. [Google Scholar] [CrossRef]
- Glaister, M.; Gissane, C. Caffeine and physiological responses to submaximal exercise: A meta-analysis. Int. J. Sports Physiol. Perform. 2018, 13, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, B.G.; Morales, A.P.; Sampaio-Jorge, F.; de Souza Tinoco, F.; de Matos, A.A.; Leite, T.C. Acute effects of caffeine intake on athletic performance: A systematic review and meta-analysis. Revista Chilena de Nutrición 2017, 44, 283–291. [Google Scholar] [CrossRef]
- Glaister, M.; Moir, G. Effects of caffeine on time trial performance and associated physiological responses: A meta-analysis. J. Caffeine Adenosine Res. 2019, 9, 40–52. [Google Scholar] [CrossRef] [Green Version]
- Tallis, J.; Duncan, M.J.; James, R.S. What can isolated skeletal muscle experiments tell us about the effects of caffeine on exercise performance? Br. J. Pharmacol. 2015, 172, 3703–3713. [Google Scholar] [CrossRef] [Green Version]
- Pickering, C.; Kiely, J. Are the current guidelines on caffeine use in sport optimal for everyone? Inter-individual variation in caffeine ergogenicity, and a move towards personalised sports nutrition. Sports Med. 2018, 48, 7–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grgic, J.; Mikulic, P.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. The influence of caffeine supplementation on resistance exercise: A review. Sports Med. 2019, 49, 17–30. [Google Scholar] [CrossRef]
- Astorino, T.A.; Rohmann, R.L.; Firth, K. Effect of caffeine ingestion on one-repetition maximum muscular strength. Eur. J. Appl. Physiol. 2008, 102, 127–132. [Google Scholar] [CrossRef]
- Ali, A.; O’Donnell, J.; Foskett, A.; Rutherfurd-Markwick, K. The influence of caffeine ingestion on strength and power performance in female team-sport players. J. Int. Soc. Sports Nutr. 2016, 13, 46. [Google Scholar] [CrossRef] [Green Version]
- Grgic, J.; Mikulic, P. Caffeine ingestion acutely enhances muscular strength and power but not muscular endurance in resistance-trained men. Eur. J. Sport Sci. 2017, 17, 1029–1036. [Google Scholar] [CrossRef]
- Souza, A.A.; Bottaro, M.; Rocha, V.A., Jr.; Lage, V.; Tufano, J.J.; Vieira, A. Reliability and test-retest agreement of mechanical variables obtained during countermovement jump. Int. J. Exerc. Sci. 2020, 13, 6. [Google Scholar]
- Perkins, D.; Wilson, G.V.; Kerr, J.H. The effects of elevated arousal and mood on maximal strength performance in athletes. J. Appl. Sport Psychol. 2001, 13, 239–259. [Google Scholar] [CrossRef]
- Roberts, G.C.; Nerstad, C.G.; Lemyre, P.N. Motivation in Sport and Performance; Oxford Research Encyclopedia of Psychology: Oxford, UK, 2018. [Google Scholar]
- Teo, W.; Newton, M.J.; McGuigan, M.R. Circadian rhythms in exercise performance: Implications for hormonal and muscular adaptation. J. Sports Sci. Med. 2011, 10, 600. [Google Scholar] [PubMed]
- Fullagar, H.H.; Skorski, S.; Duffield, R.; Hammes, D.; Coutts, A.J.; Meyer, T. Sleep and athletic performance: The effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. Sports Med. 2015, 45, 161–186. [Google Scholar] [CrossRef] [PubMed]
- Knowles, O.E.; Drinkwater, E.J.; Urwin, C.S.; Lamon, S.; Aisbett, B. Inadequate sleep and muscle strength: Implications for resistance training. J. Sci. Med. Sport 2018, 21, 959–968. [Google Scholar] [CrossRef]
- Duncan, M.J.; Oxford, S.W. The effect of caffeine ingestion on mood state and bench press performance to failure. J. Strength Cond. Res. 2011, 25, 178–185. [Google Scholar] [CrossRef]
- Duncan, M.J.; Smith, M.; Cook, K.; James, R.S. The acute effect of a caffeine-containing energy drink on mood state, readiness to invest effort, and resistance exercise to failure. J. Strength Cond. Res. 2012, 26, 2858–2865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrell, P.T.; Juliano, L.M. Caffeine expectancies influence the subjective and behavioral effects of caffeine. Psychopharmacology 2009, 207, 335–342. [Google Scholar] [CrossRef]
- Tallis, J.; Muhammad, B.; Islam, M.; Duncan, M.J. Placebo effects of caffeine on maximal voluntary concentric force of the knee flexors and extensors. Muscle Nerve 2016, 54, 479–486. [Google Scholar] [CrossRef]
- Childs, E.; de Wit, H. Enhanced mood and psychomotor performance by a caffeine-containing energy capsule in fatigued individuals. Exp. Clin. Psychopharmacol. 2008, 16, 13. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. Are low doses of caffeine as ergogenic as higher doses? A critical review highlighting the need for comparison with current best practice in caffeine research. Nutrition 2019, 67, 110535. [Google Scholar] [CrossRef] [PubMed]
- Southward, K.; Rutherfurd-Markwick, K.; Badenhorst, C.; Ali, A. The role of genetics in moderating the inter-individual differences in the ergogenicity of caffeine. Nutrients 2018, 10, 1352. [Google Scholar] [CrossRef] [Green Version]
- Black, C.D.; Waddell, D.E.; Gonglach, A.R. Caffeine’s Ergogenic Effects on Cycling: Neuromuscular and Perceptual Factors. Med. Sci. Sports Exerc. 2015, 47, 1145–1158. [Google Scholar] [CrossRef]
- Tallis, J.; Yavuz, H.C. The effects of low and moderate doses of caffeine supplementation on upper and lower body maximal voluntary concentric and eccentric muscle force. Appl. Physiol. Nutr. Metab. 2018, 43, 274–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timmins, T.D.; Saunders, D.H. Effect of caffeine ingestion on maximal voluntary contraction strength in upper-and lower-body muscle groups. J. Strength Cond. Res. 2014, 28, 3239–3244. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Schoenfeld, B.J.; Davies, T.B.; Lazinica, B.; Krieger, J.W.; Pedisic, Z. Effect of resistance training frequency on gains in muscular strength: A systematic review and meta-analysis. Sports Med. 2018, 48, 1207–1220. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.T.; da Silva, J.V.F.; Bueno, N.B. Effects of caffeine supplementation on muscle endurance, maximum strength, and perceived exertion in adults submitted to strength training: A systematic review and meta-analyses. Crit. Rev. Food Sci. Nutr. 2021, 61, 2587–2600. [Google Scholar] [CrossRef] [PubMed]
- Shohet, K.L.; Landrum, R.E. Caffeine consumption questionnaire: A standardized measure for caffeine consumption in undergraduate students. Psychol. Rep. 2001, 89, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.E. Caffeine and exercise. Sports Med. 2001, 31, 785–807. [Google Scholar] [CrossRef]
- Tamilio, R.A.; Clarke, N.D.; Duncan, M.J.; Morris, R.; Grgic, J.; Tallis, J. Can 3 mg·kg−1 of Caffeine Be Used as An Effective Nutritional Supplement to Enhance the Effects of Resistance Training in Rugby Union Players? Nutrients 2021, 13, 3367. [Google Scholar] [CrossRef] [PubMed]
- Baechle, T.R.; Earle, R.W. Essentials of Strength Training and Conditioning; Human Kinetics: Champaign, IL, USA, 2008. [Google Scholar]
- Maud, P.J.; Foster, C. Strength testing: Development and Evaluation of Methodology. In Physiological Assessment of Human Fitness; Human Kinetics: Champaign, IL, USA, 2006; p. 129. [Google Scholar]
- Grgic, J.; Lazinica, B.; Schoenfeld, B.J.; Pedisic, Z. Test-retest reliability of the one-repetition maximum (1RM) strength assessment: A systematic review. Sports Med. Open 2020, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- McMahon, J.J.; Suchomel, T.J.; Lake, J.P.; Comfort, P. Understanding the key phases of the countermovement jump force-time curve. Strength Cond. J. 2018, 40, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Chavda, S.; Bromley, T.; Jarvis, P.; Williams, S.; Bishop, C.; Turner, A.N.; Lake, J.P.; Mundy, P.D. Force-time characteristics of the countermovement jump: Analyzing the curve in Excel. Strength Cond. J. 2018, 40, 67–77. [Google Scholar] [CrossRef]
- Moir, G.L. Three different methods of calculating vertical jump height from force platform data in men and women. Meas. Phys. Educ. Exerc. Sci. 2008, 12, 207–218. [Google Scholar] [CrossRef]
- Boukhenous, S.; Attari, M. A Vertical Jumping Performance with and without Arms Swing by Using a Dynamometric Platform. In Proceedings of the International Workshop on Systems, Signal Processing and their Applications, WOSSPA, Tipaza, Algeria, 9–11 May 2011; pp. 17–20. [Google Scholar]
- Wade, L.; Needham, L.; McGuigan, M.P.; Bilzon, J.L. Backward Double Integration is a Valid Method to Calculate Maximal and Sub-Maximal Jump Height. J. Sports Sci. 2022, 40, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Makaruk, H.; Sacewicz, T.; Czaplicki, A.; Sadowski, J. Effect of additional load on power output during drop jump training. J. Hum. Kinet. 2010, 26, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Dos’ Santos, T.; Thomas, C.; Comfort, P.; McMahon, J.J.; Jones, P.A.; Oakley, N.P.; Young, A.L. Between-session reliability of isometric midthigh pull kinetics and maximal power clean performance in male youth soccer players. J. Strength Cond. Res. 2018, 32, 3364–3372. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.O.; Jones, B.; Myers, T.; Lake, J.; Emmonds, S.; Clarke, N.D.; Singleton, D.; Ellis, M.; Till, K. Isometric midthigh pull characteristics in elite youth male soccer players: Comparisons by age and maturity offset. J. Strength Cond. Res. 2020, 34, 2947–2955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haff, G.G.; Ruben, R.P.; Lider, J.; Twine, C.; Cormie, P. A comparison of methods for determining the rate of force development during isometric midthigh clean pulls. J. Strength Cond. Res. 2015, 29, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Kuki, S.; Sato, K.; Stone, M.H.; Okano, K.; Yoshida, T.; Tanigawa, S. The relationship between isometric mid-thigh pull variables, jump variables and sprint performance in collegiate soccer players. J. Trainology 2017, 6, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Dos’ Santos, T.; Jones, P.A.; Comfort, P.; Thomas, C. Effect of different onset thresholds on isometric midthigh pull force-time variables. J. Strength Cond. Res. 2017, 31, 3463–3473. [Google Scholar] [CrossRef]
- Mundy, P.D.; Lake, J.P.; Carden, P.J.; Smith, N.A.; Lauder, M.A. Agreement between the force platform method and the combined method measurements of power output during the loaded countermovement jump. Sports Biomech. 2016, 15, 23–35. [Google Scholar] [CrossRef]
- Duncan, M.J.; Stanley, M.; Parkhouse, N.; Cook, K.; Smith, M. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. Eur. J. Sport Sci. 2013, 13, 392–399. [Google Scholar] [CrossRef]
- Duncan, M.J.; Oxford, S.W. Acute caffeine ingestion enhances performance and dampens muscle pain following resistance exercise to failure. J. Sports Med. Phys. Fit. 2012, 52, 280–285. [Google Scholar]
- Martorelli, S.; Cadore, E.L.; Izquierdo, M.; Celes, R.; Martorelli, A.; Cleto, V.A.; Alvarenga, J.G.; Bottaro, M. Strength training with repetitions to failure does not provide additional strength and muscle hypertrophy gains in young women. Eur. J. Transl. Myol. 2017, 27, 6339. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Fredholm, B.B.; Bättig, K.; Holmén, J.; Nehlig, A.; Zvartau, E.E. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 1999, 51, 83–133. [Google Scholar] [PubMed]
- Raedeke, T.D.; Focht, B.C.; Scales, D. Mediators of affective responses to acute exercise among women with high social physique anxiety. Psychol. Sport Exerc. 2009, 10, 573–578. [Google Scholar] [CrossRef]
- Noble, S.; Scheinost, D.; Constable, R.T. A decade of test-retest reliability of functional connectivity: A systematic review and meta-analysis. Neuroimage 2019, 203, 116157. [Google Scholar] [CrossRef]
- Abdi, H. Coefficient of Variation. In Encyclopedia of Research Design; Salkind, N., Ed.; SAGE: Thousand Oaks, CA, USA, 2010. [Google Scholar]
- Bunce, C. Correlation, agreement, and Bland–Altman analysis: Statistical analysis of method comparison studies. Am. J. Ophthalmol. 2009, 148, 4–6. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S.; Ullman, J.B. Using Multivariate Statistics; Pearson: London, UK, 2007. [Google Scholar]
- Richardson, J.T. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Hedges, L.V. Distribution theory for Glass’s estimator of effect size and related estimators. J. Educ. Stat. 1981, 6, 107–128. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Washington, DC, USA, 2013. [Google Scholar]
- Burke, B.I.; Travis, S.K.; Gentles, J.A.; Sato, K.; Lang, H.M.; Bazyler, C.D. The effects of caffeine on jumping performance and maximal strength in female collegiate athletes. Nutrients 2021, 13, 2496. [Google Scholar] [CrossRef] [PubMed]
- Harty, P.S.; Zabriskie, H.A.; Stecker, R.A.; Currier, B.S.; Tinsley, G.M.; Surowiec, K.; Jagim, A.R.; Richmond, S.R.; Kerksick, C.M. Caffeine timing improves lower-body muscular performance: A randomized trial. Front. Nutr. 2020, 7, 585900. [Google Scholar] [CrossRef] [PubMed]
- Astorino, T.A.; Roberson, D.W. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: A systematic review. J. Strength Cond. Res. 2010, 24, 257–265. [Google Scholar] [CrossRef]
- Da Silva, V.L.; Messias, F.R.; Zanchi, N.E.; Gerlinger-Romero, F.; Duncan, M.J.; Guimarães-Ferreira, L. Effects of acute caffeine ingestion on resistance training performance and perceptual responses during repeated sets to failure. J. Sports Med. Phys. Fit. 2015, 55, 383–389. [Google Scholar]
- Aragón-Vela, J.; Casuso, R.A.; Casals, C.; Plaza-Díaz, J.; Fontana, L.; Huertas, J.R. Differential IL 10 serum production between an arm-based and a leg-based maximal resistance test. Cytokine 2020, 126, 154915. [Google Scholar] [CrossRef]
- Arazi, H.; Sotoudeh, K.; Sadeghi, M.M.; Mohammadi, S.M.; Saeedi, T. Influence of Upper-Body Exercise Order on Repetition Performance and Ratings of Perceived Exertion During A Super-Set Resistance Training Session. J. Sport Sci. 2015, 8, 24–27. [Google Scholar]
- de Azevedo, A.P.; Guerra, M.A.; Caldas, L.C.; Guimarães-Ferreira, L. Acute caffeine ingestion did not enhance punch performance in professional mixed-martial arts athletes. Nutrients 2019, 11, 1422. [Google Scholar] [CrossRef] [Green Version]
- Tallis, J.; Duncan, M.J.; Wright, S.L.; Eyre, E.L.; Bryant, E.; Langdon, D.; James, R.S. Assessment of the ergogenic effect of caffeine supplementation on mood, anticipation timing, and muscular strength in older adults. Physiol. Rep. 2013, 1, e00072. [Google Scholar] [CrossRef]
- Shabir, A.; Hooton, A.; Tallis, J.; Higgins, M.F. The influence of caffeine expectancies on sport, exercise, and cognitive performance. Nutrients 2018, 10, 1528. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.D.; Cribb, P.J.; Cooke, M.B.; Hayes, A. The effect of ephedra and caffeine on maximal strength and power in resistance-trained athletes. J. Strength Cond. Res. 2008, 22, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Tennent, R.; Ali, A.; Wham, C.; Rutherfurd-Markwick, K. Narrative Review: Impact of Genetic Variability of CYP1A2, ADORA2A, and AHR on Caffeine Consumption and Response. J. Caffeine Adenosine Res. 2020, 10, 125–134. [Google Scholar] [CrossRef]
- Brady, C.J.; Harrison, A.J.; Comyns, T.M. A review of the reliability of biomechanical variables produced during the isometric mid-thigh pull and isometric squat and the reporting of normative data. Sports Biomech. 2018, 19, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Moeskops, S.; Oliver, J.L.; Read, P.J.; Cronin, J.B.; Myer, G.D.; Haff, G.G.; Lloyd, R.S. Within-and between-session reliability of the isometric mid-thigh pull in young female athletes. J. Strength Cond. Res. 2018, 32, 1892. [Google Scholar] [CrossRef]
- Heishman, A.D.; Daub, B.D.; Miller, R.M.; Freitas, E.D.; Frantz, B.A.; Bemben, M.G. Countermovement jump reliability performed with and without an arm swing in NCAA division 1 intercollegiate basketball players. J. Strength Cond. Res. 2020, 34, 546–558. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Stone, J.D.; Hornsby, W.G.; Hagen, J.A. Identifying reliable and relatable force–time metrics in athletes—Considerations for the isometric mid-thigh pull and countermovement jump. Sports 2020, 9, 4. [Google Scholar] [CrossRef]
- Grgic, J.; Scapec, B.; Mikulic, P.; Pedisic, Z. Test-retest reliability of isometric mid-thigh pull maximum strength assessment: A systematic review. Biol. Sport 2021, 39, 407–414. [Google Scholar] [CrossRef]
- Huntley, E.D.; Juliano, L.M. Caffeine Expectancy Questionnaire (CaffEQ): Construction, psychometric properties, and associations with caffeine use, caffeine dependence, and other related variables. Psychol. Assess. 2012, 24, 592. [Google Scholar] [CrossRef]
- Snel, J.; Lorist, M.M. Effects of caffeine on sleep and cognition. Prog. Brain Res. 2011, 190, 105–117. [Google Scholar]
- Roehrs, T.; Roth, T. Caffeine: Sleep and daytime sleepiness. Sleep Med. Rev. 2008, 12, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Nehlig, A. Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacol. Rev. 2018, 70, 384–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, J.H.; Wyld, K.; Chrismas, B.C. Acute effects of caffeine on strength performance in trained and untrained individuals. J. Athl. Enhanc. 2015, 4, 1–5. [Google Scholar] [CrossRef]
- Astorino, T.A.; Cottrell, T.; Lozano, A.T.; Aburto-Pratt, K.; Duhon, J. Effect of caffeine on RPE and perceptions of pain, arousal, and pleasure/displeasure during a cycling time trial in endurance trained and active men. Physiol. Behav. 2012, 106, 211–217. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. What should we do about habitual caffeine use in athletes? Sports Med. 2019, 49, 833–842. [Google Scholar] [CrossRef]
- Fulton, J.L.; Dinas, P.C.; Carrillo, A.E.; Edsall, J.R.; Ryan, E.J.; Ryan, E.J. Impact of genetic variability on physiological responses to caffeine in humans: A systematic review. Nutrients 2018, 10, 1373. [Google Scholar] [CrossRef]
Trial 1 | Trial 2 | Trial 3 | Overall | |||||||||||
PL | CF | ES | PL | CF | ES | PL | CF | ES | PL | CF | ES | |||
RTE Phy | Pre | 4.8 ± 2.7 | 4.5 ± 2.0 | 0.12 | 3.1 ± 1.8 | 4.6 ± 2.0 | 0.77 | 4.2 ± 2.3 | 4.6 ± 2.4 | 0.17 | 4.0 ± 2.4 | 4.6 ± 2.1 | 0.26 | |
Post | 5.1 ± 2.3 | 5.6 ± 1.7 | 0.24 | 3.9 ± 2.5 | 5.8 ± 1.7 | 0.87 | 5.4 ± 1.9 | 5.9 ± 1.8 | 0.27 | 4.8 ± 2.3 | 5.7 ± 1.7 | 0.44 | ||
RTE Men | Pre | 4.1 ± 2.4 | 4.7 ± 2.1 | 0.26 | 3.2 ± 1.9 | 4.0 ± 1.7 | 0.44 | 4.2 ± 2.1 | 4.5 ± 2.4 | 0.13 | 3.8 ± 2.2 | 4.4 ± 2.1 | 0.27 | |
Post | 4.8 ± 2.4 | 6.1 ± 1.8 | 0.60 | 4.1 ± 2.1 | 5.8 ± 1.6 | 0.84 | 4.7 ± 2.1 | 5.7 ± 1.8 | 0.11 | 4.8 ± 2.2 | 5.9 ± 1.7 | 0.55 | ||
FAS | Pre | 2 ± 1 | 3 ± 1 | 0.98 | 2 ± 1 | 2 ± 1 | 0.00 | 3 ± 1 | 3 ± 1 | 0.00 | 2 ± 1 | 2 ± 1 | 0.00 | |
Post | 3 ± 1 | 4 ± 1 | 0.98 | 3 ± 1 | 4 ± 1 | 0.98 | 2 ± 1 | 4 ± 1 | 0.98 | 3 ± 1 | 4 ± 1 | 0.98 |
Trial 1 | ES | Trial 2 | ES | Trial 3 | ES | Overall | ES | ||
---|---|---|---|---|---|---|---|---|---|
Jump Height (m) | PL | 0.23 ± 0.07 | 0.39 | 0.23 ± 0.08 | 0.39 | 0.23 ± 0.06 | 0.16 | 0.23 ± 0.07 | 0.28 |
CF | 0.26 ± 0.08 | 0.26 ± 0.07 | 0.24 ± 0.06 | 0.25 ± 0.07 | |||||
RSI (Mod) | PL | 0.33 ± 0.11 | 0.47 | 0.35 ± 0.14 | 0.14 | 0.34 ± 0.13 | 0.16 | 0.34 ± 0.13 | 0.23 |
CF | 0.39 ± 0.14 | 0.37 ± 0.14 | 0.36 ± 0.11 | 0.37 ± 0.13 | |||||
Peak Force (N.kg−1) | PL | 14.8 ± 3.8 | 0.39 | 15.8 ± 3.8 | 0.08 | 15.7 ± 3.6 | 0.06 | 15.4 ± 3.7 | 0.17 |
CF | 16.2 ± 3.3 | 16.1 ± 3.8 | 15.9 ± 3.4 | 16.0 ± 3.4 | |||||
Peak Power (W.kg−1) | PL | 43.2 ± 8.1 | 0.40 | 44.1 ± 8.8 | 0.08 | 43.1 ± 6.9 | 0.14 | 43.5 ± 7.9 | 0.21 |
CF | 46.7 ± 9.0 | 44.8 ± 8.0 | 44.1 ± 7.1 | 45.2. ± 8.0 | |||||
Concentric Impulse (Ns) | PL | 180 ± 44 | 0.11 | 178 ± 47 | 0.08 | 181 ± 48 | 0.15 | 180 ± 46 | 0.11 |
CF | 185 ± 48 | 182 ± 47 | 188 ± 44 | 185 ± 46 | |||||
Eccentric Impulse (Ns) | PL | 75 ± 22 | 0.04 | 77 ± 35 | 0.07 | 79 ± 36 | 0.03 | 77 ± 31 | 0.04 |
CF | 74 ± 23 | 75 ± 20 | 80 ± 25 | 76 ± 22 |
Trial 1 | ES | Trial 2 | ES | Trial 3 | ES | Overall | ES | ||
---|---|---|---|---|---|---|---|---|---|
Jump Height (cm) | PL | 0.30 ± 0.10 | 0.28 | 0.29 ± 0.10 | 0.56 | 0.30 ± 0.11 | 0.29 | 0.30 ± 0.10 | 0.37 |
CF | 0.33 ± 0.11 | 0.35 ± 0.11 | 0.33 ± 0.09 | 0.34 ± 0.11 | |||||
RSI | PL | 0.91 ± 0.40 | 0.05 | 0.94 ± 0.38 | 0.03 | 0.95 ± 0.38 | 0.02 | 0.94 ± 0.38 | 0.03 |
CF | 0.93 ± 0.34 | 0.95 ± 0.39 | 0.96 ± 0.44 | 0.95 ± 0.39 | |||||
Peak Force (N.Kg) | PL | 51.9 ± 10.2 | 0.10 | 51.0 ± 9.6 | 0.42 | 50.2 ± 11.5 | 0.21 | 51.0 ± 0.10.3 | 0.24 |
CF | 53.0 ± 11.4 | 55.3 ± 10.6 | 52.8 ± 12.7 | 53.7 ± 0.11.5 | |||||
Peak Power (W.Kg) | PL | 67.8 ± 20.7 | 0.39 | 65.5 ± 17.2 | 0.55 | 65.2 ± 21.0 | 0.25 | 66.2 ± 0.19.4 | 0.40 |
CF | 78.6 ± 32.1 | 77.4 ± 24.5 | 70.4 ± 19.3 | 75.5 ± 0.25.7 |
Trial 1 | ES | Trial 2 | ES | Trial 3 | ES | Overall | ES | ||
---|---|---|---|---|---|---|---|---|---|
Peak force (N.Kg) | PL | 27.8 ± 7.8 | 0.32 | 25.0 ± 4.1 | 0.34 | 25.8 ± 5.2 | 0.08 | 26.2 ± 5.9 | 0.00 |
CF | 25.7 ± 4.9 | 26.6 ± 5.2 | 26.2 ± 4.5 | 26.2 ± 4.8 | |||||
Time to peak Force (Sec) | PL | 2.50 ± 1.58 | 0.32 | 2.62 ± 1.54 | 0.29 | 2.15 ± 1.09 | 0.10 | 2.42 ± 1.41 | 0.25 |
CF | 2.02 ± 1.37 | 2.21 ± 1.27 | 2.02 ± 1.34 | 2.08 ± 1.31 | |||||
Force (N) at 100 m/s | PL | 1280 ± 302 | 0.05 | 1281 ± 346 | 0.22 | 1277 ± 417 | 0.18 | 1285 ± 347 | 0.15 |
CF | 1299 ± 417 | 1356 ± 319 | 1346 ± 376 | 1342 ± 375 | |||||
Force (N) at 300 m/s | PL | 1858 ± 461 | 0.02 | 1817 ± 583 | 0.02 | 1877 ± 583 | 0.08 | 1863 ± 487 | 0.03 |
CF | 1867 ± 475 | 1825 ± 486 | 1916 ± 400 | 1879 ± 458 |
Trial 1 | Trial 2 | Trial 3 | Overall | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PL | CF | ES | PL | CF | ES | PL | CF | ES | PL | CF | ES | ||
CP | Set1 | 13 ± 3 | 14 ± 5 | 0.24 | 13 ± 5 | 14 ± 4 | 0.43 | 14 ± 6 | 14 ± 4 | 0.00 | 13 ± 4 | 14 ± 4 | 0.25 0.25 |
Set2 | 10 ± 3 | 14 ± 4 | 0.83 | 11 ± 4 | 12 ± 4 | 0.25 | 11 ± 4 | 12 ± 4 | 0.25 | 11 ± 4 | 12 ± 4 | ||
SP | Set1 | 12 ± 3 | 13 ± 4 | 0.28 | 10 ± 3 | 12 ± 4 | 0.56 | 12 ± 3 | 13 ± 4 | 0.28 | 11 ± 3 | 13 ± 4 | 0.56 0.65 |
Set2 | 9 ± 3 | 11 ± 3 | 0.65 | 9 ± 3 | 10 ± 3 | 0.33 | 10 ± 3 | 11 ± 2 | 0.39 | 9 ± 3 | 11 ± 3 | ||
SQ | Set1 | 13 ± 4 | 15 ± 5 | 0.43 | 12 ± 4 | 16 ± 4 | 0.98 | 14 ± 4 | 16 ± 5 | 0.43 | 13 ± 4 | 15 ± 5 | 0.43 0.25 |
Set2 | 12 ± 4 | 13 ± 4 | 0.25 | 11 ± 4 | 13 ± 4 | 0.49 | 12 ± 3 | 13 ± 4 | 0.28 | 12 ± 4 | 13 ± 4 | ||
DL | Set1 | 12 ± 4 | 14 ± 6 | 0.39 | 11 ± 4 | 13 ± 4 | 0.49 | 12 ± 5 | 14 ± 7 | 0.32 | 12 ± 5 | 13 ± 6 | 0.18 0.25 |
Set2 | 10 ± 4 | 11 ± 4 | 0.25 | 9 ± 4 | 11 ± 4 | 0.49 | 10 ± 3 | 11 ± 3 | 0.33 | 10 ± 4 | 11 ± 4 |
Trial 1 | Trial 2 | Trial 3 | Overall | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PL | CF | ES | PL | CF | ES | PL | CF | ES | PL | CF | ES | ||
CP | Set1 | 17 ± 1 | 18 ± 1 | 0.98 | 18 ± 2 | 18 ± 1 | 0.00 | 17 ± 1 | 18 ± 2 | 0.62 | 17 ± 1 | 18 ± 1 | 0.98 0.98 |
Set2 | 19 ± 1 | 18 ± 1 | 0.98 | 18 ± 1 | 19 ± 1 | 0.98 | 18 ± 1 | 19 ± 1 | 0.98 | 19 ± 1 | 18 ± 1 | ||
SP | Set1 | 17 ± 1 | 18 ± 1 | 0.98 | 18 ± 2 | 18 ± 1 | 0.00 | 17 ± 1 | 18 ± 2 | 0.62 | 18 ± 1 | 17 ± 2 | 0.62 0.00 |
Set2 | 19 ± 1 | 18 ± 1 | 0.98 | 18 ± 1 | 19 ± 1 | 0.98 | 18 ± 1 | 19 ± 1 | 0.98 | 18 ± 1 | 18 ± 1 | ||
SQ | Set1 | 17 ± 1 | 17 ± 1 | 0.00 | 18 ± 1 | 17 ± 1 | 0.98 | 17 ± 1 | 18 ± 1 | 0.98 | 17 ± 1 | 17 ± 1 | 0.00 0.98 |
Set2 | 18 ± 1 | 18 ± 1 | 0.00 | 19 ± 1 | 18 ± 1 | 0.98 | 18 ± 1 | 19 ± 1 | 0.98 | 19 ± 1 | 18 ± 1 | ||
DL | Set1 | 17 ± 2 | 17 ± 1 | 0.00 | 17 ± 2 | 18 ± 3 | 0.62 | 18 ± 1 | 18 ± 1 | 0.00 | 17 ± 2 | 18 ± 1 | 0.62 0.00 |
Set2 | 18 ± 3 | 19 ± 1 | 0.44 | 18 ± 1 | 18 ± 1 | 0.00 | 19 ± 1 | 18 ± 1 | 0.98 | 18 ± 2 | 18 ± 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamilio, R.A.; Clarke, N.D.; Duncan, M.J.; Morris, R.O.; Tallis, J. How Repeatable Is the Ergogenic Effect of Caffeine? Limited Reproducibility of Acute Caffeine (3 mg.kg−1) Ingestion on Muscular Strength, Power, and Muscular Endurance. Nutrients 2022, 14, 4416. https://doi.org/10.3390/nu14204416
Tamilio RA, Clarke ND, Duncan MJ, Morris RO, Tallis J. How Repeatable Is the Ergogenic Effect of Caffeine? Limited Reproducibility of Acute Caffeine (3 mg.kg−1) Ingestion on Muscular Strength, Power, and Muscular Endurance. Nutrients. 2022; 14(20):4416. https://doi.org/10.3390/nu14204416
Chicago/Turabian StyleTamilio, Ryan A., Neil D. Clarke, Michael J. Duncan, Rhys O. Morris, and Jason Tallis. 2022. "How Repeatable Is the Ergogenic Effect of Caffeine? Limited Reproducibility of Acute Caffeine (3 mg.kg−1) Ingestion on Muscular Strength, Power, and Muscular Endurance" Nutrients 14, no. 20: 4416. https://doi.org/10.3390/nu14204416
APA StyleTamilio, R. A., Clarke, N. D., Duncan, M. J., Morris, R. O., & Tallis, J. (2022). How Repeatable Is the Ergogenic Effect of Caffeine? Limited Reproducibility of Acute Caffeine (3 mg.kg−1) Ingestion on Muscular Strength, Power, and Muscular Endurance. Nutrients, 14(20), 4416. https://doi.org/10.3390/nu14204416