The Relationship between Dietary Pattern and Bone Mass in School-Age Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection and Anthropometric Measurements
2.3. Assessment of Dietary Intake
2.4. Measurement of BMC and BMD
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Dietary Patterns Derived from Dietary Intake
3.3. Multiple Linear Regression of Dietary Pattern Scores and Bone Mass
3.4. Analysis of Covariance of BMC and BMD by Dietary Pattern Score Tertiles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Hernandez, C.J.; Beaupre, G.S.; Carter, D.R. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos. Int. 2003, 14, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Baxter-Jones, A.D.; Faulkner, R.A.; Forwood, M.R.; Mirwald, R.L.; Bailey, D.A. Bone mineral accrual from 8 to 30 years of age: An estimation of peak bone mass. J. Bone Miner. Res. 2011, 26, 1729–1739. [Google Scholar] [CrossRef] [PubMed]
- Goulding, A. Risk Factors for Fractures in Normally Active Children and Adolescents. Med. Sport Sci. 2007, 51, 102–120. [Google Scholar] [CrossRef] [PubMed]
- Bachrach, L.K. Acquisition of optimal bone mass in childhood and adolescence. Trends Endocrinol. Metab. 2001, 12, 22–28. [Google Scholar] [CrossRef]
- Ambroszkiewicz, J.; Chelchowska, M.; Szamotulska, K.; Rowicka, G.; Klemarczyk, W.; Strucinska, M.; Gajewska, J. Bone status and adipokine levels in children on vegetarian and omnivorous diets. Clin. Nutr. 2019, 38, 730–737. [Google Scholar] [CrossRef]
- Handel, M.N.; Heitmann, B.L.; Abrahamsen, B. Nutrient and food intakes in early life and risk of childhood fractures: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2015, 102, 1182–1195. [Google Scholar] [CrossRef]
- De Lamas, C.; De Castro, M.J.; Gil-Campos, M.; Gil, A.; Couce, M.L.; Leis, R. Effects of Dairy Product Consumption on Height and Bone Mineral Content in Children: A Systematic Review of Controlled Trials. Adv. Nutr. 2019, 10, S88–S96. [Google Scholar] [CrossRef]
- Li, J.J.; Huang, Z.W.; Wang, R.Q.; Ma, X.M.; Zhang, Z.Q.; Liu, Z.; Chen, Y.M.; Su, Y.X. Fruit and vegetable intake and bone mass in Chinese adolescents, young and postmenopausal women. Public Health Nutr. 2013, 16, 78–86. [Google Scholar] [CrossRef]
- Tylavsky, F.A.; Holliday, K.; Danish, R.; Womack, C.; Norwood, J.; Carbone, L. Fruit and vegetable intakes are an independent predictor of bone size in early pubertal children. Am. J. Clin. Nutr. 2004, 79, 311–317. [Google Scholar] [CrossRef]
- Wu, Z.; Yuan, Y.; Tian, J.; Long, F.; Luo, W. The associations between serum trace elements and bone mineral density in children under 3 years of age. Sci. Rep. 2021, 11, 1890. [Google Scholar] [CrossRef]
- Viljakainen, H.T.; Natri, A.M.; Karkkainen, M.; Huttunen, M.M.; Palssa, A.; Jakobsen, J.; Cashman, K.D.; Molgaard, C.; Lamberg-Allardt, C. A positive dose-response effect of vitamin D supplementation on site-specific bone mineral augmentation in adolescent girls: A double-blinded randomized placebo-controlled 1-year intervention. J. Bone Miner. Res. 2006, 21, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, A.T.; Lutz, L.J.; Hruby, A.; Karl, J.P.; McClung, J.P.; Gaffney-Stomberg, E. A dietary pattern rich in calcium, potassium, and protein is associated with tibia bone mineral content and strength in young adults entering initial military training. Am. J. Clin. Nutr. 2019, 109, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Sung, J.; Joung, H. A fruit, milk and whole grain dietary pattern is positively associated with bone mineral density in Korean healthy adults. Eur. J. Clin. Nutr. 2015, 69, 442–448. [Google Scholar] [CrossRef]
- Wosje, K.S.; Khoury, P.R.; Claytor, R.P.; Copeland, K.A.; Hornung, R.W.; Daniels, S.R.; Kalkwarf, H.J. Dietary patterns associated with fat and bone mass in young children. Am. J. Clin. Nutr. 2010, 92, 294–303. [Google Scholar] [CrossRef]
- Julian, C.; Huybrechts, I.; Gracia-Marco, L.; Gonzalez-Gil, E.M.; Gutierrez, A.; Gonzalez-Gross, M.; Marcos, A.; Widhalm, K.; Kafatos, A.; Vicente-Rodriguez, G.; et al. Mediterranean diet, diet quality, and bone mineral content in adolescents: The HELENA study. Osteoporos. Int. 2018, 29, 1329–1340. [Google Scholar] [CrossRef]
- Shin, S.; Hong, K.; Kang, S.W.; Joung, H. A milk and cereal dietary pattern is associated with a reduced likelihood of having a low bone mineral density of the lumbar spine in Korean adolescents. Nutr. Res. 2013, 33, 59–66. [Google Scholar] [CrossRef]
- Monjardino, T.; Lucas, R.; Ramos, E.; Barros, H. Associations between a priori-defined dietary patterns and longitudinal changes in bone mineral density in adolescents. Public Health Nutr. 2014, 17, 195–205. [Google Scholar] [CrossRef]
- Zhen, S.; Ma, Y.; Zhao, Z.; Yang, X.; Wen, D. Dietary pattern is associated with obesity in Chinese children and adolescents: Data from China Health and Nutrition Survey (CHNS). Nutr. J. 2018, 17, 68. [Google Scholar] [CrossRef]
- Huang, L.; Wang, Z.; Wang, H.; Zhao, L.; Jiang, H.; Zhang, B.; Ding, G. Nutrition transition and related health challenges over decades in China. Eur. J. Clin. Nutr. 2021, 75, 247–252. [Google Scholar] [CrossRef]
- Liang, J.; Chen, F.; Fang, G.; Zhang, X.; Li, Y.; Ma, B.; Lin, S.; Pan, J.; Zhang, Z. Relationship Between Plasma Copper Concentration and Body Fat Distribution in Children in China: A Cross-Sectional Study. Biol. Trace Elem. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef]
- Amakye, W.K.; Zhang, Z.; Wei, Y.; Shivappa, N.; Hebert, J.R.; Wang, J.; Su, Y.; Mao, L. The relationship between dietary inflammatory index (DII) and muscle mass and strength in Chinese children aged 6–9 years. Asia Pac. J. Clin. Nutr. 2018, 27, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.X.; Wang, G.Y.; Pang, X.C. China Food Composition Table, 2nd ed.; Peking University Medical Press: Beijing, China, 2009; ISBN 978-78-1116-727-6. [Google Scholar]
- van den Hooven, E.H.; Heppe, D.H.; Kiefte-de Jong, J.C.; Medina-Gomez, C.; Moll, H.A.; Hofman, A.; Jaddoe, V.W.; Rivadeneira, F.; Franco, O.H. Infant dietary patterns and bone mass in childhood: The Generation R Study. Osteoporos. Int. 2015, 26, 1595–1604. [Google Scholar] [CrossRef] [PubMed]
- Noh, H.Y.; Song, Y.J.; Lee, J.E.; Joung, H.; Park, M.K.; Li, S.J.; Paik, H.Y. Dietary patterns are associated with physical growth among school girls aged 9–11 years. Nutr. Res. Pract. 2011, 5, 569–577. [Google Scholar] [CrossRef]
- Coheley, L.M.; Kindler, J.M.; Laing, E.M.; Oshri, A.; Hill Gallant, K.M.; Warden, S.J.; Peacock, M.; Weaver, C.M.; Lewis, R.D. Whole egg consumption and cortical bone in healthy children. Osteoporos. Int. 2018, 29, 1783–1791. [Google Scholar] [CrossRef]
- Movassagh, E.Z.; Baxter-Jones, A.D.G.; Kontulainen, S.; Whiting, S.; Szafron, M.; Vatanparast, H. Vegetarian-style dietary pattern during adolescence has long-term positive impact on bone from adolescence to young adulthood: A longitudinal study. Nutr. J. 2018, 17, 36. [Google Scholar] [CrossRef]
- Brondani, J.E.; Comim, F.V.; Flores, L.M.; Martini, L.A.; Premaor, M.O. Fruit and vegetable intake and bones: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0217223. [Google Scholar] [CrossRef]
- Zhao, L.; Li, M.; Sun, H. Effects of dietary calcium to available phosphorus ratios on bone metabolism and osteoclast activity of the OPG/RANK/RANKL signalling pathway in piglets. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1224–1232. [Google Scholar] [CrossRef]
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’Karma, M.; Wallace, T.C.; Zemel, B.S. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef] [PubMed]
- Dibba, B.; Prentice, A.; Ceesay, M.; Stirling, D.M.; Cole, T.J.; Poskitt, E.M. Effect of calcium supplementation on bone mineral accretion in Gambian children accustomed to a low-calcium diet. Am. J. Clin. Nutr. 2000, 71, 544–549. [Google Scholar] [CrossRef]
- Munoz-Garach, A.; Garcia-Fontana, B.; Munoz-Torres, M. Nutrients and Dietary Patterns Related to Osteoporosis. Nutrients 2020, 12, 1986. [Google Scholar] [CrossRef] [PubMed]
- Berger, P.K.; Pollock, N.K.; Laing, E.M.; Chertin, V.; Bernard, P.J.; Grider, A.; Shapses, S.A.; Ding, K.H.; Isales, C.M.; Lewis, R.D. Zinc Supplementation Increases Procollagen Type 1 Amino-Terminal Propeptide in Premenarcheal Girls: A Randomized Controlled Trial. J. Nutr. 2015, 145, 2699–2704. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Na, H.J.; Kim, C.K.; Kim, J.Y.; Ha, K.S.; Lee, H.; Chung, H.T.; Kwon, H.J.; Kwon, Y.G.; Kim, Y.M. The non-provitamin A carotenoid, lutein, inhibits NF-kappaB-dependent gene expression through redox-based regulation of the phosphatidylinositol 3-kinase/PTEN/Akt and NF-kappaB-inducing kinase pathways: Role of H(2)O(2) in NF-kappaB activation. Free Radic. Biol. Med. 2008, 45, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Nidhi, B.; Sharavana, G.; Ramaprasad, T.R.; Vallikannan, B. Lutein derived fragments exhibit higher antioxidant and anti-inflammatory properties than lutein in lipopolysaccharide induced inflammation in rats. Food Funct. 2015, 6, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Clark, R.M.; Park, Y.; Lee, J.; Fernandez, M.L. Lutein decreases oxidative stress and inflammation in liver and eyes of guinea pigs fed a hypercholesterolemic diet. Nutr. Res. Pract. 2012, 6, 113–119. [Google Scholar] [CrossRef]
- Agrawal, M.; Arora, S.; Li, J.; Rahmani, R.; Sun, L.; Steinlauf, A.F.; Mechanick, J.I.; Zaidi, M. Bone, inflammation, and inflammatory bowel disease. Curr. Osteoporos. Rep. 2011, 9, 251–257. [Google Scholar] [CrossRef]
- Ilich, J.Z.; Kerstetter, J.E. Nutrition in bone health revisited: A story beyond calcium. J. Am. Coll. Nutr. 2000, 19, 715–737. [Google Scholar] [CrossRef]
- Rizzoli, R.; Biver, E.; Bonjour, J.P.; Coxam, V.; Goltzman, D.; Kanis, J.A.; Lappe, J.; Rejnmark, L.; Sahni, S.; Weaver, C.; et al. Benefits and safety of dietary protein for bone health-an expert consensus paper endorsed by the European Society for Clinical and Economical Aspects of Osteopororosis, Osteoarthritis, and Musculoskeletal Diseases and by the International Osteoporosis Foundation. Osteoporos. Int. 2018, 29, 1933–1948. [Google Scholar] [CrossRef]
- Dolan, E.; Sale, C. Protein and bone health across the lifespan. Proc. Nutr. Soc. 2019, 78, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Darling, A.L.; Millward, D.J.; Lanham-New, S.A. Dietary protein and bone health: Towards a synthesised view. Proc. Nutr. Soc. 2021, 80, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Mangels, A.R. Bone nutrients for vegetarians. Am. J. Clin. Nutr. 2014, 100, 469S–475S. [Google Scholar] [CrossRef]
- MacDonell, R.; Hamrick, M.W.; Isales, C.M. Protein/amino-acid modulation of bone cell function. Bonekey Rep. 2016, 5, 827. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, S.A.; Wattanapenpaiboon, N.; Wark, J.D.; Nowson, C.A. An energy-dense, nutrient-poor dietary pattern is inversely associated with bone health in women. J. Nutr. 2011, 141, 1516–1523. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.M. Potassium and health. Adv. Nutr. 2013, 4, 368S–377S. [Google Scholar] [CrossRef] [PubMed]
- Cordain, L.; Eaton, S.B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.A.; O’Keefe, J.H.; Brand-Miller, J. Origins and evolution of the Western diet: Health implications for the 21st century. Am. J. Clin. Nutr. 2005, 81, 341–354. [Google Scholar] [CrossRef]
- Bedford, J.L.; Barr, S.I. Higher urinary sodium, a proxy for intake, is associated with increased calcium excretion and lower hip bone density in healthy young women with lower calcium intakes. Nutrients 2011, 3, 951–961. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, H.; Liu, G.; Zhang, J.; Wang, J.; Yu, Y.; Lu, S. Concentrations and health risk assessment of trace elements in animal-derived food in southern China. Chemosphere 2016, 144, 564–570. [Google Scholar] [CrossRef]
- Ma, Y.; Ran, D.; Shi, X.; Zhao, H.; Liu, Z. Cadmium toxicity: A role in bone cell function and teeth development. Sci. Total Environ. 2021, 769, 144646. [Google Scholar] [CrossRef]
- Malin Igra, A.; Vahter, M.; Raqib, R.; Kippler, M. Early-Life Cadmium Exposure and Bone-Related Biomarkers: A Longitudinal Study in Children. Environ. Health Perspect. 2019, 127, 37003. [Google Scholar] [CrossRef] [PubMed]
- Ciosek, Z.; Kot, K.; Kosik-Bogacka, D.; Lanocha-Arendarczyk, N.; Rotter, I. The Effects of Calcium, Magnesium, Phosphorus, Fluoride, and Lead on Bone Tissue. Biomolecules 2021, 11, 506. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D. Diet, nutrition, and bone health. J. Nutr. 2007, 137, 2507S–2512S. [Google Scholar] [CrossRef]
- Rizzoli, R.; Biver, E.; Brennan-Speranza, T.C. Nutritional intake and bone health. Lancet Diabetes Endocrinol. 2021, 9, 606–621. [Google Scholar] [CrossRef]
- Gil, A.; Plaza-Diaz, J.; Mesa, M.D. Vitamin D: Classic and Novel Actions. Ann. Nutr. Metab. 2018, 72, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Li, H.; Rong, S.; Liu, L.; Zhen, K.; Li, K. Vitamin D level and fractures in children and adolescents: A systematic review and meta-analysis. J. Bone Miner. Metab. 2021, 39, 851–857. [Google Scholar] [CrossRef]
- Zhao, J.G.; Zeng, X.T.; Wang, J.; Liu, L. Association Between Calcium or Vitamin D Supplementation and Fracture Incidence in Community-Dwelling Older Adults: A Systematic Review and Meta-analysis. JAMA 2017, 318, 2466–2482. [Google Scholar] [CrossRef]
- Shin, S.; Kim, S.H.; Joung, H.; Park, M.J. Milk-cereal and whole-grain dietary patterns protect against low bone mineral density among male adolescents and young adults. Eur. J. Clin. Nutr. 2017, 71, 1101–1107. [Google Scholar] [CrossRef]
- Harvey, N.C.; Robinson, S.M.; Crozier, S.R.; Marriott, L.D.; Gale, C.R.; Cole, Z.A.; Inskip, H.M.; Godfrey, K.M.; Cooper, C. Breast-feeding and adherence to infant feeding guidelines do not influence bone mass at age 4 years. Br. J. Nutr. 2009, 102, 915–920. [Google Scholar] [CrossRef] [Green Version]
Dietary patterns | p-Value | |||||
---|---|---|---|---|---|---|
Vegetables-Whole Grains-Red Meat (n = 86) | Fruit-Milk-Eggs (n = 117) | Seafood-Mushrooms-Nuts (n = 82) | Beverages-Fish-Low-Fat Milk (n = 68) | Animal Organs-Refined Cereals (n = 112) | ||
Sex (n, %) | <0.001 | |||||
boys | 49, 57.0 | 75, 64.1 | 29, 35.4 | 37, 54.4 | 75, 67.0 | |
girls | 37, 43.0 | 42, 35.9 | 53, 64.6 | 31, 45.6 | 37, 33.0 | |
Age (year) | 8.2 (7.2–8.8) | 7.9 (7.3–8.7) | 7.9 (7.2–8.8) | 8.1 (7.4–8.8) | 8.1 (7.5–8.8) | 0.693 |
Height (cm) | 128.3 (122.9–137.0) | 128.2 (124.0–134.2) | 127.6 (122.1–135.2) | 127.3 (122.2–133.3) | 129.5 (122.9–134.4) | 0.554 |
Weight (kg) | 25.7 (20.8–32.2) | 25.2 (21.6–28.5) | 25.0 (21.4–29.2) | 24.8 (21.8–28.8) | 24.6 (22.2–28.6) | 0.999 |
BMI z-score | −0.43 (−1.20–0.70) | −0.28 (−1.22–0.28) | −0.31 (−1.18–0.62) | −0.27 (−1.20–0.73) | −0.67 (−1.33–0.49) | 0.495 |
Energy intake (Kcal) | 1360 (1096–1669) | 1402 (1096–1648) | 1322 (1115–1707) | 1383 (1132–1800) | 1343 (1179–1672) | 0.901 |
Protein intake (g) | 59.6 (48.3–78.7) | 59.5 (49.2–74.1) | 63.1 (49.7–79.9) | 66.6 (48.2–87.8) | 56.4 (49.4–76.7) | 0.604 |
Calcium intake (mg) | 470.1 (361.8–652.3) | 540.1 (409.9–667.8 | 483.5 (375.7–590.7) | 522.7 (376.9–637.6) | 424.9 (312.8–529.6) | <0.001 |
Vitamin D intake (IU) | 80.0 (51.1–110.2) | 87.0 (57.6–117.8) | 84.8 (54.3–110.0) | 93.5 (62.0–142.6) | 74.1 (50.8–97.2) | 0.025 |
Supplement intake of calcium (n, %) | 26, 30.2 | 57, 48.7 | 35, 42.7 | 25, 36.8 | 46, 41.1 | 0.107 |
Supplement intake of multivitamins (n, %) | 15, 17.4 | 21, 17.9 | 12, 14.6 | 13, 19.1 | 18, 16.1 | 0.952 |
Physical activities (MET×h/day) | 38.8 (37.2–41.9) | 39.5 (37.3–42.2) | 39.0 (37.2–42.0) | 38.0 (36.5–39.9) | 39.6 (37.1–42.8) | 0.050 |
Passive smoking (n, %) | 24, 27.9 | 26, 22.2 | 18, 22.0 | 23, 33.8 | 28, 25.0 | 0.413 |
Delivery method (n, %) | 0.147 | |||||
Delivery | 36, 41.9 | 59, 50.4 | 41, 50.0 | 30, 44.1 | 66, 58.9 | |
Cesarean section | 50, 58.1 | 58, 49.6 | 41, 50.0 | 38, 55.9 | 46, 41.1 | |
Household income (n, %) | 0.034 | |||||
2000–5000 | 4, 4.7 | 12, 10.3 | 4, 4.9 | 4, 5.9 | 4, 3.6 | |
5001–8000 | 7, 8.1 | 9, 7.7 | 7, 8.5 | 13, 19.1 | 19, 17.0 | |
8001–12,000 | 10, 11.6 | 20, 17.1 | 18, 22.0 | 4, 5.9 | 19, 17.0 | |
12,001–15,000 | 14, 16.3 | 20, 17.1 | 11, 13.4 | 10, 14.7 | 16, 14.3 | |
>15,000 | 38, 44.2 | 39, 33.3 | 31, 37.8 | 20, 29.4 | 29, 25.9 | |
Unknown | 13, 15.1 | 17, 14.5 | 11, 13.4 | 17, 25.0 | 25, 22.3 | |
BMC (g) | ||||||
Total body | 922 (798–1049) | 918 (851–1033) | 919 (823–1026) | 915 (840–989) | 916 (841–986) | 0.910 |
Total body less head | 576 (490–684) | 576 (516–661) | 568 (505–666) | 572 (526–633) | 577 (503–635) | 0.940 |
BMD (g/cm2) | ||||||
Total body | 0.781 (0.725–0.836) | 0.782 (0.742–0.833) | 0.780 (0.733–0.825) | 0.775 (0.740–0.815) | 0.769 (0.740–0.808) | 0.608 |
Total body less head | 0.604 (0.552–0.668) | 0.609 (0.572–0.656) | 0.604 (0.569–0.645) | 0.608 (0.567–0.636) | 0.597 (0.564–0.643) | 0.845 |
Food Groups | Dietary Patterns | ||||
---|---|---|---|---|---|
Vegetables- Whole Grains- Red Meat | Fruit-Milk- Eggs | Seafood- Mushrooms- Nuts | Beverages- Fish-Low-Fat Milk | Animal Organs- Refined Cereals | |
Whole grains | 0.569 | ||||
Refined cereals | 0.298 | 0.455 | |||
Soybean | 0.264 | ||||
Fatty milk | 0.614 | ||||
Low-fat milk | 0.599 | ||||
Dark vegetables | 0.752 | 0.223 | |||
Light-colored vegetables | 0.757 | ||||
Preserved vegetables | 0.401 | ||||
Light fruit | 0.211 | 0.662 | 0.279 | ||
Dark fruit | 0.536 | 0.371 | |||
Red meat | 0.457 | 0.286 | 0.417 | ||
Animal organs | 0.338 | 0.564 | |||
Poultry | 0.213 | 0.367 | |||
Freshwater fish | 0.218 | 0.328 | 0.417 | ||
Sea fish | 0.223 | 0.673 | |||
Marinated animal food | 0.360 | ||||
Mollusks and shellfish | 0.605 | 0.296 | |||
Eggs | 0.515 | ||||
Mushrooms | 0.611 | ||||
Nut | 0.445 | −0.204 | |||
Soup and beverage | 0.222 | 0.611 | 0.327 |
Bone Measures | Dietary Patterns | Model 1 | Model 2 | ||
---|---|---|---|---|---|
β | 95% CI | β | 95% CI | ||
TB BMC (g) | Vegetables-whole grains-red meat | 14.180 * | (2.910, 25.449) | 2.393 | (−5.038, 9.824) |
Fruit-milk-eggs | 19.329 ** | (7.871, 30.788) | 10.480 * | (2.190, 18.770) | |
Seafood-mushrooms-nuts | 2.924 | (−7.386, 13.234 | 1.304 | (−5.590, 8.197) | |
Beverages-fish-low-fat milk | 0.900 | (−9.549, 11.350) | 0.242 | (−7.064, 7.548) | |
Animal organs-refined cereals | −27.556 *** | (−38.817, −16.295) | −10.305 * | (−18.433, −2.176) | |
TBLH BMC (g) | Vegetables-whole grains-red meat | 12.250 ** | (3.267, 21.233) | 1.776 | (−3.020, 6.572) |
Fruit-milk-eggs | 11.882 * | (2.694, 21.070) | 5.577 * | (0.214, 10.941) | |
Seafood-mushrooms-nuts | 0.703 | (−7.527, 8.932) | 0.093 | (−4.357, 4.543) | |
Beverages-fish-low-fat milk | 0.055 | (−8.283, 8.394) | −0.490 | (−5.206, 4.226) | |
Animal organs-refined cereals | −21.366 *** | (−30.364, −12.367) | −6.346 * | (−11.596, −1.096) | |
TB BMD (g/cm2) | Vegetables-whole grains-red meat | 0.008 ** | (0.002, 0.013) | 0.003 | (−0.001, 0.008) |
Fruit-milk-eggs | 0.009 ** | (0.004, 0.015) | 0.005 | (0.000, 0.010) | |
Seafood-mushrooms-nuts | 0.003 | (−0.002, 0.008) | 0.001 | (−0.003, 0.005) | |
Beverages-fish-low-fat milk | 0.001 | (−0.004, 0.006) | −0.001 | (−0.005, 0.003) | |
Animal organs-refined cereals | −0.013 *** | (−0.019, −0.008) | −0.006 * | (−0.011, −0.001) | |
TBLH BMD (g/cm2) | Vegetables-whole grains-red meat | 0.008 ** | (0.003, 0.014) | 0.002 | (−0.001, 0.005) |
Fruit-milk-eggs | 0.006 * | (0.001, 0.012) | 0.002 | (−0.001, 0.005) | |
Seafood-mushrooms-nuts | 0.001 | (−0.004, 0.005) | 0.000 | (−0.003, 0.003) | |
Beverages-fish-low-fat milk | 0.000 | (−0.005, 0.005) | −0.001 | (−0.004, 0.002) | |
Animal organs-refined cereals | −0.013 *** | (−0.018, −0.008) | −0.004 * | (−0.007, −0.001) |
T1 Mean ± SEM | T2 Mean ± SEM | T3 Mean ± SEM | %Diff | p-Diff | p-Trend | |
---|---|---|---|---|---|---|
Vegetables-whole grains-red meat pattern | ||||||
TB BMC (g) | 936.7 ± 5.70 | 929.0 ± 5.68 | 934.7 ± 5.76 | −0.212 | 0.621 | 0.809 |
TBLH BMC (g) | 588.8 ± 3.71 | 587.4 ± 3.70 | 588.0 ± 3.75 | −0.144 | 0.962 | 0.874 |
TB BMD (g/cm2) | 0.782 ± 0.003 | 0.782 ± 0.003 | 0.784 ± 0.003 | 0.256 | 0.900 | 0.722 |
TBLH BMD (g/cm2) | 0.609 ± 0.002 | 0.613 ± 0.002 | 0.610 ± 0.002 | 0.164 | 0.560 | 0.778 |
Fruit-milk-eggs pattern | ||||||
TB BMC (g) | 920.7 ± 5.89 | 938.6 ± 5.64 | 940.8 ± 5.83 | 2.178 | 0.037 | 0.021 |
TBLH BMC (g) | 581.8 ± 3.84 | 588.5 ± 3.68 | 593.9 ± 3.80 | 2.077 | 0.100 | 0.033 |
TB BMD (g/cm2) | 0.777 ± 0.004 | 0.787 ± 0.003 | 0.785 ± 0.003 | 1.030 | 0.103 | 0.119 |
TBLH BMD (g/cm2) | 0.608 ± 0.002 | 0.611 ± 0.002 | 0.612 ± 0.002 | 0.658 | 0.459 | 0.235 |
Seafood-mushrooms-nuts pattern | ||||||
TB BMC (g) | 929.2 ± 5.81 | 936.4 ± 5.74 | 934.7 ± 5.71 | 0.592 | 0.665 | 0.505 |
TBLH BMC (g) | 587.2 ± 3.78 | 589.6 ± 3.74 | 587.4 ± 3.72 | 0.025 | 0.888 | 0.978 |
TB BMD (g/cm2) | 0.780 ± 0.003 | 0.784 ± 0.003 | 0.784 ± 0.003 | 0.513 | 0.736 | 0.525 |
TBLH BMD (g/cm2) | 0.611 ± 0.002 | 0.611 ± 0.002 | 0.609 ± 0.002 | −0.327 | 0.819 | 0.592 |
Beverages-fish-low-fat milk pattern | ||||||
TB BMC (g) | 945.6 ± 5.67 | 920.7 ± 5.65 ^^ | 934.0 ± 5.67 | −1.222 | 0.009 | 0.155 |
TBLH BMC (g) | 595.9 ± 3.69 | 579.6 ± 3.68 ^^ | 588.8 ± 3.69 | −1.188 | 0.009 | 0.181 |
TB BMD (g/cm2) | 0.789 ± 0.003 | 0.778 ± 0.003 | 0.781 ± 0.003 | −1.014 | 0.087 | 0.120 |
TBLH BMD (g/cm2) | 0.615 ± 0.002 | 0.607 ± 0.002 | 0.610 ± 0.002 | −0.813 | 0.060 | 0.123 |
Animal organs-refined cereals pattern | ||||||
TB BMC (g) | 937.8 ± 5.94 | 933.9 ± 5.73 | 928.7 ± 5.96 | −0.972 | 0.586 | 0.303 |
TBLH BMC (g) | 591.5 ± 3.87 | 588.2 ± 3.73 | 584.62 ± 3.87 | −1.160 | 0.492 | 0.234 |
TB BMD (g/cm2) | 0.785 ± 0.004 | 0.785 ± 0.003 | 0.778 ± 0.004 | −0.892 | 0.272 | 0.191 |
TBLH BMD (g/cm2) | 0.613 ± 0.002 | 0.612 ± 0.002 | 0.607 ± 0.002 | −0.979 | 0.211 | 0.114 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, X.; Chen, S.; Su, M.; Zhang, X.; Wei, Y.; Liang, S.; Wei, Q.; Zhang, Z. The Relationship between Dietary Pattern and Bone Mass in School-Age Children. Nutrients 2022, 14, 3752. https://doi.org/10.3390/nu14183752
Liao X, Chen S, Su M, Zhang X, Wei Y, Liang S, Wei Q, Zhang Z. The Relationship between Dietary Pattern and Bone Mass in School-Age Children. Nutrients. 2022; 14(18):3752. https://doi.org/10.3390/nu14183752
Chicago/Turabian StyleLiao, Xuemei, Shanshan Chen, Mengyang Su, Xuanrui Zhang, Yuanhuan Wei, Shujun Liang, Qinzhi Wei, and Zheqing Zhang. 2022. "The Relationship between Dietary Pattern and Bone Mass in School-Age Children" Nutrients 14, no. 18: 3752. https://doi.org/10.3390/nu14183752
APA StyleLiao, X., Chen, S., Su, M., Zhang, X., Wei, Y., Liang, S., Wei, Q., & Zhang, Z. (2022). The Relationship between Dietary Pattern and Bone Mass in School-Age Children. Nutrients, 14(18), 3752. https://doi.org/10.3390/nu14183752