Food Insecurity and Maternal Diet Influence Human Milk Composition between the Infant’s Birth and 6 Months after Birth in Central-Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Assessment of Maternal Diet
2.3. Human Milk Sampling and Analyses
2.4. Laboratory Procedures for Blood Analyses
2.5. Statistical Analyses
3. Results
3.1. Description of the Cohort and Maternal Characteristics at Delivery
3.2. Food Insecurity Indexes
3.3. Maternal Diet Characteristics
3.4. Determinants of Lactose Levels and HM Oligosaccharides
3.5. Dietary Determinants of HM Retinol
3.6. Dietary Determinants of HM Fatty Acids Levels
3.7. Dietary Determinants of Amino Acids
3.7.1. Total Amino Acids
3.7.2. Free Amino Acids
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Infant and Young Child Feeding. Available online: https://www.who.int/news-room/fact-sheets/detail/infant-and-young-child-feeding (accessed on 24 February 2022).
- Roberts, T.; Carnahan, E.; Gakidou, E. Burden attributable to suboptimal breastfeeding: A cross-country analysis of country-specific trends and their relation to child health inequalities. Lancet 2013, 381, S126. [Google Scholar] [CrossRef]
- Altobelli, E.; Angeletti, P.M.; Verrotti, A.; Petrocelli, R. The Impact of Human Milk on Necrotizing Enterocolitis: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1322. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Breastfeeding Estimates. Health Topics: Breastfeeding. Available online: https://www.who.int/health-topics/breastfeeding#tab=tab_1 (accessed on 20 September 2022).
- Victora, C.G.; Bahl, R.; Barros, A.J.D.; França, G.V.A.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C.; et al. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef] [PubMed]
- Siziba, L.P.; Lorenz, L.; Stahl, B.; Mank, M.; Marosvölgyi, T.; Decsi, T.; Rothenbacher, D.; Genuneit, J. Changes in human milk fatty acid composition during lactation: The ulm SPATZ health study. Nutrients 2019, 11, 2842. [Google Scholar] [CrossRef]
- Siziba, L.P.; Lorenz, L.; Stahl, B.; Mank, M.; Marosvölgyi, T.; Decsi, T.; Rothenbacher, D.; Genuneit, J. Human milk fatty acid composition of allergic and non-allergic mothers: The ulm spatz health study. Nutrients 2020, 12, 1740. [Google Scholar] [CrossRef] [PubMed]
- Moro, G.E.; Bertino, E.; Bravi, F.; Tonetto, P.; Gatta, A.; Quitadamo, P.A.; Salvatori, G.; Profeti, C.; Di Nicola, P.; Decarli, A.; et al. Adherence to the traditional mediterranean diet and human milk composition: Rationale, design, and subject characteristics of the MEDIDIET study. Front. Pediatr. 2019, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Marangoni, F.; Agostoni, C.; Lammardo, A.M.; Giovannini, M.; Galli, C.; Riva, E. Polyunsaturated fatty acid concentrations in human hindmilk are stable throughout 12-months of lactation and provide a sustained intake to the infant during exclusive breastfeeding: An Italian study. Br. J. Nutr. 2000, 84, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Fei, J.; Zhai, Y.; Feng, Y.; Warren, J.; Jin, Y.; Papi, B.; Stahl, B.; Wang, Z.; Li, J. The dietary intake of two groups of lactating women in Shanghai during the puerperium. Asia Pac. J. Clin. Nutr. 2019, 28, 106–115. [Google Scholar] [CrossRef]
- Butts, C.A.; Hedderley, D.I.; Herath, T.D.; Paturi, G.; Glyn-Jones, S.; Wiens, F.; Stahl, B.; Gopal, P. Human milk composition and dietary intakes of breastfeeding women of different ethnicity from the manawatu-wanganui region of New Zealand. Nutrients 2018, 10, 1231. [Google Scholar] [CrossRef]
- Butts, C.A.; Paturi, G.; Blatchford, P.; Bentley-Hewitt, K.L.; Hedderley, D.I.; Martell, S.; Dinnan, H.; Eady, S.L.; Wallace, A.J.; Glyn-Jones, S.; et al. Microbiota composition of breast milk from women of different ethnicity from the Manawatu—Wanganui region of New Zealand. Nutrients 2020, 12, 1756. [Google Scholar] [CrossRef]
- Olafsdottir, A.S.; Thorsdottir, I.; Wagner, K.H.; Elmadfa, I. Polyunsaturated fatty acids in the diet and breast milk of lactating Icelandic women with traditional fish and cod liver oil consumption. Ann. Nutr. Metab. 2006, 50, 270–276. [Google Scholar] [CrossRef]
- Roy, S.; Dhar, P.; Ghosh, S. Comparative evaluation of essential fatty acid composition of mothers’ milk of some urban and suburban regions of West Bengal, India. Int. J. Food Sci. Nutr. 2012, 63, 895–901. [Google Scholar] [CrossRef]
- Cortes-Macías, E.; Selma-Royo, M.; García-Mantrana, I.; Calatayud, M.; González, S.; Martínez-Costa, C.; Collado, M.C. Maternal Diet Shapes the Breast Milk Microbiota Composition and Diversity: Impact of Mode of Delivery and Antibiotic Exposure. J. Nutr. 2021, 151, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Liu, X.; Zhou, B.; Jiang, A.C.; Chai, L. Review Article An updated review of worldwide levels of docosahexaenoic and arachidonic acid in human breast milk by region. Public Health Nutr. 2016, 19, 2675–2687. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, C.; Marangoni, F.; Grandi, F.; Lammardo, A.M.; Giovannini, M.; Riva, E.; Galli, C. Earlier smoking habits are associated with higher serum lipids and lower milk fat and polyunsaturated fatty acid content in the first 6 months of lactation. Eur. J. Clin. Nutr. 2003, 57, 1466–1472. [Google Scholar] [CrossRef] [PubMed]
- Selma-Royo, M.; García-Mantrana, I.; Calatayud, M.; Parra-Llorca, A.; Martínez-Costa, C.; Collado, M.C. Maternal diet during pregnancy and intestinal markers are associated with early gut microbiota. Eur. J. Nutr. 2021, 60, 1429–1442. [Google Scholar] [CrossRef] [PubMed]
- Unicef WHO. The World Bank Country overview Malnutrition burden Stunting in the Central-African Republic. Glob. Nutr. Rep. 2019, 577, 1–14. [Google Scholar] [CrossRef]
- Half of the Population in the Central African Republic in the Grip of Dire Food Insecurity Emergency, UN Warns|World Food Programme. Available online: https://www.wfp.org/news/half-population-central-african-republic-grip-dire-food-insecurity-emergency-un-warns (accessed on 21 June 2022).
- Moya-Alvarez, V.; Koyembi, J.C.J.; Kayé, L.M.; Mbecko, J.R.; Sanke-Waîgana, H.; Djorie, S.G.; Nyasenu, Y.T.; Mad-Bondo, D.; Kongoma, J.B.; Nakib, S.; et al. Vitamin C levels in a Central-African mother–infant cohort: Does hypovitaminosis C increase the risk of enteric infections? Matern. Child Nutr. 2021, 17, e13215. [Google Scholar] [CrossRef]
- FAO. Minimum Dietary Diversity for Women. An Updated Guide for Measurement: From Collection to Action; FAO: Rome, Italy, 2021. [Google Scholar]
- Coates, J.; Swindale, A.; Bilinsky, P. Household Food Insecurity Access Scale (HFIAS) for Measurement of Food Access: Indicator Guide, Version 3; Food and Nutrition Technical Assistance Project; Academy for Educational Development: Washington, DC, USA, 2007. [Google Scholar] [CrossRef]
- Ballard, T.; Deitchler, M.; Ballard, T. Household Hunger Scale: Indicator Definition and Measurement Guide; Food and Nutrition Technical Assistance Project; Academy for Educational Development: Washington, DC, USA, 2011. [Google Scholar]
- Burtis, C.A.; Ashwood, E.R. Textbook of clinical chemistry. Philadelphia 1999, 1999, 1654–1655. [Google Scholar]
- McPherson, R.A.; Msc, M.D.; Pincus, M.R. Henry’s Clinical Diagnosis and Management by Laboratory Methods E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2021; ISBN 0323755089. [Google Scholar]
- Morrison, W.R.; Smith, L.M. Preparation of Fatty Acid Methyl Esters and Dimethylacetals From Lipids. J. Lipid Res. 1964, 5, 600–608. [Google Scholar] [PubMed]
- Teerlink, T.; Hennekes, M.; Bussemaker, J.; Groeneveld, J. Simultaneous determination of creatine compounds and adenine nucleotides in myocardial tissue by high-performance liquid chromatography. Anal. Biochem. 1993, 214, 278–283. [Google Scholar] [CrossRef]
- Teerlink, T. Derivatization of posttranslationally modified amino acids. J. Chromatogr. B Biomed. Sci. Appl. 1994, 659, 185–207. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software partners. J. Biomed. Inf. 2019, 95, 103208. [Google Scholar] [CrossRef]
- WHO. New Thresholds for the Use of Ferritin Concentrations To Assess Iron Status in Individuals and Populations; WHO: Geneva, Switzerland, 2020.
- FAO. World Health Organization. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; World Health Organization: Geneva, Switzerland, 1998; pp. 1–20. ISBN 9241546123.
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.C. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inf. 2009, 42, 377–381. [Google Scholar] [CrossRef]
- Gounden, V.; Vashisht, R.; Jialal, I. Hypoalbuminemia; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Moya-Alvarez, V.; Cottrell, G.; Ouédraogo, S.; Accrombessi, M.; Massougbodgi, A.; Cot, M. Does iron increase the risk of malaria in pregnancy ? Open Forum Infect. Dis. 2015, 2, 1–9. [Google Scholar] [CrossRef]
- Hassan, A.-A.; Mamman, A.I.; Adaji, S.; Musa, B.; Kene, S. Anemia and iron deficiency in pregnant women in Zaria, Nigeria. Sub-Saharan African J. Med. 2014, 1, 36. [Google Scholar]
- Kabyemela, E.R.; Fried, M.; Kurtis, J.D.; Mutabingwa, T.K.; Duffy, P.E. Decreased susceptibility to Plasmodium falciparum infection in pregnant women with iron deficiency. J. Infect. Dis. 2008, 198, 163–166. [Google Scholar] [CrossRef]
- World Health Organization. Prevalence of Anaemia in Women of Reproductive Age (15–49 Years). Available online: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/4552 (accessed on 20 September 2022).
- Webb-Girard, A.; Cherobon, A.; Mbugua, S.; Kamau-Mbuthia, E.; Amin, A.; Sellen, D.W. Food insecurity is associated with attitudes towards exclusive breastfeeding among women in urban Kenya. Matern. Child Nutr. 2012, 8, 199–214. [Google Scholar] [CrossRef]
- Venu, I.; Van Den Heuvel, M.; Wong, J.P.; Borkhoff, C.M.; Moodie, R.G.; Ford-Jones, E.L.; Wong, P.D. The breastfeeding paradox: Relevance for household food Insecurity. Paediatr. Child Health 2017, 22, 180–183. [Google Scholar] [CrossRef]
- Orr, S.K.; Dachner, N.; Frank, L.; Tarasuk, V. Relation between household food insecurity and breastfeeding in Canada. Cmaj 2018, 190, E312–E319. [Google Scholar] [CrossRef]
- Gross, R.S.; Mendelsohn, A.L.; Arana, M.M.; Messito, M.J. Food insecurity during pregnancy and breastfeeding by low-income Hispanic mothers. Pediatrics 2019, 143, e20184113. [Google Scholar] [CrossRef]
- Dietrich Leurer, M.; Petrucka, P.; Msafiri, M. Maternal perceptions of breastfeeding and infant nutrition among a select group of Maasai women. BMC Pregnancy Childbirth 2019, 19, 8. [Google Scholar] [CrossRef]
- Dinour, L.M.; Rivera Rodas, E.I.; Amutah-Onukagha, N.N.; Doamekpor, L.A. The role of prenatal food insecurity on breastfeeding behaviors: Findings from the United States pregnancy risk assessment monitoring system. Int. Breastfeed. J. 2020, 15, 30. [Google Scholar] [CrossRef]
- Ryoo, C.J.; Kang, N.M. Maternal Factors Affecting the Macronutrient Composition of Transitional Human Milk. Int. J. Environ. Res. Public Health 2022, 19, 3308. [Google Scholar] [CrossRef]
- Bzikowska-Jura, A.; Czerwonogrodzka-Senczyna, A.; Olędzka, G.; Szostak-Węgierek, D.; Weker, H.; Wesołowska, A. Maternal nutrition and body composition during breastfeeding: Association with human milk composition. Nutrients 2018, 10, 1379. [Google Scholar] [CrossRef]
- Keikha, M.; Bahreynian, M.; Saleki, M.; Kelishadi, R. Macro- and Micronutrients of Human Milk Composition: Are They Related to Maternal Diet? A Comprehensive Systematic Review. Breastfeed. Med. 2017, 12, 517–527. [Google Scholar] [CrossRef]
- Innis, S.M. Impact of maternal diet on human milk composition and neurological development of infants. Am. J. Clin. Nutr. 2014, 99, 734–741. [Google Scholar] [CrossRef]
- Lonnerdal, B. Effects of Maternal Dietary Intake on Human Milk Composition. J. Nutr. 1986, 116, 499–513. [Google Scholar] [CrossRef]
- Bravi, F.; Wiens, F.; Decarli, A.; Dal Pont, A.; Agostoni, C.; Ferraroni, M. Impact of maternal nutrition on breast-milk composition: A systematic review. Am. J. Clin. Nutr. 2016, 104, 646–662. [Google Scholar] [CrossRef]
- Iranpour, R.; Kelishadi, R.; Babaie, S.; Khosravi-Darani, K.; Farajian, S. Comparison of long chain polyunsaturated fatty acid content in human milk in preterm and term deliveries and its correlation with mothers’ diet. J. Res. Med. Sci. 2013, 18, 1–5. [Google Scholar]
- Kelishadi, R.; Hadi, B.; Iranpour, R.; Khosravi-Darani, K.; Mirmoghtadaee, P.; Farajian, S.; Poursafa, P. A study on lipid content and fatty acid of breast milk and its association with mother’s diet composition. J. Res. Med. Sci. 2012, 17, 824–827. [Google Scholar] [PubMed]
- Krešić, G.; Dujmović, M.; Mandić, M.L.; Delaš, I. Relationship between Mediterranean diet and breast milk fatty acid profile: A study in breastfeeding women in Croatia. Dairy Sci. Technol. 2013, 93, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Lauritzen, L.; Halkjær, L.B.; Mikkelsen, T.B.; Olsen, S.F.; Michaelsen, K.F.; Loland, L.; Bisgaard, H. Fatty acid composition of human milk in atopic Danish mothers. Am. J. Clin. Nutr. 2006, 84, 190–196. [Google Scholar] [CrossRef]
- Peng, Y.; Zhou, T.; Wang, Q.; Liu, P.; Zhang, T.; Zetterström, R.; Strandvik, B. Fatty acid composition of diet, cord blood and breast milk in Chinese mothers with different dietary habits. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 325–330. [Google Scholar] [CrossRef]
- Xiang, M.; Harbige, L.; Zetterström, R. Long-chain polyunsaturated fatty acids in Chinese and Swedish mothers: Diet, breast milk and infant growth. Acta Pædiatrica 2005, 94, 1543–1549. [Google Scholar] [CrossRef]
- Da Cunha, J.; Macedo Da Costa, T.H.; Ito, M.K. Influences of maternal dietary intake and suckling on breast milk lipid and fatty acid composition in low-income women from Brasilia, Brazil. Early Hum. Dev. 2005, 81, 303–311. [Google Scholar] [CrossRef]
- Rocquelin, G.; Kiffer, J.; Tapsoba, S.; Bouda, C. High proportions of n-6 polyunsaturated fatty acids in mature milk of mothers in Ouagadougou, Burkina Faso. Acta Paediatr. Int. J. Paediatr. 2001, 90, 450–452. [Google Scholar] [CrossRef]
- Kankaanpää, P.; Nurmela, K.; Erkkilä, A.; Kalliomäki, M.; Holmberg-Marttila, D.; Salminen, S.; Isolauri, E. Polyunsaturated fatty acids in maternal diet, breast milk, and serum lipid fatty acids of infants in relation to atopy. Allergy 2001, 56, 633–638. [Google Scholar] [CrossRef]
- Heldenberg, D.; Levtov, O.; Eckstein, N.; Barns, L.; Getter, R.; Tamir, I. Breast milk and adipose tissue fatty acid composition in relation to maternal dietary intake. Clin. Nutr. 1983, 2, 73–77. [Google Scholar] [CrossRef]
- Aumeistere, L.; Ciproviča, I.; Zavadska, D.; Andersons, J.; Volkovs, V.; Ceļmalniece, K. Impact of maternal diet on human milk composition among lactating women in Latvia. Med. 2019, 55, 173. [Google Scholar] [CrossRef]
- Jonsson, K.; Barman, M.; Moberg, S.; Sjöberg, A.; Brekke, H.K.; Hesselmar, B.; Johansen, S.; Wold, A.E.; Sandberg, A.S. Fat intake and breast milk fatty acid composition in farming and nonfarming women and allergy development in the offspring. Pediatr. Res. 2016, 79, 114–123. [Google Scholar] [CrossRef]
- Demmelmair, H.; Kuhn, A.; Dokoupil, K.; Hegele, V.; Sauerwald, T.; Koletzko, B. Human lactation: Oxidation and maternal transfer of dietary (13)C-labelled α-linolenic acid into human milk. Isotopes Environ. Health Stud. 2016, 52, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, R.Y.; Barbieiri, P.; de Castro, G.S.F.; Jordão, A.A.; da Silva Castro Perdoná, G.; Sartorelli, D.S. Dietary polyunsaturated fatty acid intake during late pregnancy affects fatty acid composition of mature breast milk. Nutrition 2014, 30, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Yakes, E.A.; Arsenault, J.E.; Munirul Islam, M.; Hossain, M.B.; Ahmed, T.; Bruce German, J.; Gillies, L.A.; Rahman, A.S.; Drake, C.; Jamil, K.M.; et al. Intakes and breast-milk concentrations of essential fatty acids are low among Bangladeshi women with 24–48-month-old children. Br. J. Nutr. 2011, 105, 1660–1670. [Google Scholar] [CrossRef] [PubMed]
- Scopesi, F.; Ciangherotti, S.; Lantieri, P.B.; Risso, D.; Bertini, I.; Campone, F.; Pedrotti, A.; Bonacci, W.; Serra, G. Maternal dietary PUFAs intake and human milk content relationships during the first month of lactation. Clin. Nutr. 2001, 20, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Hayat, L.; Al-Sughayer, M.A.; Afzal, M. Fatty acid composition of human milk in Kuwaiti mothers. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1999, 124, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Vuori, E.; Kiuru, K.; Mäkinen, S.M.; Väyrynen, P.; Kara, R.; Kuitunen, P. Maternal diet and fatty acid pattern of breast milk. Acta Paediatr. Scand. 1982, 71, 959–963. [Google Scholar] [CrossRef]
- Dingess, K.A.; Valentine, C.J.; Ollberding, N.J.; Davidson, B.S.; Woo, J.G.; Summer, S.; Peng, Y.M.; Guerrero, M.L.; Ruiz-Palacios, G.M.; Ran-Ressler, R.R.; et al. Branched-chain fatty acid composition of human milk and the impact of maternal diet: The global exploration of human milk (GEHM) study. Am. J. Clin. Nutr. 2017, 105, 177–184. [Google Scholar] [CrossRef] [PubMed]
- van Goor, S.A.; Dijck-Brouwer, D.A.J.; Hadders-Algra, M.; Doornbos, B.; Erwich, J.J.H.M.; Schaafsma, A.; Muskiet, F.A.J. Human milk arachidonic acid and docosahexaenoic acid contents increase following supplementation during pregnancy and lactation. Prostaglandins Leukot. Essent. Fat. Acids 2009, 80, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Fidler, N.; Sauerwald, T.; Pohl, A.; Demmelmair, H.; Koletzko, B. Docosahexaenoic acid transfer into human milk after dietary supplementation: A randomized clinical trial. J. Lipid Res. 2000, 41, 1376–1383. [Google Scholar] [CrossRef]
- Innis, S.M.; Kuhnlein, H.V. Long-chain n-3 fatty acids in breast milk of Inuit women consuming traditional foods. Early Hum. Dev. 1988, 18, 185–189. [Google Scholar] [CrossRef]
- Koletzko, B.; Thiel, I.; Abiodun, P.O. The fatty acid composition of human milk in Europe and Africa. J. Pediatr. 1992, 120, S62–S70. [Google Scholar] [CrossRef]
- Wang, L.; Shimizu, Y.; Kaneko, S.; Hanaka, S.; Abe, T.; Shimasaki, H.; Hisaki, H.; Nakajima, H. Comparison of the fatty acid composition of total lipids and phospholipids in breast milk from Japanese women. Pediatr. Int. 2000, 42, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, M.H.; Hernell, O.; Hughes, E.L.; Michaelsen, K.F. Is there a relation between Docosahexaenoic acid concentration in mothers’ milk and visual development in term infants? J. Pediatr. Gastroenterol. Nutr. 2001, 32, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Ward, E.; Yang, N.; Muhlhausler, B.S.; Leghi, G.E.; Netting, M.J.; Elmes, M.J.; Langley-Evans, S.C. Acute changes to breast milk composition following consumption of high-fat and high-sugar meals. Matern. Child Nutr. 2021, 17, e13168. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.M.; Wu, Y.X.; Lin, Y.Q.; Chen, X.Y.; Yu, M.; Lu, T.; Xie, L. Dietary patterns affect maternal macronutrient intake levels and the fatty acid profile of breast milk in lactating Chinese mothers. Nutrition 2019, 58, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Floris, L.M.; Stahl, B.; Abrahamse-Berkeveld, M.; Teller, I.C. Human milk fatty acid profile across lactational stages after term and preterm delivery: A pooled data analysis. Prostaglandins Leukot. Essent. Fat. Acids 2020, 156, 102023. [Google Scholar] [CrossRef] [PubMed]
- Szabó, É.; Boehm, G.; Beermann, C.; Weyermann, M.; Brenner, H.; Rothenbacher, D.; Decsi, T. Fatty Acid profile comparisons in human milk sampled from the same mothers at the sixth week and the sixth month of lactation. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 316–320. [Google Scholar] [CrossRef]
- Kuipers, R.S.; Luxwolda, M.F.; Dijck-Brouwer, D.A.J.; Muskiet, F.A.J. Fatty acid compositions of preterm and term colostrum, transitional and mature milks in a sub-Saharan population with high fish intakes. Prostaglandins Leukot. Essent. Fat. Acids 2012, 86, 201–207. [Google Scholar] [CrossRef]
- Hu, R.; Eussen, S.R.B.M.; Sijtsma, F.P.C.; Papi, B.; Stahl, B.; Jin, Y.; Mank, M.; Li, J.; Wang, Z. Maternal dietary patterns are associated with human milk composition in Chinese lactating women. Nutrition 2021, 91–92, 111392. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Guo, Q.; Cui, M.; Liu, J.; Yang, C.; Li, X.; Liu, P.; Wang, L. Impact of maternal nutrition during early pregnancy and diet during lactation on lactoferrin in mature breast milk. Nutrition 2022, 93, 111500. [Google Scholar] [CrossRef] [PubMed]
- Biddulph, C.; Holmes, M.; Kuballa, A.; Davies, P.S.W.; Koorts, P.; Carter, R.J.; Maher, J. Human milk oligosaccharide profiles and associations with maternal nutritional factors: A scoping review. Nutrients 2021, 13, 965. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.B.; Robertson, B.; Atakora, F.; Becker, A.B.; Subbarao, P.; Moraes, T.J.; Mandhane, P.J.; Turvey, S.E.; Lefebvre, D.L.; Sears, M.R.; et al. Human Milk Oligosaccharide Concentrations Are Associated with Multiple Fixed and Modifiable Maternal Characteristics, Environmental Factors, and Feeding Practices. J. Nutr. 2018, 148, 1733–1742. [Google Scholar] [CrossRef]
- Jorgensen, J.M.; Arnold, C.; Ashorn, P.; Ashorn, U.; Chaima, D.; Cheung, Y.B.; Davis, J.C.C.; Fan, Y.M.; Goonatilleke, E.; Kortekangas, E.; et al. Lipid-based nutrient supplements during pregnancy and lactation did not affect human milk oligosaccharides and bioactive proteins in a randomized trial. J. Nutr. 2017, 147, 1867–1874. [Google Scholar] [CrossRef] [PubMed]
- Neville, J.; Pawlak, R.; Chang, M.; Furst, A.; Bode, L.; Perrin, M.T. A Cross-Sectional Assessment of Human Milk Oligosaccharide Composition of Vegan, Vegetarian, and Nonvegetarian Mothers. Breastfeed. Med. 2022, 17, 210–217. [Google Scholar] [CrossRef]
- Moossavi, S.; Atakora, F.; Miliku, K.; Sepehri, S.; Robertson, B.; Duan, Q.L.; Becker, A.B.; Mandhane, P.J.; Turvey, S.E.; Moraes, T.J.; et al. Integrated analysis of human milk microbiota with oligosaccharides and fatty acids in the child cohort. Front. Nutr. 2019, 6, 58. [Google Scholar] [CrossRef] [PubMed]
- McGuire, M.K.M.A.M.K.; Meehan, C.L.; McGuire, M.K.M.A.M.K.; Williams, J.E.; Foster, J.; Sellen, D.W.; Kamau-Mbuthia, E.W.; Kamundia, E.W.; Mbugua, S.; Moore, S.E.; et al. What’s normal? Oligosaccharide concentrations and profiles in milk produced by healthy women vary geographically. Am. J. Clin. Nutr. 2017, 105, 1086–1100. [Google Scholar] [CrossRef] [PubMed]
- Charbonneau, M.R.; O’Donnell, D.; Blanton, L.V.; Totten, S.M.; Davis, J.C.C.C.; Barratt, M.J.; Cheng, J.; Guruge, J.; Talcott, M.; Bain, J.R.; et al. Sialylated Milk Oligosaccharides Promote Microbiota-Dependent Growth in Models of Infant Undernutrition. Cell 2016, 164, 859–871. [Google Scholar] [CrossRef]
- Qiao, Y.; Feng, J.; Yang, J.; Gu, G. The relationship between dietary vitamin A intake and the levels of sialic acid in the breast milk of lactating women. J. Nutr. Sci. Vitaminol. 2013, 59, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Seferovic, M.D.; Mohammad, M.; Pace, R.M.; Engevik, M.; Versalovic, J.; Bode, L.; Haymond, M.; Aagaard, K.M. Maternal diet alters human milk oligosaccharide composition with implications for the milk metagenome. Sci. Rep. 2020, 10, 22092. [Google Scholar] [CrossRef] [PubMed]
- Marquardt, T.; Lühn, K.; Srikrishna, G.; Freeze, H.H.; Harms, E.; Vestweber, D. Correction of Leukocyte Adhesion Deficiency Type II With Oral Fucose. Blood 1999, 94, 3976–3985. [Google Scholar] [CrossRef] [PubMed]
- Bosch, A.M. Classic galactosemia: Dietary dilemmas. J. Inherit. Metab. Dis. 2011, 34, 257–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Harris, K.; Kassis, A.; Major, G.; Chou, C.J. Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J. Obes. 2012, 2012, 879151. [Google Scholar] [CrossRef] [PubMed]
- Araújo, J.R.; Tomas, J.; Brenner, C.; Sansonetti, P.J. Impact of high-fat diet on the intestinal microbiota and small intestinal physiology before and after the onset of obesity. Biochimie 2017, 141, 97–106. [Google Scholar] [CrossRef]
- Kim, K.A.; Gu, W.; Lee, I.A.; Joh, E.H.; Kim, D.H. High Fat Diet-Induced Gut Microbiota Exacerbates Inflammation and Obesity in Mice via the TLR4 Signaling Pathway. PLoS ONE 2012, 7, e47713. [Google Scholar] [CrossRef]
- Beghetti, I.; Biagi, E.; Martini, S.; Brigidi, P.; Corvaglia, L.; Aceti, A. Human milk’s hidden gift: Implications of the milk microbiome for preterm infants’ health. Nutrients 2019, 11, 2944. [Google Scholar] [CrossRef] [PubMed]
- Wicinski, M.; Sawicka, E.; Gebalski, J.; Kubiak, K.; Malinowski, B. Human Milk Oligosaccharides: Health Benefits, Potential Applications in Infant Formulas, and Pharmacology. Nutrients 2020, 12, 266. [Google Scholar]
- Jacobi, S.K.; Yatsunenko, T.; Li, D.; Dasgupta, S.; Yu, R.K.; Berg, B.M.; Chichlowski, M.; Odle, J. Dietary isomers of sialyllactose increase ganglioside sialic acid concentrations in the corpus callosum and cerebellum and modulate the colonic microbiota of formula-fed piglets. J. Nutr. 2016, 146, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Oliveros, E.; Vázquez, E.; Barranco, A.; Ramírez, M.; Gruart, A.; Delgado-García, J.M.; Buck, R.; Rueda, R.; Martín, M.J. Sialic acid and sialylated oligosaccharide supplementation during lactation improves learning and memory in rats. Nutrients 2018, 10, 1519. [Google Scholar] [CrossRef]
- Chiurazzi, M.; Cozzolino, M.; Reinelt, T.; Nguyen, T.D.; Elke Chie, S.; Natalucci, G.; Miletta, M.C. Human Milk and Brain Development in Infants. Reprod. Med. 2021, 2, 107–117. [Google Scholar] [CrossRef]
- Wang, B. Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv. Nutr. 2012, 3, 465–472. [Google Scholar] [CrossRef]
- Fleming, S.A.; Mudd, A.T.; Hauser, J.; Yan, J.; Metairon, S.; Steiner, P.; Donovan, S.M.; Dilger, R.N. Dietary oligofructose alone or in combination with 2′-fucosyllactose differentially improves recognition memory and hippocampal mrna expression. Nutrients 2020, 12, 2131. [Google Scholar] [CrossRef]
- Mudd, A.T.; Fleming, S.A.; Labhart, B.; Chichlowski, M.; Berg, B.M.; Donovan, S.M.; Dilger, R.N. Dietary sialyllactose influences sialic acid concentrations in the prefrontal cortex and magnetic resonance imaging measures in corpus callosum of young pigs. Nutrients 2017, 9, 1297. [Google Scholar] [CrossRef]
- Munch, E.M.; Harris, R.A.; Mohammad, M.; Benham, A.L.; Pejerrey, S.M.; Showalter, L.; Hu, M.; Shope, C.D.; Maningat, P.D.; Gunaratne, P.H.; et al. Transcriptome Profiling of microRNA by Next-Gen Deep Sequencing Reveals Known and Novel miRNA Species in the Lipid Fraction of Human Breast Milk. PLoS ONE 2013, 8, e50564. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Y.Q.; Su, B. Molecular evolution of a primate-specific microRNA family. Mol. Biol. Evol. 2008, 25, 1493–1502. [Google Scholar] [CrossRef]
- Melnik, B.; Schmitz, G. Milk’s Role as an Epigenetic Regulator in Health and Disease. Diseases 2017, 5, 12. [Google Scholar] [CrossRef]
- Alsaweed, M.; Hartmann, P.E.; Geddes, D.T.; Kakulas, F. MicroRNAs in Breastmilk and the Lactating Breast: Potential Immunoprotectors and Developmental Regulators for the Infant and the Mother. Int. J. Environ. Res. Public Health 2015, 12, 13981–14020. [Google Scholar]
- Verduci, E.; Banderali, G.; Barberi, S.; Radaelli, G.; Lops, A.; Betti, F.; Riva, E.; Giovannini, M. Epigenetic effects of human breast milk. Nutrients 2014, 6, 1711–1724. [Google Scholar] [CrossRef]
- Floris, I.; Kraft, J.D.; Altosaar, I. Roles of microRNA across prenatal and postnatal periods. Int. J. Mol. Sci. 2016, 17, 1994. [Google Scholar] [CrossRef] [PubMed]
- Carissimi, C.; Fulci, V.; Macino, G. MicroRNAs: Novel regulators of immunity. Autoimmun. Rev. 2009, 8, 520–524. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, R.M.; Rao, D.S.; Chaudhuri, A.A.; Baltimore, D. Physiological and pathological roles for microRNAs in the immune system. Nat. Rev. Immunol. 2010, 10, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Moody, L.; Chen, H.; Pan, Y.X. Early-life nutritional programming of cognition-the fundamental role of epigenetic mechanisms in mediating the relation between early-life environment and learning and memory process. Adv. Nutr. 2017, 8, 337–350. [Google Scholar] [CrossRef]
- Janas, A.M.; Sapoń, K.; Janas, T.; Stowell, M.H.B.; Janas, T. Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases. Biochim. Biophys. Acta Biomembr. 2016, 1858, 1139–1151. [Google Scholar] [CrossRef]
- Benmoussa, A.; Laugier, J.; Beauparlant, C.J.; Lambert, M.; Droit, A.; Provost, P. Complexity of the microRNA transcriptome of cow milk and milk-derived extracellular vesicles isolated via differential ultracentrifugation. J. Dairy Sci. 2020, 103, 16–29. [Google Scholar] [CrossRef]
All Women | Not Undernourished Women * | Undernourished Women * | p Value ** | |
---|---|---|---|---|
Number of participants | 46 | 30 (65.2%) | 16 (34.8%) | 0.04 |
Age (years) | 22.5 (20.6; 29.5) | 22.4 (19.7; 29.8) | 22.7 (21.3; 29.4) | 0.7 |
Gravidity | 1 (1; 3) | 1 (1; 2) | 2 (1; 3) | 0.2 |
Primigravidae | 5 (11.1%) | 3 (10.3%) | 2 (12.5%) | reference |
1–3 previous gestations | 36 (80.0%) | 23 (86.2%) | 11 (68.8%) | 0.7 |
4+ | 4 (8.9%) | 1 (3.5%) | 3 (18.8%) | 0.3 |
Education | 0.1 | |||
Primary | 8 (17.4%) | 3 (10.0%) | 5 (31.3%) | reference |
Secondary | 32 (69.6%) | 21 (70.0%) | 11 (68.8%) | 0.2 |
Higher | 6 (13.0%) | 6 (20.0%) | 0 | |
Occupation | 0.2 | |||
Homecare | 21 (45.7%) | 11 (36.7%) | 10 (62.5%) | reference |
Work outside home | 1 (2.2%) | 1 (3.3%) | 0 | |
Student | 24 (52.2%) | 18 (60.0%) | 6 (37.5%) | 0.2 |
Weight (kg) | 63.5 (60.0; 67.0) | 63.5 (60.0; 67.0) | 63.0 (58.5; 67.5) | 0.8 |
Height (m) | 1.6 (1.6; 1.7) | 1.6 (1.6; 1.7) | 1.61 (1.5; 1.6) | 0.8 |
Fever (T > 38 C) | 3 (6.5%) | 2 (6.7%) | 1 (6.3%) | 0.9 |
Albumin (g/L) | 36.0 (33.0; 38.0) | 38.0 (36.0; 40.0) | 32.0 (31.0; 33.0) | <0.001 |
Hemoglobin (g/dL) | 12.4 (11.2; 13.8) | 12.5 (11.6; 13.6) | 11.3 (10.0; 14.1) | 0.2 |
Anemia (Hemoglobin < 11.0 g/dL) | 8 (18.6%) | 2 (7.1%) | 6 (40.0%) | 0.01 |
Ferritin (ng/mL) | 48.0 (27.0; 105.0) | 52.5 (35.0; 108.0) | 29.5 (21.0; 69.0) | 0.2 |
Iron deficiency *** | 20 (43.5%) | 12 (40.0%) | 8 (50.0%) | 0.5 |
Vitamin C plasmatic levels (µmol/L) | 15.0 (5.7; 29.5) | 20.4 (8.2; 36.9) | 10.2 (3.7; 18.7) | 0.1 |
Vitamin C deficiency (vitamin C levels < 11 µmol/L) | 19 (43.1%) | 10 (35.7%) | 9 (56.3%) | 0.2 |
Vitamin A seric levels (µmol/L) | 0.9 (0.8; 1.1) | 0.9 (0.8; 1.1) | 0.9 (0.8; 1.3) | 0.9 |
Vitamin A deficiency (vitamin A seric levels < 1 µmol/L) | 23 (63.9%) | 14 (63.6%) | 9 (64.3%) | 0.9 |
Vitamin E seric levels (µmol/L) | 26.0 (20.6; 30.1) | 26.8 (20.4; 30.8) | 24.9 (20.6; 29.5) | 0.6 |
Vitamin E deficiency (vitamin E levels < 11.6 µmol/L) | 5 (13.5%) | 4 (17.4%) | 1 (7.1%) | 0.6 |
CRP (mg/L) | 7.0 (1.8; 26.2) | 6.2 (1.6; 14.4) | 20.5 (2.3; 29.1) | 0.2 |
Inflammation (CRP > 5 mg/L) | 28 (60.9%) | 18 (60.0%) | 10 (62.5%) | 0.9 |
Total HMOs (g/L) | p Value | 2′FL (g/L) | p Value | 3−FL (g/L) | p Value | 3′SL (g/L) | p Value | 6′−SL (g/L) | p Value | |
---|---|---|---|---|---|---|---|---|---|---|
Woman’s dietary diversity score; | 0.2 (−0.0; 0.5) | 0.05 | ||||||||
Nuts and seeds; | −0.2 (−0.3; −0.1) | 0.001 | ||||||||
Meat, poultry, and fish; | 2.9 (0.5; 5.2) | 0.02 | 0.3 (0.1; 0.4) | <0.001 | ||||||
Other vitamin A-rich fruits and vegetables; | 0.1 (0.1; 0.2) | <0.001 | ||||||||
Other vegetables; | −0.6 (−1.1; −0.1) | 0.01 | ||||||||
Condiments and seasonings; | −0.1 (−0.1; −0.0) | 0.04 | ||||||||
Fish; | 0.3 (0.1; 0.6) | 0.004 | −0.1 (−0.1; −0.0) | 0.03 | ||||||
Household hunger scale index; | −0.2 (−0.3; −0.0) | 0.03 | ||||||||
HHS: Little to no hunger; | reference | reference | ||||||||
Moderate hunger; | 0.1 (−0.0; 0.2) | 0.1 | −0.1 (−0.1; −0.0) | 0.01 | ||||||
Severe hunger; | −0.3 (−0.7; −0.0) | 0.048 | 0.0 (−0.1; 0.2) | 0.8 | ||||||
Milk-type group I; | −0.2 (−0.9; 0.5) | 0.5 | −2.0 (−1.9; −0.5) | 0.001 | 0.4 (0.0; 0.5) | <0.001 | 0.0 (−0.0; 0.0) | 0.8 | −0.0 (−0.1; 0.0) | 0.3 |
Milk-type group II; | −1.5 (−2.3; −0.7) | <0.001 | −3.2 (−4.0; −2.3) | <0.001 | 1.2 (1.1; 1.3) | <0.001 | 0.0 (−0.0; 0.0) | 0.9 | −0.1 (−0.1; −0.0) | 0.02 |
Milk-type group III; | reference | reference | reference | reference | reference | |||||
Milk-type group IV; | −2.5 (−3.5; −1.6) | <0.001 | −3.2 (−4.3; −2.2) | <0.001 | −0.0 (−0.1; 0.1) | 0.9 | 0.1 (0.0; 0.1) | <0.001 | 0.0 (−0.0; 0.1) | 0.5 |
Undernourished mother at delivery | −0.6 (−1.3; −0.03) | 0.04 |
6′−GL (g/L) | p Value | LNT (g/L) | p Value | LNnT (g/L) | p Value | LNFP−I (g/L) | p Value | LNFP−II (g/L) | p Value | |
---|---|---|---|---|---|---|---|---|---|---|
Nuts and seeds; | −0.0 (−0.0; −0.0) | 0.04 | ||||||||
Meat, poultry, and fish; | 0.9 (0.5; 1.3) | <0.001 | ||||||||
Dark green leafy vegetables; | 0.4 (0.1; 0.6) | 0.01 | ||||||||
Other oils and fats; | 0.2 (0.0; 0.4) | 0.046 | ||||||||
Condiments and seasonings; | 0.3 (0.1; 0.4) | 0.001 | ||||||||
Other beverages and foods; | −1.2 (−2.1; −0.4) | 0.004 | ||||||||
Sweet foods; | 0.8 (0.0; 1.6) | 0.04 | ||||||||
Red palm oil; | −0.1 (−0.1; −0.0) | 0.03 | ||||||||
HFIAS: Food security; | reference | |||||||||
Mildly food insecure; | −0.1 (−0.1; −0.0) | 0.03 | ||||||||
Moderately food insecure; | −0.0 (−0.0; 0.0) | 0.7 | ||||||||
HHS: Little to no hunger; | reference | |||||||||
Moderate hunger; | −0.4 (−0.7; −0.1) | 0.01 | ||||||||
Severe hunger; | 0.8 (−0.3; 1.8) | 0.1 | ||||||||
Milk-type group I; | 0.3 (−0.0; 0.7) | 0.05 | −0.5 (−0.7; −0.3) | <0.001 | 0.3 (0.2; 0.4) | <0.001 | ||||
Milk-type group II; | 0.6 (0.2; 1.0) | 0.002 | −0.8 (−1.0; −0.6) | <0.001 | 0.7 (0.6; 0.9) | <0.001 | ||||
Milk-type group III; | reference | reference | reference | |||||||
Milk-type group IV; | 1.7 (1.2; 2.1) | <0.001 | −0.9 (−1.1; −0.6) | <0.001 | 0.0 (−0.1; 0.2) | 0.81 | ||||
Female infant; | 0.0 (0.0; 0.1) | 0.01 | 0.3 (0.1; 0.6) | 0.02 | 0.1 (0.1; 0.2) | 0.001 | ||||
Undernourished mother at delivery | 0.4 (0.1; 0.7) | 0.01 |
LNFP−III (g/L) | p Value | LNFP−V (g/L) | p Value | LNDFH−I (g/L) | p Value | LNDFH−II + LNnDFH−II (g/L) | p Value | |
---|---|---|---|---|---|---|---|---|
Grains, white roots, and tubers; | −0.1 (−0.1; −0.0) | 0.02 | ||||||
Meat, poultry, and fish; | 0.1 (0.0; 0.1) | 0.001 | 0.4 (0.3; 0.4) | <0.001 | ||||
Other vegetables; | 0.1 (0.0; 0.2) | 0.01 | ||||||
Other fruits; | −0.2 (−0.4; −0.0) | 0.02 | ||||||
Insects, small rodents, and other small animals; | −0.1 (−0.2; −0.0) | 0.001 | ||||||
Red palm oil; | −0.1 (−0.1; −0.0) | 0.03 | ||||||
Other oils and fats; | −0.1 (−0.2; −0.1) | <0.001 | ||||||
Condiments and seasonings; | −0.0 (−0.1; −0.0) | 0.02 | ||||||
HFIAS: Food security; | reference | |||||||
Mildly food insecure; | −0.1 (−0.3; −0.0) | 0.03 | ||||||
Moderately food insecure; | −0.0 (−0.1; 0.0) | 0.7 | ||||||
HHS: Little to no hunger; | reference | |||||||
Moderate hunger; | −0.0 (−0.0; −0.0) | 0.046 | ||||||
Severe hunger; | 0.0 (−0.0; 0.1) | 0.9 | ||||||
Milk-type group I; | 0.0 (0.0; 0.0) | <0.001 | 0.4 (0.3; 0.4) | <0.001 | 0.0 (0.0; 0.0) | 0.02 | ||
Milk-type group II; | 0.1 (0.1; 0.1) | <0.001 | 0.0 (−0.1; 0.1) | 0.6 | 0.1 (0.1; 0.1) | <0.001 | ||
Milk-type group III; | reference | reference | reference | |||||
Milk-type group IV; | 0.0 (−0.0; 0.0) | 0.1 | 0.0 (−0.1; 0.1) | 0.6 | −0.0 (−0.0; 0.0) | 0.9 | ||
Female infant; | 0.0 (0.0; 0.0) | <0.001 |
Total Fatty Acids (g/L) | p Value | PUFAs (%) | p Value | Omega-6 PUFAs (%) | p Value | Omega-3 PUFAs (mg/L) | p Value | Omega-3 PUFAs (%) | p Value | |
---|---|---|---|---|---|---|---|---|---|---|
Grains and tubers; | −143.5 (−251.2; −35.7) | 0.01 | ||||||||
Pulses; | ||||||||||
Meat, poultry, and fish; | 30.0 (−0.5; 60.6) | 0.05 | ||||||||
Other vegetables; | 1.9 (0.2; 3.7) | 0.03 | 1.9 (0.1; 3.7) | 0.04 | 0.5 (0.2; 0.8) | 0.002 | ||||
Insects and small rodents; | 0.6 (0.3; 0.9) | <0.001 | ||||||||
Other oils and fats; | 0.3 (0.1; 0.5) | 0.001 | ||||||||
Condiments and seasonings; | −1.3 (−2.3; −0.2) | 0.02 | −1.2 (−2.3; −0.2) | 0.02 | 0.1 (0.1; 0.5) | <0.001 | ||||
Fish (in any form); | 1.0 (0.0; 2.0) | 0.047 | 0.2 (0.1; 0.3) | 0.01 | ||||||
HFIAS: Food security; | reference | reference | reference | |||||||
Mildly food insecure; | −6.0 (−27.3; 15.4) | 0.58 | −275.8 (−539.8; −11.9) | 0.04 | −0.7 (−1.1; −0.2) | 0.002 | ||||
Moderately food insecure. | −7.2 (−13.9; −0.6) | 0.03 | −78.9 (−162.3; 4.4) | 0.06 | −0.1 (−0.2; 0.0) | 0.2 | ||||
MUFAs (%) | p Value | SFAs (%) | p Value | LA (%) | p Value | ARA (mg/L) | p Value | ARA (%) | p Value | |
Grains and tubers; | ||||||||||
Pulses; | −4.3 (−8.4; −0.2) | 0.04 | ||||||||
Nuts and seeds; | −8.2 (−14.9; −1.6) | 0.02 | 9.6 (0.1; 19.1) | 0.048 | −5.6 (−10.6; −0.6) | 0.03 | ||||
Meat, poultry, and fish; | 120.8 (6.6; 232.9) | 0.04 | ||||||||
Other vitamin A-rich fruits and vegetables; | −3.9 (−7.8; −0.1) | 0.04 | 5.9 (0.4; 11.3) | 0.03 | −3.5 (−6.4; −0.6) | 0.02 | ||||
Other vegetables; | 2.1 (0.4; 3.8) | 0.01 | ||||||||
Condiments and seasonings; | −1.5 (−2.5; −0.5) | 0.003 | ||||||||
Fish (in any form); | 0.0 (0.0; 0.1) | 0.01 | ||||||||
Undernourished mother at delivery | 1.3 (0.2; 2.4) | 0.02 | −0.1 (−0.1; −0.0) | 0.01 |
DHA (mg/L) | p Value | DHA (%) | p Value | ALA (mg/L) | p Value | EPA (mg/L) | p Value | EPA (%) | p Value | |
---|---|---|---|---|---|---|---|---|---|---|
Grains and tubers | −0.1 (−0.1; −0.0) | <0.001 | ||||||||
Other vegetables | 100.3 (26.9; 173.8) | 0.01 | ||||||||
Insects and small rodents | 0.2 (0.0; 0.3) | 0.04 | 109.9 (39.5; 180.3) | 0.002 | ||||||
Other oils and fats | 0.2 (0.1; 0.3) | 0.002 | ||||||||
Condiments and seasonings | 0.1 (0.0; 0.2) | 0.047 | 42.6 (2.8; 82.4) | 0.04 | ||||||
Fish (in any form) | 43.7 (10.3; 77.2) | 0.01 | 0.1 (0.1; 0.2) | <0.001 | 15.3 (3.1; 27.6) | 0.01 | 0.0 (0.0; 0.1) | 0.01 | ||
HFIAS: Food security | reference | reference | reference | reference | ||||||
Mildly food insecure | −97.7 (−202.4; 7.0) | 0.07 | −0.4 (−0.7; −0.2) | <0.001 | −55.1 (−91.4; −18.8) | 0.003 | −0.1 (−0.2; 0.0) | 0.06 | ||
Moderately food insecure | −34.9 (−67.4; −2.27) | 0.04 | −0.0 (−0.1; 0.0) | 0.2 | −16.0 (−28.2; −3.9) | 0.01 | −0.0 (−0.1; −0.0) | 0.04 |
Alanine (µg/mL) | p Value | Arginine (µg/mL) | p Value | Glycine (µg/mL) | p Value | Histidine (µg/mL) | p Value | |
---|---|---|---|---|---|---|---|---|
Nuts and seeds | −244.8 (−419.3; −70.3) | 0.01 | −263.9 (−476.5; −51.2) | 0.02 | −154.1 (−280.2; −28.2) | 0.02 | −140.0 (−226.1; −54.1) | 0.001 |
Meat, poultry, and fish | 317.4 (132.9; 501.8) | 0.001 | 312.4 (97.4; 527.4) | 0.004 | 238. 6 (105.7; 371.5) | <0.001 | 152.5 (62.8; 242.1) | 0.001 |
Other vegetables | −40.4 (−75.7; −5.1) | 0.03 | ||||||
Insects, small rodents, and other small animals | −110.1 (−193.3; −26.9) | 0.01 | ||||||
Red palm oil | 237.9 (114.3; 361.6) | <0.001 | 201.2 (45.2; 357.1) | 0.01 | 185.6 (96.2; 275.1) | <0.001 | 118.0 (56.8; 179.3) | <0.001 |
Condiments and seasonings | −61.9 (−112.1; −11.7) | 0.02 | −19.1 (−38.0; −0.2) | 0.047 | ||||
Household hunger scale index | −26.7 (−50.7; −2.6) | 0.03 | ||||||
HHS: Little to no hunger | reference | reference | reference | |||||
Moderate hunger | −88.1 (−152.2; −24.0) | 0.01 | −52.8 (−98.9; −6.6) | 0.03 | −64.3 (−96.1; −32.4) | <0.001 | ||
Severe hunger | 22.4 (−184. 0; 228.8) | 0.8 | −0.7 (−148.2; 146.9) | 0.9 | 22.0 (−81.0; 125.0) | 0.7 | ||
Undernourished mother | −67.5 (−123.3; −11.6) | 0.02 | ||||||
Isoleucine (µg/mL) | pValue | Leucine (µg/mL) | pValue | Lysine (µg/mL) | pValue | Methionine (µg/mL) | pValue | |
Nuts and seeds | −229.7 (−366.0; −93.4) | 0.001 | −523.4 (−803.3; −243.6) | <0.001 | −398.5 (−631.1; −165.9) | 0.001 | −96.5 (−146.0; −47.0) | <0.001 |
Meat, poultry, and fish | 225.0 (82.6; 367.4) | 0.002 | 563.4 (270.3; 857.0) | <0.001 | 439.0 (196.4; 681.6) | <0.001 | 88.6 (37.1; 140.0) | 0.001 |
Other vegetables | −64.3 (−120.6; −7.9) | 0.03 | −135.3 (−251.7; −18.8) | 0.02 | −111.5 (−207.6; −15.5) | 0.02 | −23.1 (−43.5; −2.7) | 0.03 |
Insects, small rodents, and other small animals | −70.2 (−123.7; −16.6) | 0.01 | −168. 4 (−277.0; −59.7) | 0.002 | −115.9 (−207.3; −24.5) | 0.01 | −25.7 (−44.9; −6.6) | 0.01 |
Red palm oil | 141.4 (43.5; 239.3) | 0.01 | 294. 5 (127.3; 461.6) | 0.001 | ||||
Condiments and seasonings | −38.7 (−71.6; −5.7) | 0.02 | −111.2 (−176.1; −46.2) | 0.001 | −82.4 (−138.6; −26.3) | 0.004 | −18.2 (−29.6; −6.7) | 0.002 |
HHS: Little to no hunger | reference | reference | reference | reference | ||||
Moderate hunger | −122.6 (−174.2; −70.9) | <0.001 | −259.8 (−366.3; −153.3) | <0.001 | −187.9 (−275.8; −99.9) | <0.001 | −45.5 (−64.1; −26.8) | <0.001 |
Severe hunger | 54.5 (−111.9; 221.0) | 0.5 | 86.3 (−266.4; 439.0) | 0.6 | 43.0 (−238.9; 324.9) | 0.8 | 13.6 (−46.0; 73.2) | 0.7 |
Phenylalanine (µg/mL) | p Value | Serine (µg/mL) | p Value | Taurine (µg/mL) | p Value | Threonine (µg/mL) | p Value | |
---|---|---|---|---|---|---|---|---|
Nuts and seeds | −275.6 (−437.1; −114.2) | 0.001 | −248.7 (−434.0; −63.3) | 0.01 | ||||
Meat, poultry, and fish | 329.2 (161.3; 497.1) | <0.001 | 442.9 (219.9; 665.9) | <0.001 | 369.0 (171.3; 566.7) | <0.001 | ||
Other vegetables | −74.8 (−141.2; −8.3) | 0.03 | ||||||
Insects, small rodents, and other small animals | −71.8 (−141.2; −8.3) | 0.03 | ||||||
Red palm oil | 221.7 (105.5; 338.0) | <0.001 | 290.1 (141.1; 439.2) | <0.001 | 311.7 (180.9; 442.5) | <0.001 | ||
Condiments | −53.0 (−91.9; −14.0) | 0.01 | ||||||
HHS: Little to no hunger | reference | reference | reference | reference | ||||
Moderate hunger | −115.6 (−176.7; −55.1) | <0.001 | −111.2 (−187.8; −34.6) | 0.004 | −9.37 (−17.58; −1.16) | 0.03 | −102.3 (−171.1; −33.6) | 0.004 |
Severe hunger | 27.4 (−165.1; 220.0) | 0.8 | 35.3 (−212.5; 283.1) | 0.8 | −4.74 (−31.48; 22.00) | 0.73 | 17.3 (−211.3; 245. 8) | 0.9 |
Milk-type group I | −78.2 (−152.7; −3.7) | 0.04 | −10.4 (−18.5; −2.3) | 0.01 | ||||
Milk-type group II | −64.8 (−150.4; 20.9) | 0.1 | −7.2 (−16.5; 2.0) | 0.1 | ||||
Milk-type group III | reference | reference | ||||||
Milk-type group IV | 32.6 (−70.7; 135.9) | 0.5 | −0.9 (−12.2; 10.4) | 0.9 | ||||
Tyrosine (µg/mL) | p Value | Valine (µg/mL) | pValue | Sum of the Total Amino Acids (µg/mL) | pValue | |||
Nuts and seeds | −199.7 (−324.4; −74.9) | 0.002 | −337.9 (−524.9; −151.0) | <0.001 | −4798.2 (−7427.1; −2169.3) | <0.001 | ||
Meat, poultry, and fish | 287.3 (153.8; 420.7) | <0.001 | 365.6 (170.3; 560.9) | <0.001 | 5484.4 (2739.1; 8229.6) | <0.001 | ||
Other vegetables | −53.1 (−105.4; −0.9) | 0.046 | −94.7 (−172.0; −17.3) | 0.02 | −1209.9 (−2297.0; −122. 7) | 0.03 | ||
Insects, small rodents and other small animals | −91.0 (−172.0; −17.5) | 0.02 | −1340.6 (−2374.0; −307.3) | 0.01 | ||||
Red palm oil | 199.3 (111.7; 286.8) | <0.001 | 173.0 (38.8; 307.3) | 0.01 | 2825.1 (936.3; 4713. 9) | 0.003 | ||
Condiments | −56.9 (−102.0; −11.7) | 0.01 | −842.6 (−1477.5; −207. 6) | 0.01 | ||||
HHS: Little to no hunger | reference | reference | reference | |||||
Moderate hunger | −80.9 (−128.5; −33.4) | 0.001 | −154.2 (−225.1; −83.4) | <0.001 | −2121.0 (−3116.6; −1125.4) | <0.001 | ||
Severe hunger | 40.9 (−117.2; 199.1) | 0.6 | 74.1 (−154.4; 302.6) | 0.5 | 596.7 (−2606.6; 3800.0) | 0.7 |
Alanine (µg/mL) | p Value | Arginine (µg/mL) | p Value | Asparagine (µg/mL) | p Value | Aspartic Acid (µg/mL) | p Value | |||
---|---|---|---|---|---|---|---|---|---|---|
Pulses: beans, peas, and lentils | 16.3 (6.4; 26.2) | 0.001 | ||||||||
Red palm oil | 3.2 (1.1; 5.3) | 0.003 | ||||||||
Fish | 0.7 (0.0; 1.3) | 0.049 | −2.6 (−4.9; −0.2) | 0.03 | ||||||
HFIAS | −0.1 (−0.2; −0.0) | 0.02 | ||||||||
Food security | reference | |||||||||
Mildly food insecure | 0.5 (−1.4; 2.4) | 0.6 | ||||||||
Moderately food insecure | −1.3 (−1.9; −0.7) | <0.001 | ||||||||
Little to no hunger | reference | |||||||||
Moderate hunger | −1.2 (−5.3; 3.0) | 0.6 | ||||||||
Severe hunger | 22.1 (9.8; 34.4) | <0.001 | ||||||||
Undernourished mother at delivery | 5.0 (1.2; 8.8) | 0.01 | ||||||||
Glutamic Acid (µg/mL) | pValue | Glutamine (µg/mL) | pValue | Glycine (µg/mL) | pValue | Histidine (µg/mL) | pValue | Leucine (µg/mL) | pValue | |
Meat, poultry, and fish | −6.6 (−12.5; −0.7) | 0.03 | ||||||||
Red palm oil | −69.9 (−136.5; −3.4) | 0.04 | −5.0 (−9.3; −0.6) | 0.03 | 25.7 (17.2; 34.1) | <0.001 | ||||
Other oils and fats | 2.2 (0.5; 3.8) | 0.01 | ||||||||
Fish | −19.9 (−38.1; −1.8) | 0.03 | ||||||||
HHS: Little to no hunger | reference | |||||||||
Moderate hunger | −1.4 (−2.7; −0.1) | 0.03 | ||||||||
Severe hunger | −0.9 (−4.8; 3.0) | 0.7 | ||||||||
Undernourished mother at delivery | 30.1 (10.3; 50.0) | 0.003 | ||||||||
Milk-type group I | 20.6 (−2.1; 43.2) | 0.08 | 0.5 (−20.8; 21.7) | 0.9 | ||||||
Milk-type group II | −25.4 (−51.2; 0.3) | 0.05 | −24.8 (−48. 1; −1.5) | 0.04 | ||||||
Milk-type group III | reference | reference | ||||||||
Milk-type group IV | 2.0 (−30.8; 34.9) | 0.90 | −17.8 (−47.5; 11.9) | 0.2 |
Lysine (µg/mL) | p Value | Phenylalanine (µg/mL) | p Value | Serine (µg/mL) | p Value | Taurine (µg/mL) | p Value | Threonine (µg/mL) | p Value | |
---|---|---|---|---|---|---|---|---|---|---|
Grains and white tubers | 3.8 (1.6; 6.0) | 0.001 | ||||||||
Pulses: beans, peas, and lentils | 3.9 (0.8; 7.0) | 0.01 | 7.5 (1.9; 13.1) | 0.01 | ||||||
Dark green, leafy vegetables | 9.6 (2.7; 16.6) | 0.01 | ||||||||
Red palm oil | 6.1 (2.7; 9.5) | 0.001 | 3.3 (1.8; 4.8) | <0.001 | ||||||
HHS | −0.7 (−1.3; −0.0) | 0.04 | ||||||||
Little to no hunger | reference | reference | ||||||||
Moderate hunger | −7.9 (−15.1; −0.6) | 0.03 | −4.9 (−8.0; −1.7) | 0.002 | ||||||
Severe hunger | −0.3 (−22.5; 21.9) | 0.9 | −6.1 (−15.5; 3.3) | 0.2 | ||||||
Undernourished mother | −2.2 (−4.3; −0.2) | 0.03 | ||||||||
Milk-type group I | −1.0 (−3.7; 1.6) | 0.5 | ||||||||
Milk-type group II | −3.9 (−6.9; −1.0) | 0.01 | ||||||||
Milk-type group III | reference | |||||||||
Milk-type group IV | −3.1 (−6.8; 0.7) | 0.1 | ||||||||
Tryptophan (µg/mL) | pValue | Tyrosine (µg/mL) | pValue | Valine (µg/mL) | pValue | Sum of Free Amino Acids (µg/mL) | pValue | |||
Grains, white roots, and tubers | 53.2 (10.3; 96.2) | 0.02 | ||||||||
Pulses: beans, peas, and lentils | 116.6 (7.2; 226.0) | 0.04 | ||||||||
Red palm oil | 7.2 (5.9; 8.4) | <0.001 | ||||||||
HFIAS | −0.0 (−0.1; −0.0) | 0.04 | ||||||||
HHS: Little to no hunger | reference | reference | reference | |||||||
Moderate hunger | −1.8 (−3.4; −0.3) | 0.02 | −3.0 (−5.6; −0.3) | 0.03 | −62.8 (−122.9; −2.8) | 0.04 | ||||
Severe hunger | −1.5 (−6.3; 3.2) | 0.5 | 2.6 (−7.6; 12.7) | 0.6 | 32.0 (−147.5; 211.6) | 0.7 | ||||
Milk-type group I | −1.6 (−2.9; −0.3) | 0.02 | 10.4 (−35.3; 56.1) | 0.7 | ||||||
Milk-type group II | −1.5 (−3.0 −0.0) | 0.046 | −83.9 (−136.4; −31.4) | 0.002 | ||||||
Milk-type group III | reference | reference | ||||||||
Milk-type group IV | −2.3 (−4.1; −0.5) | 0.01 | −21.5 (−85.5; 42.4) | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bottin, J.H.; Eussen, S.R.B.M.; Igbinijesu, A.J.; Mank, M.; Koyembi, J.-C.J.; Nyasenu, Y.T.; Ngaya, G.; Mad-Bondo, D.; Kongoma, J.-B.; Stahl, B.; et al. Food Insecurity and Maternal Diet Influence Human Milk Composition between the Infant’s Birth and 6 Months after Birth in Central-Africa. Nutrients 2022, 14, 4015. https://doi.org/10.3390/nu14194015
Bottin JH, Eussen SRBM, Igbinijesu AJ, Mank M, Koyembi J-CJ, Nyasenu YT, Ngaya G, Mad-Bondo D, Kongoma J-B, Stahl B, et al. Food Insecurity and Maternal Diet Influence Human Milk Composition between the Infant’s Birth and 6 Months after Birth in Central-Africa. Nutrients. 2022; 14(19):4015. https://doi.org/10.3390/nu14194015
Chicago/Turabian StyleBottin, Jeanne H., Simone R. B. M. Eussen, Aisosa J. Igbinijesu, Marko Mank, Jean-Christophe Junior Koyembi, Yawo Tufa Nyasenu, Gilles Ngaya, Daniel Mad-Bondo, Jean-Bertrand Kongoma, Bernd Stahl, and et al. 2022. "Food Insecurity and Maternal Diet Influence Human Milk Composition between the Infant’s Birth and 6 Months after Birth in Central-Africa" Nutrients 14, no. 19: 4015. https://doi.org/10.3390/nu14194015
APA StyleBottin, J. H., Eussen, S. R. B. M., Igbinijesu, A. J., Mank, M., Koyembi, J. -C. J., Nyasenu, Y. T., Ngaya, G., Mad-Bondo, D., Kongoma, J. -B., Stahl, B., Sansonetti, P. J., Bourdet-Sicard, R., & Moya-Alvarez, V. (2022). Food Insecurity and Maternal Diet Influence Human Milk Composition between the Infant’s Birth and 6 Months after Birth in Central-Africa. Nutrients, 14(19), 4015. https://doi.org/10.3390/nu14194015