Effects of a Novel Amino Acid Formula on Nutritional and Metabolic Status, Anemia and Myocardial Function in Thrice-Weekly Hemodialysis Patients: Results of a Six-Month Randomized Double-Blind Placebo-Controlled Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hemodialys Adequacy Measurement
2.2. Blood Chemistry Checks
2.3. Pharmacological Monitoring
2.4. Monitoring of CLINICAL Outcome
2.5. Echocardiographic Evaluations
2.6. Amino Acid Identification Methods
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Rostoker, G.; Lepeytre, F.; Rottembourg, J. Inflammation, serum iron, and risk of mortality and cardiovascular events in non dialysis CKD patients. J. Am. Soc. Nephrol. 2022, 33, 654–655. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, L. Inflammation and cardiovascular disease associated with hemodialysis for end-stage renal disease. Front. Pharmacol. 2022, 13, 800950. [Google Scholar] [CrossRef]
- Rosenstein, K.; Tannock, L.R. Dyslipidemia in chronic kidney disease. In Endotext [Internet]; Wilson, D.P., Ed.; MDText.com, Inc.: South Dartmouth, MA, USA, 2022. [Google Scholar]
- Popkov, V.A.; Zharikova, A.A.; Demchenko, E.A.; Andrianova, N.V.; Zorov, D.B.; Plotnikov, E.Y. Gut microbiota as a source of uremic toxins. Int. J. Mol. Sci. 2022, 23, 483. [Google Scholar] [CrossRef] [PubMed]
- Burrowes, J.D.; Larive, B.; Chertow, G.M.; Cockram, D.B.; Dwyer, J.T.; Greene, T.; Kusek, J.W.; Leung, J.; Rocco, M.V.; Hemodialysis (HEMO) Study Group. Self-reported appetite, hospitalization and death in haemodialysis patients: Findings from the Hemodialysis (HEMO) Study. Nephrol. Dial. Transplant. 2005, 20, 2765–2774. [Google Scholar] [CrossRef]
- Koppe, L.; Fouque, D.; Kalantar-Zadeh, K. Kidney cachexia or protein-energy wasting in chronic kidney disease: Facts and numbers. J. Cachexia Sarcopenia Muscle 2019, 10, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Wolfson, M.; Jones, M.R.; Kopple, J.D. Amino acid losses during hemodialysis with infusion of amino acids and glucose. Kidney Int. 1982, 21, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Flakoll, P.J.; Parker, R.A.; Hakim, R.M. Amino acid and albumin losses during hemodialysis. Kidney Int. 1994, 46, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Murtas, S.; Aquilani, R.; Deiana, M.L.; Iadarola, P.; Secci, R.; Cadeddu, M.; Salis, S.; Serpi, D.; Bolasco, P. Differences in amino acid loss between high-efficiency hemodialysis and postdilution and predilution hemodiafiltration using high convection volume exchange—A new metabolic scenario? A pilot study. J. Ren. Nutr. 2019, 29, 126–135. [Google Scholar] [CrossRef]
- Murtas, S.; Aquilani, R.; Iadarola, P.; Deiana, M.L.; Secci, R.; Cadeddu, M.; Bolasco, P. Differences and effects of metabolic fate of individual amino acid loss in high-efficiency hemodialysis and hemodiafiltration. J. Ren. Nutr. 2020, 30, 440–451. [Google Scholar] [CrossRef]
- Urabe, S.; Hyodo, T.; Hosono, T.; Kurata, Y.; Kitamura, M.; Hida, M.; Kokubo, K. Amino acid losses are lower during pre-dilution on-line HDF than HD of the same Kt/V for urea. J. Artif. Organs 2020, 23, 342–347. [Google Scholar] [CrossRef]
- Garibotto, G.; Sofia, A.; Russo, R.; Paoletti, E.; Bonanni, A.; Parodi, E.L.; Viazzi, F.; Verzola, D. Insulin sensitivity of muscle protein metabolism is altered in patients with chronic kidney disease and metabolic acidosis. Kidney Int. 2015, 88, 1419–1426. [Google Scholar] [CrossRef]
- Garibotto, G.; Bonanni, A.; Verzola, D. Effect of kidney failure and hemodialysis on protein and amino acid metabolism. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic kidney disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef]
- Tedesco, L.; Rossi, F.; Ruocco, C.; Ragni, M.; Carruba, M.O.; Valerio, A.; Nisoli, E. Experimental evidence on the efficacy of two new metabolic modulators on mitochondrial biogenesis and function in mouse cardiomyocytes. J. Popul. Ther. Clin. Pharmacol. 2020, 27, e12–e21. [Google Scholar] [CrossRef]
- Ruocco, C.; Segala, A.; Valerio, A.; Nisoli, E. Essential amino acid formulations to prevent mitochondrial dysfunction and oxidative stress. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.L.; Brookes, P. Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions. J. Biol. Chem. 2009, 284, 16236–16245. [Google Scholar] [CrossRef]
- Attali, V.; Parnes, M.; Ariav, Y.; Cerasi, E.; Kaiser, N.; Leibowitz, G. Regulation of insulin secretion and proinsulin biosynthesis by succinate. Endocrinology 2006, 147, 5110–5118. [Google Scholar] [CrossRef]
- Feldkamp, T.; Kribben, A.; Roeser, N.F.; Senter, R.A.; Kemner, S.; Venkatachalam, M.A.; Nissim, I.; Weinberg, J.M. Preservation of complex I function during hypoxia-reoxygenation-induced mitochondrial injury in proximal tubules. Am. J. Physiol. Renal. Physiol. 2004, 286, F749–F759. [Google Scholar] [CrossRef]
- Weinberg, J.M.; Venkatachalam, M.A.; Roeser, N.F.; Saikumar, P.; Dong, Z.; Senter, R.A.; Nissim, I. Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury. Am. J. Physiol. Renal. Physiol. 2000, 279, F927–F943. [Google Scholar] [CrossRef]
- Daugirdas, J.T. Simplified equations for monitoring Kt/V, PCRn, eKt/V, and ePCRn. Adv. Ren. Replace Ther. 1995, 2, 295–304. [Google Scholar] [CrossRef]
- Leblanc, M.; Charbonneau, R.; Lalumière, G.; Cartier, P.; Déziel, C. Postdialysis urea rebound: Determinants and influence on dialysis delivery in chronic hemodialysis patients. Am. J. Kidney Dis. 1996, 27, 253–261. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiographyin adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 16, 233–274. [Google Scholar]
- Daugirdas, J.T.; Greene, T.; Depner, T.A.; Leypoldt, J.; Gotch, F.; Schulman, G.; Star, R.; Hemodialysis Study Group. Factors that affect postdialysis rebound in serum urea concentration, including the rate of dialysis: Results from the HEMO Study. J. Am. Soc. Nephrol. 2004, 15, 194–203. [Google Scholar] [CrossRef]
- Vanholder, R.; De Smet, R.; Glorieux, G.; Argilés, A.; Baurmeister, U.; Brunet, P.; Clark, W.; Cohen, G.; De Deyn, P.P.; Deppisch, R.; et al. Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney Int. 2003, 63, 1934–1943. [Google Scholar] [CrossRef]
- Mor, A.; Kalaska, B.; Pawlak, D. Kynurenine pathway in chronic kidney disease: What’s old, what’s new, and what’s next? Int. J. Tryptophan. Res. 2020, 13, 1178646920954882. [Google Scholar] [CrossRef] [PubMed]
- Zakrocka, I.; Załuska, W. Kynurenine pathway in kidney diseases. Pharmacol. Rep. 2022, 74, 27–39. [Google Scholar] [CrossRef]
- Inubushi, T.; Kamemura, N.; Oda, M.; Sakurai, J.; Nakaya, Y.; Harada, N.; Suenaga, M.; Matsunaga, Y.; Ishidoh, K.; Katunuma, N. l-tryptophan suppresses rise in blood glucose and preserves insulin secretion in type-2 diabetes mellitus rats. J. Nutr. Sci.Vitaminol. 2012, 58, 415–422. [Google Scholar] [CrossRef]
- Raj, D.S.; Sun, Y.; Tzamaloukas, A.H. Hypercatabolism in dialysis patients. Curr. Opin. Nephrol. Hypertens. 2008, 17, 589–594. [Google Scholar] [CrossRef]
- He, H.; Xie, Y. Effect of different hemodialysis methods on microbiota in uremic patients. Biomed. Res. Int. 2020, 2020, 6739762. [Google Scholar] [CrossRef]
- Sahathevan, S.; Khor, B.H.; Ng, H.M.; Gafor, A.H.A.; Mat Daud, Z.A.; Mafra, D.; Karupaiah, T. Understanding development of malnutrition in hemodialysis patients: A narrative review. Nutrients 2020, 12, 3147. [Google Scholar] [CrossRef]
- Debnath, S.; Lorenzo, C.; Bansal, S.; Morales, J.; Rueda, R.O.; Kasinath, B.S.; Sharma, K.; O’Connor, J.C. Branched-chain amino acids depletion during hemodialysis is associated with fatigue. Am. J. Nephrol. 2020, 51, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Adey, D.; Kumar, R.; McCarthy, J.T.; Nair, K.S. Reduced synthesis of muscle proteins in chronic renal failure. Am. J. Physiol. Endocrinol. Metab. 2000, 278, E219–E225. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Kimura, Y.; Ishiyama, D.; Nishio, N.; Otobe, Y.; Tanaka, T.; Ohji, S.; Koyama, S.; Sato, A.; Suzuki, M.; et al. Phase angle is a useful indicator for muscle function in older adults. J. Nutr. Health Aging 2019, 23, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Kolwicz, S.C., Jr.; Purohit, S.; Tian, R. Cardiac Metabolism and Its Interactions with Contraction, Growth, and Survival of the Cardiomyocte. Circ. Res. 2014, 113, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Aquilani, R.; La Rovere, M.T.; Corbellini, D.; Pasini, E.; Verri, M.; Barbieri, A.; Condino, A.M.; Boschi, F. Plasma amino acid abnormalities in chronic heart failure. Mechanisms, potential risks and targets in human myocardium metabolism. Nutrients 2017, 9, 1251. [Google Scholar] [CrossRef]
- Aquilani, R.; Maestri, R.; Dossena, M.; La Rovere, M.T.; Buonocore, D.; Boschi, F.; Verri, M. Altered amino acid metabolism in patients with cardiorenal syndrome type 2: Is it a problem for protein and exercise prescriptions? Nutrients 2021, 13, 1632. [Google Scholar] [CrossRef]
- Babitt, J.L.; Lin, H.Y. Mechanisms of anemia in CKD. J. Am. Soc. Nephrol. 2012, 23, 1631–1634. [Google Scholar] [CrossRef]
- Ueda, N.; Takasawa, K. Impact of inflammation on ferritin, hepcidin and the management of iron deficiency anemia in chronic kidney disease. Nutrients 2018, 10, 1173. [Google Scholar] [CrossRef]
- Gafter-Gvili, A.; Schechter, A.; Rozen-Zvi, B. Iron deficiency anemia in chronic kidney disease. Acta Haematol. 2019, 142, 44–50. [Google Scholar] [CrossRef]
- Bolasco, P.; Caria, S.; Cupisti, A.; Secci, R.; Saverio Dioguardi, F. A novel amino acids oral supplementation in hemodialysis patients: A pilot study. Ren. Fail. 2011, 33, 1–5. [Google Scholar] [CrossRef]
- Jontofsohn, R.; Heinze, V.; Katz, N.; Stuber, U.; Wilke, H.; Kluthe, R. Histidine and iron supplementation in dialysis and pre-dialysis patients. Proc. Eur. Dial. Transplant. Assoc. 1975, 11, 391–397. [Google Scholar] [PubMed]
- Blumenkrantz, M.J.; Shapiro, D.J.; Swendseid, M.E.; Kopple, J.D. Histidine supplementation for treatment of anaemia of uraemia. Br. Med. J. 1975, 2, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Holeček, M. Histidine in health and disease: Metabolism, physiological importance, and use as a supplement. Nutrients 2020, 12, 848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Amino Acid Plasma Concentrations (mg/dL) | Placebo Group at Start of Study | Placebo Group after 6 Months | Treatment Group at Start of Study | Treatment Group after 6 Months | Placebo Group—δ Variation over 6 Months | Treatment Group—δ Variation over 6 Months |
---|---|---|---|---|---|---|
Aspartic acid | 0.37 ± 0.11 * | 0.23 ± 0.13 * | 0.48 ± 0.24 * | 0.22 ± 0.09 * | −0.14 ± 0.10 | −0.26 ± 0.20 |
Glutamic acid | 2.19 ± 0.42 | 1.99 ± 0.56 | 2.57 ± 0.67 Δ | 1.72 ± 0.34 Δ | −0.20 ± 0.50 ◊ | −0.86 ± 0.85 ◊ |
Asparagine | 0.75 ± 0.30 ⊗ | 0.44 ± 0.16 ⊗ | 0.87 ± 0.33 ⊗ | 0.49 ± 0.11 ⊗ | −0.31 ± 0.36 | −0.38 ± 0.35 |
Serine | 0.69 ± 0.19 | 0.59 ± 0.12 | 0.76 ± 0.25 | 0.58 ± 0.15 | −0.10 ± 0.16 | −0.18 ± 0.30 |
Glutamine | 7.09 ± 2.38 Δ | 4.85 ± 1.11Δ | 6.15 ± 2.93 | 4.98 ± 1.15 | −2.24 ± 2.93 | −1.17 ± 3.11 |
Histidine | 1.81 ± 0.69 ⊗ | 0.90 ± 0.16 ⊗ | 2.18 ± 1.16 ⊗ | 1.21 ± 0.49 ⊗ | −0.91 ± 0.64 | −0.97 ± 1.06 |
Glycine | 1.53 ± 0.46 | 1.48 ± 0.42 | 1.55 ± 0.57 | 1.59 ± 0.52 | −0.05 ± 0.65 | 0.05 ± 0.65 |
Threonine | 1.46 ± 0.64 | 1.15 ± 0.38 | 1.42 ± 0.62 | 1.34 ± 0.47 | −0.31 ± 0.88 | −0.08 ± 0.59 |
Alanine | 3.50 ± 0.70 * | 2.92 ± 0.46 * | 3.32 ± 0.63 | 3.32 ± 0.86 | −0.58 ± 0.49 ◊ | −0.00 ± 0.93 ◊ |
Arginine | 3.10 ± 0.57 | 3.09 ± 0.83 | 2.81 ± 1.00 | 3.60 ± 1.23 | −0.01 ± 1.13 | 0.79 ± 1.42 |
Tyrosine | 0.55 ± 0.13 | 0.58 ± 0.21 | 0.54 ± 0.12 | 0.54 ± 0.11 | 0.03 ± 0.20 | 0.00 ± 0.12 |
Cysteine | 4.91 ± 0.90 | 4.84 ± 0.98 | 5.05 ± 1.42 | 5.12 ± 1.55 | −0.07 ± 1.19 | 0.07 ± 1.34 |
Valine | 1.76 ± 0.35 | 2.03 ± 0.41 | 1.66 ± 0.43 | 1.78 ± 0.41 | 0.26 ± 0.51 | 0.12 ± 0.57 |
Methionine | 0.46 ± 0.11 | 0.48 ± 0.22 | 0.49 ± 0.19 | 0.38 ± 0.08 | 0.02 ± 0.21 | −0.11 ± 0.21 |
Tryptophan | 0.91 ± 0.28 | 0.97 ± 0.46 | 0.74 ± 0.29 # | 0.97 ± 0.30 # | 0.06 ± 0.62 θ | 0.23 ± 0.29 θ |
Phenylalanine | 0.94 ± 0.23 | 0.90 ± 0.24 | 0.89 ± 0.22 | 0.87 ± 0.29 | −0.04 ± 0.26 | −0.03 ± 0.33 |
Isoleucine | 0.78 ± 0.21 | 0.84 ± 0.22 | 0.80 ± 0.16 | 0.70 ± 0.25 | 0.06 ± 0.36 | −0.10 ± 0.33 |
Leucine | 1.13 ± 0.25 | 1.29 ± 0.32 | 1.16 ± 0.29 | 1.05 ± 0.26 | 0.16 ± 0.40 | −0.11 ± 0.43 |
Lysine | 1.99 ± 0.47 | 2.17 ± 0.83 | 1.94 ± 0.53 | 2.10 ± 0.63 | 0.17 ± 0.77 | 0.16 ± 0.81 |
Proline | 4.26 ± 1.32 | 4.22 ± 1.86 | 4.73 ± 1.31 | 4.23 ± 1.85 | −0.03 ± 1.89 | −0.51 ± 2.05 |
Parameters | Placebo Group at Start of Study | Placebo Group after 6 Months | Treatment Group at Start of Study | Treatment Group after 6 Months | Placebo Group—δ Variation over 6 Months | Treatement Group—δ Variation over 6 Months |
---|---|---|---|---|---|---|
Dry weight, kg | 67.85 ± 14.74 | 67.12 ± 14.49 | 62.73 ± 16.16 | 63.18 ± 17.39 | −0.73 ± 10.43 | 0.45 ± 10.06 |
Interdialytic weight gain, kg | 2.78 ± 0.94 | 2.66 ± 0.86 | 2.23 ± 0.68 | 2.73 ± 0.67 | −0.11 ± 0.68 | 0.50 ± 0.89 |
Equilibrated Kt/V | 1.33 ± 0.11 | 1.35 ± 0.23 | 1.29 ± 0.19 | 1.39 ± 0.22 | 0.01 ± 0.18 | 0.21 ± 0.29 |
Equilibrated Protein Catabolic Rate, g/kg/day | 1.02 ± 0.11 | 0.99 ± 0.22 | 1.06 ± 0.02 | 1.03 ± 0.23 | −0.03 ± 0.20 | −0.03 ± 0.01 |
Blood Urea Nitrogen, mg/dL | 70.32 ± 12.21 | 67.01 ± 11.93 | 67.87 ± 14.79 | 63.55 ± 19.20 | −3.31 ± 16.68 | −4.33 ± 17.99 |
Creatinine, mg/dL | 9.98 ± 2.22 | 10.54 ± 2.24 | 9.26 ± 2.29 | 9.40 ± 2.00 | 0.56 ± 2.17 | 0.14 ± 3.21 |
Calcium, mg/dL | 9.09 ± 0.50 # | 8.53 ± 0.56 # | 8.74 ± 0.75 | 8.82 ± 0.63 | −0.57 ± 0.69 θ | 0.08 ± 0.78 θ |
Phosphorus, mg/dL | 5.09 ± 0.70 | 4.77 ± 0.92 | 5.27 ± 1.34 | 4.66 ± 1.30 | −0.32 ± 1.09 | −0.61 ± 1.41 |
Albumin, g/dL | 3.65 ± 0.30 | 3.75 ± 0.25 | 3.76 ± 0.28 | 3.71 ± 0.39 | 0.10 ± 0.25 | −0.05 ± 0.41 |
Total Protein, g/dL | 6.29 ± 0.23 | 6.26 ± 0.31 | 6.68 ± 0.71 | 6.44 ± 0.77 | −0.03 ± 0.31 | −0.25 ± 0.65 |
Hb, g/dL | 11.12 ± 0.72 | 11.28 ± 0.73 | 11.49 ± 0.86 | 11.64 ± 0.81 | 0.16 ± 1.10 | 0.14 ± 0.68 |
Total Cholesterol, mg/dL | 140.5 ± 34.2 | 147.9 ± 24.7 | 159.5 ± 32.7 | 154.9 ± 43.5 | 7.5 ± 27.5 | −4.5 ± 27.1 |
HDL Cholesterol, mg/dL | 37.73 ± 11.40 | 42.36 ± 12.40 | 51.09 ± 20.43 | 44.82 ± 15.45 | 4.64 ± 10.83 | −6.27 ± 10.90 |
LDL Cholesterol, mg/dL | 80.36 ± 26.27 | 85.45 ± 26.99 | 85.18 ± 24.70 | 84.82 ± 33.44 | 5.09 ± 33.75 | −0.36 ± 23.68 |
Triglycerides, mg/dL | 112.2 ± 43.8 | 109.4 ± 50.1 | 130.5 ± 49.9 | 125.9 ± 54.2 | −2.8 ± 53.6 | −4.5 ± 35.1 |
Glycemia, mg/dL | 98.9 ± 12.8 | 108.3 ± 19.8 | 121.1 ± 37.1 | 96.8 ± 16.7 | 9.4 ± 22.9 Δ | −24.3 ± 39.2 Δ |
Uric Acid, mg/dL | 6.15 ± 1.17 | 6.25 ± 1.27 | 6.56 ± 1.26 | 6.50 ± 1.91 | 0.11 ± 1.76 | −0.06 ± 2.20 |
Sodium, mmol/L | 137.3 ± 2.3 | 136.0 ± 3.0 | 137.7 ± 2.2 | 137.2 ± 2.1 | −1.3 ± 3.2 | −0.5 ± 2.9 |
Potassium, mEq/L | 5.25 ± 0.71 | 5.26 ± 0.79 | 5.57 ± 0.75 | 5.24 ± 0.58 | 0.02 ± 0.97 | −0.33 ± 0.90 |
iPTH, pg/mL | 476.1 ± 457.2 | 434.1 ± 225.4 | 513.9 ± 379.3 | 583.2 ± 570.4 | −42.0 ± 504.8 | 69.3 ± 712.9 |
C Reactive Protein, mg/L | 4.60 ± 2.03 | 4.49 ± 3.15 | 4.07 ± 2.99 | 2.81 ± 0.94 | −0.11 ± 3.51 | −1.27 ± 2.66 |
Alkaline Phosphatase, UI/L | 71.56 ± 17.25 | 88.22 ± 30.54 | 86.82 ± 32.66 | 76.00 ± 21.61 | 16.67 ± 29.72 | −10.82 ± 36.55 |
Total Immunoglobulins, mg/dL | 1305 ± 339 | 1249 ± 362 | 1480 ± 374 | 1471 ± 522 | −56 ± 199 | −9 ± 462 |
C3, mg/dL | 79.58 ± 12.76 | 79.41 ± 5.40 | 97.42 ± 20.55 | 92.20 ± 19.28 | −0.17 ± 12.68 | −5.22 ± 14.56 |
C4, mg/dL | 22.63 ± 4.20 | 31.49 ± 21.94 | 24.87 ± 7.97 | 26.15 ± 4.92 | 8.86 ± 22.17 | 1.28 ± 7.20 |
pH | 7.36 ± 0.04 | 7.38 ± 0.03 | 7.34 ± 0.03 | 7.35 ± 0.08 | 0.02 ± 0.04 | 0.02 ± 0.07 |
Bicarbonates, mEq/L | 22.42 ± 1.92 | 23.37 ± 2.97 | 21.31 ± 1.80 | 22.26 ± 4.24 | 0.95 ± 2.58 | 0.95 ± 4.39 |
Parameters | Placebo Group at Start of the Study | Placebo Group after 6 Months | Treatment Group at Start of the Study | Treatment Group after 6 Months | Placebo Group—δ Variation over 6 Months | Treatment Group—δ Variation over 6 Months |
---|---|---|---|---|---|---|
Phase Angle, degree | 4.20 ± 0.99 | 3.99 ± 0.98 | 4.36 ± 1.13 | 4.53 ± 1.16 | −0.21 ± 0.50 Δ | 0.16 ± 0.36 Δ |
Total Body Water, % | 55.88 ± 5.44 | 56.47 ± 5.51 | 54.29 ± 9.48 | 55.15 ± 8.41 | 0.59 ± 5.03 | 0.85 ± 6.00 |
Extracellular Water, % | 56.30 ± 7.27 | 58.12 ± 7.65 | 53.94 ± 9.52 | 57.69 ± 5.80 | 1.82 ± 5.85 | 3.75 ± 11.57 |
Intracellular Water, % | 42.23 ± 7.27 | 40.78 ± 8.45 | 45.83 ± 9.04 | 42.10 ± 5.78 | −1.45 ± 5.46 | −3.73 ± 11.03 |
Fat Free Mass, % | 70.44 ± 7.83 | 71.27 ± 7.00 | 69.82 ± 12.85 | 71.28 ± 11.49 | 0.84 ± 6.45 | 1.47 ± 6.96 |
Body Cellular Mass, % | 40.78 ± 7.66 | 40.24 ± 8.07 | 44.64 ± 9.73 | 39.98 ± 6.42 | −0.55 ± 6.01 | −4.65 ± 11.90 |
Muscle Mass, % | 38.72 ± 7.36 | 37.70 ± 7.77 | 39.82 ± 8.68 | 41.25 ± 8.09 | −1.02 ± 5.32 Δ | 1.44 ± 3.31 Δ |
Fat Mass, % | 29.36 ± 7.72 | 29.05 ± 7.04 | 32.70 ± 8.95 | 28.74 ± 11.50 | −0.32 ± 6.20 | −3.96 ± 7.31 |
Resting Energy Expenditure, Kcal/kg | 20.74 ± 2.93 | 20.25 ± 3.25 | 22.67 ± 2.66 | 22.95 ± 2.41 | −0.48 ± 1.57 | 0.28 ± 2.90 |
Body Mass Index, Kg/m2 | 23.75 ± 4.74 | 23.98 ± 5.27 | 24.96 ± 6.40 | 24.92 ± 6.27 | 0.24 ± 1.22 | −0.05 ± 1.12 |
Parameters | Placebo Group at Start of the Study | Placebo Group after 6 Months | Treatment Group at Start of the Study | Treatment Group after 6 Months | Placebo Group—δ Variation over 6 Months | Treatment Group—δ Variation over 6 Months |
---|---|---|---|---|---|---|
Hb, g/dL | 11.12 ± 0.72 | 11.28 ± 0.73 | 11.49 ± 0.86 | 11.64 ± 0.81 | 0.14 ± 0.68 | 0.16 ± 1.10 |
Blood Iron, µg /dL | 48.91 ± 19.08 | 57.27 ± 25.08 | 48.73 ± 22.85 | 52.27 ± 11.94 | 3.55 ± 26.38 | 8.36 ± 23.72 |
Ferritin, ng/dL | 414.0 ± 285.7 | 428.8 ± 219.2 | 444.5 ± 180.9 | 469.7 ± 239.2 | 25.2 ± 169.3 | 14.8 ± 258.3 |
Transferrin, mg/dL | 188.1 ± 66.3 | 176.8 ± 29.6 | 179.0 ± 29.9 | 169.3 ± 27.5 | −9.7 ± 37.8 | −11.3 ± 72.9 |
Lymphocytes, mm3 | 1518 ± 678 | 1380 ± 247 | 1053 ± 569 | 934 ± 607 | −138 ± 644 | −120 ± 522 |
Parenteral Iron administration (i.v), mg/week | 198.9 ± 228.5 | 278.9 ± 204.7 | 194.9 ± 232.1 | 319.1 ± 114.8 | 124.2 ± 304.7 | 80.1 ± 193.3 |
Erythropoietin, U.I./week | 14373 ± 7337 | 15459 ± 4425 | 13205 ± 5838 Δ | 8444 ± 3547 Δ | +4761 ± 4169 ♦ | −1086 ± 7112 ♦ |
ERI, EPO IU/week/Kg/g/dL | 19.44 ± 9.73 | 20.97 ± 5.79 | 19.37 ± 9.69 # | 12.64 ± 6.96 # | −6.73 ± 4.64 θ | 1.53 ± 7.47 θ |
Placebo Group at Start of the Study | Placebo Group after 6 Months | Treatment Group at Start of the Study | Treatment Group after 6 Months | Placebo Group—δ Variation over 6 Months | Treatment Group—δ Variation over 6 Months | |
---|---|---|---|---|---|---|
LVEF, % | 65.73 ± 5.6 | 65.00 ± 6.3 | 64.09 ± 10.6 ◊ | 67.27 ± 5.7 ◊ | −0.73 ± 4.3 # | 3.18 ± 6.8 # |
LVIDD, mm | 47.91 ± 4.2 | 47.55 ± 4.5 | 44.73 ± 4.5 | 46.00 ± 5.1 | −0.36 ± 4.1 | 1.27 ± 6.7 |
IVS, mm | 12.82 ± 1.9 | 12.36 ± 1.4 | 13.09 ± 3.5 | 11.77 ± 1.4 | −0.45 ± 2.2 | −1.32 ± 3.5 |
FCS, % | 21.00 ± 7.9 | 22.64 ± 9.2 | 21.23 ± 13.2 | 23.36 ± 8.6 | 1.64 ± 7.2 | 2.14 ± 11.9 |
LVMi, gm−2 | 202.3 ± 56.4 | 203.1 ± 41.1 | 180.5 ± 54.8 | 171.5 ± 44.1 | 0.8 ± 41.0 | −9.0 ± 69.8 |
E/A ratio | 0.69 ± 0.1 | 0.73 ± 0.2 | 0.95 ± 0.6 | 0.88 ± 0.4 | 0.04 ± 0.2 | −0.08 ± 0.3 |
IVRT, ms | 95.45 ± 13.6 | 96.73 ± 20.5 | 94.91 ± 24.8 | 100.64 ± 24.4 | 1.27 ± 23.7 | 5.73 ± 34.4 |
LW Sm, cm s−1 | 7.98 ± 3.2 | 8.24 ± 2.3 | 7.52 ± 2.1 | 8.16 ± 2.4 | 0.25 ± 1.8 | 0.65 ± 1.5 |
LW Peak Em, cm s−1 | 8.55 ± 3.2 | 9.42 ± 3.4 | 8.32 ± 2.7 | 9.19 ± 3.1 | 0.86 ± 3.2 | 0.87 ± 2.4 |
LW Peak Am, cm s−1 | 9.81 ± 3.3 | 11.11 ± 4.1 | 8.01 ± 2.9 | 9.23 ± 3.9 | 1.30 ± 3.4 | 1.22 ± 2.0 |
LW Em/Am ratio | 0.83 ± 0.2 | 0.87 ± 0.4 | 1.23 ± 0.7 | 1.26 ± 0.7 | 0.04 ± 0.5 | 0.02 ± 0.4 |
LW IVRTm, ms | 84.7 ± 13. | 100.9 ± 19.0 | 100.2 ± 27.5 | 96.4 ± 13.1 | 16.2 ± 18.3 | −3.8 ± 34.6 |
IVS Sm cm s−1 | 7.40 ± 2.5 | 7.27 ± 2.2 | 7.28 ± 3.1 | 7.98 ± 2.8 | −0.13 ± 1.5 | 0.70 ± 1.9 |
IVS Peak Em, cm s−1 | 6.43 ± 2.2 | 6.83 ± 2.2 | 7.03 ± 2.9 | 6.45 ± 2.1 | 0.40 ± 1.9 | −0.57 ± 2.0 |
IVS Peak Am, cm s−1 | 9.59 ± 2.8 | 11.36 ± 3.1 | 8.40 ± 3.8 | 8.88 ± 3.5 | 1.77 ± 3.3 | 0.48 ± 1.9 |
SIV Peak Am, cm s−1 | 0.63 ± 0.1 | 0.64 ± 0.2 | 0.94 ± 0.5 | 0.68 ± 0.2 | 0.01 ± 0.3 | −0.27 ± 0.5 |
SIV IVRT, ms | 84.91 ± 24.8 | 101.27 ± 20.6 | 93.09 ± 14.6 | 96.36 ± 19.5 | 16.36 ± 29.5 | 3.27 ± 28.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murtas, S.; Aquilani, R.; Fiori, G.; Maestri, R.; Iadarola, P.; Graccione, C.; Contu, R.; Deiana, M.L.; Macis, F.; Secci, R.; et al. Effects of a Novel Amino Acid Formula on Nutritional and Metabolic Status, Anemia and Myocardial Function in Thrice-Weekly Hemodialysis Patients: Results of a Six-Month Randomized Double-Blind Placebo-Controlled Pilot Study. Nutrients 2022, 14, 3492. https://doi.org/10.3390/nu14173492
Murtas S, Aquilani R, Fiori G, Maestri R, Iadarola P, Graccione C, Contu R, Deiana ML, Macis F, Secci R, et al. Effects of a Novel Amino Acid Formula on Nutritional and Metabolic Status, Anemia and Myocardial Function in Thrice-Weekly Hemodialysis Patients: Results of a Six-Month Randomized Double-Blind Placebo-Controlled Pilot Study. Nutrients. 2022; 14(17):3492. https://doi.org/10.3390/nu14173492
Chicago/Turabian StyleMurtas, Stefano, Roberto Aquilani, Gianmarco Fiori, Roberto Maestri, Paolo Iadarola, Cristina Graccione, Rita Contu, Maria Luisa Deiana, Fabrizio Macis, Romina Secci, and et al. 2022. "Effects of a Novel Amino Acid Formula on Nutritional and Metabolic Status, Anemia and Myocardial Function in Thrice-Weekly Hemodialysis Patients: Results of a Six-Month Randomized Double-Blind Placebo-Controlled Pilot Study" Nutrients 14, no. 17: 3492. https://doi.org/10.3390/nu14173492
APA StyleMurtas, S., Aquilani, R., Fiori, G., Maestri, R., Iadarola, P., Graccione, C., Contu, R., Deiana, M. L., Macis, F., Secci, R., Serra, A., Cadeddu, M., D’Amato, M., Putzu, P., Marongiu, M., & Bolasco, P. (2022). Effects of a Novel Amino Acid Formula on Nutritional and Metabolic Status, Anemia and Myocardial Function in Thrice-Weekly Hemodialysis Patients: Results of a Six-Month Randomized Double-Blind Placebo-Controlled Pilot Study. Nutrients, 14(17), 3492. https://doi.org/10.3390/nu14173492