The Role of Obesity, Body Composition, and Nutrition in COVID-19 Pandemia: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. The Role of Adipose Tissue Distribution in Patients with Severe COVID-19
3.1. Visceral Adipose Tissue
3.2. Epicardial Adipose Tissue
4. The Role of Skeletal Muscle Mass and Function in SARS-CoV-2 Infection
5. Nutrition in SARS-CoV-2 Prevention and Treatment
5.1. Nutritional Prevention
5.2. Nutritional Risk Assessment
5.3. Nutritional Treatment
6. Strengths and Limitations
7. Clinical Implications
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| AT | Adipose tissue |
| CT | Computed tomography |
| BMI | Body Mass Index |
| ICU | Intensive Care Units |
| AKI | Acute kidney injury |
| IMV | Invasive mechanical ventilation |
| IMAT | Intermuscular adipose tissue |
| VAT | Visceral Adipose Tissue |
| MV | Mechanical ventilation |
References
- Chen, J. Novel statistics predict the COVID-19 pandemic could terminate in 2022. J. Med. Virol. 2022, 94, 2845–2848. [Google Scholar] [CrossRef]
- El Ghoch, M.; Fakhoury, R. Challenges and New Directions in Obesity Management: Lifestyle Modification Programmes, Pharmacotherapy and Bariatric Surgery. J. Popul. Ther. Clin. Pharmacol. 2019, 26, e1–e4. [Google Scholar] [CrossRef]
- Apovian, C.M. Obesity: Definition, Comorbidities, Causes, and Burden. Am. J. Manag. Care 2016, 22, s176–s185. [Google Scholar]
- Popkin, B.M.; Du, S.; Green, W.D.; Beck, M.A.; Algaith, T.; Herbst, C.H.; Alsukait, R.F.; Alluhidan, M.; Alazemi, N.; Shekar, M. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes. Rev. 2020, 21, e13128. [Google Scholar] [CrossRef]
- Ho, J.S.; Fernando, D.I.; Chan, M.Y.; Sia, C.-H. Obesity in COVID-19: A Systematic Review and Meta-analysis. Ann. Acad. Med. Singap. 2020, 49, 996–1008. [Google Scholar] [CrossRef]
- O’Hearn, M.; Liu, J.; Cudhea, F.; Micha, R.; Mozaffarian, D. Coronavirus Disease 2019 Hospitalizations Attributable to Cardiometabolic Conditions in the United States: A Comparative Risk Assessment Analysis. J. Am. Heart Assoc. 2021, 10, e019259. [Google Scholar] [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef]
- Onder, G.; Palmieri, L.; Vanacore, N.; Giuliano, M.; Brusaferro, S.; The Italian National Institute of Health COVID-19 mortality group; Agazio, E.; Andrianou, X.; Barbariol, P.; Bella, A.; et al. Nonrespiratory Complications and Obesity in Patients Dying with COVID-19 in Italy. Obesity 2020, 29, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.P.; Gottin, L.; Donadello, K.; Schweiger, V.; Nocini, R.; Taiana, M.; Zamboni, M.; Polati, E. Obesity as a risk factor for unfavourable outcomes in critically ill patients affected by COVID-19. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Shabanpur, M.; Pourmahmoudi, A.; Nicolau, J.; Veronese, N.; Roustaei, N.; Jahromi, A.J.; Hosseinikia, M. The importance of nutritional status on clinical outcomes among both ICU and Non-ICU patients with COVID-19. Clin. Nutr. ESPEN 2022, 49, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Czapla, M.; Juárez-Vela, R.; Gea-Caballero, V.; Zieliński, S.; Zielińska, M. The Association between Nutritional Status and In-Hospital Mortality of COVID-19 in Critically-Ill Patients in the ICU. Nutrients 2021, 13, 3302. [Google Scholar] [CrossRef]
- Khaodhiar, L.; McCowen, K.C.; Blackburn, G.L. Obesity and its comorbid conditions. Clin. Cornerstone 1999, 2, 17–31. [Google Scholar] [CrossRef]
- Cortes-Telles, A.; Ortiz-Farias, D.L.; Pou-Aguilar, Y.; Almeida-De-La-Cruz, L.; Perez-Padilla, J.R. Clinical impact of obesity on respiratory diseases: A real-life study. Lung India 2021, 38, 321–325. [Google Scholar] [CrossRef]
- Colleluori, G.; Graciotti, L.; Pesaresi, M.; Di Vincenzo, A.; Perugini, J.; Di Mercurio, E.; Caucci, S.; Bagnarelli, P.; Zingaretti, C.M.; Nisoli, E.; et al. Visceral fat inflammation and fat embolism are associated with lung’s lipidic hyaline membranes in subjects with COVID-19. Int. J. Obes. 2022, 46, 1009–1017. [Google Scholar] [CrossRef]
- Francisco, V.; Pino, J.; Campos-Cabaleiro, V.; Ruiz-Fernández, C.; Mera, A.; Gonzalez-Gay, M.A.; Gómez, R.; Gualillo, O. Obesity, Fat Mass and Immune System: Role for Leptin. Front. Physiol. 2018, 9, 640. [Google Scholar] [CrossRef]
- Bähr, I.; Spielmann, J.; Quandt, D.; Kielstein, H. Obesity-Associated Alterations of Natural Killer Cells and Immunosurveillance of Cancer. Front. Immunol. 2020, 11, 245. [Google Scholar] [CrossRef]
- Huttunen, R.; Karppelin, M.; Syrjänen, J. Obesity and nosocomial infections. J. Hosp. Infect. 2013, 85, 8–16. [Google Scholar] [CrossRef]
- Falagas, M.E.; Karageorgopoulos, D.E. Adjustment of dosing of antimicrobial agents for bodyweight in adults. Lancet 2009, 375, 248–251. [Google Scholar] [CrossRef]
- Miles, J.; Anderson, D.P.; Engelke, M.; Kirkpatrick, M.K.; Pories, M.L.; Waters, W.G.; Watkins, F.R.; Pokorny, M.E.; Rose, M.A. Barriers to transition of obese patients from hospital to community. Am. J. Manag. Care 2012, 18, e234–e237. [Google Scholar]
- Huang, Y.; Lu, Y.; Huang, Y.-M.; Wang, M.; Ling, W.; Sui, Y.; Zhao, H.-L. Obesity in patients with COVID-19: A systematic review and meta-analysis. Metabolism 2020, 113, 154378. [Google Scholar] [CrossRef]
- Favre, G.; Legueult, K.; Pradier, C.; Raffaelli, C.; Ichai, C.; Iannelli, A.; Redheuil, A.; Lucidarme, O.; Esnault, V. Visceral fat is associated to the severity of COVID-19. Metabolism 2020, 115, 154440. [Google Scholar] [CrossRef] [PubMed]
- Petersen, A.; Bressem, K.; Albrecht, J.; Thieß, H.-M.; Vahldiek, J.; Hamm, B.; Makowski, M.R.; Niehues, A.; Niehues, S.M.; Adams, L.C. The role of visceral adiposity in the severity of COVID-19: Highlights from a unicenter cross-sectional pilot study in Germany. Metabolism 2020, 110, 154317. [Google Scholar] [CrossRef] [PubMed]
- Engin, A.B.; Engin, A. Obesity and Lipotoxicity; Springer: Berlin/Heidelberg, Germany, 2017; Volume 960, ISBN 3-319-48382-X. [Google Scholar]
- Zhu, L.; She, Z.-G.; Cheng, X.; Qin, J.-J.; Zhang, X.-J.; Cai, J.; Lei, F.; Wang, H.; Xie, J.; Wang, W.; et al. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab. 2020, 31, 1068–1077.e3. [Google Scholar] [CrossRef] [PubMed]
- Gounarides, J.S.; Korach-André, M.; Killary, K.; Argentieri, G.; Turner, O.; Laurent, D. Effect of Dexamethasone on Glucose Tolerance and Fat Metabolism in a Diet-Induced Obesity Mouse Model. Endocrinology 2007, 149, 758–766. [Google Scholar] [CrossRef]
- Rossi, A.P.; Watson, N.L.; Newman, A.B.; Harris, T.B.; Kritchevsky, S.B.; Bauer, D.C.; Satterfield, S.; Goodpaster, B.H.; Zamboni, M. Effects of Body Composition and Adipose Tissue Distribution on Respiratory Function in Elderly Men and Women: The Health, Aging, and Body Composition Study. J. Gerontol. Ser. A 2011, 66, 801–808. [Google Scholar] [CrossRef]
- Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat. Med. 2005, 11, 875–879. [Google Scholar] [CrossRef]
- Iacobellis, G.; Malavazos, A.E.; Corsi, M.M. Epicardial fat: From the biomolecular aspects to the clinical practice. Int. J. Biochem. Cell Biol. 2011, 43, 1651–1654. [Google Scholar] [CrossRef]
- Bambace, C.; Telesca, M.; Zoico, E.; Sepe, A.; Olioso, D.; Rossi, A.; Corzato, F.; Di Francesco, V.; Mazzucco, A.; Santini, F.; et al. Adiponectin gene expression and adipocyte diameter: A comparison between epicardial and subcutaneous adipose tissue in men. Cardiovasc. Pathol. 2011, 20, e153–e156. [Google Scholar] [CrossRef]
- Zoico, E.; Rubele, S.; De Caro, A.; Nori, N.; Mazzali, G.; Fantin, F.; Rossi, A.; Zamboni, M. Brown and Beige Adipose Tissue and Aging. Front. Endocrinol. 2019, 10, 368. [Google Scholar] [CrossRef]
- Eisenberg, E.; McElhinney, P.A.; Commandeur, F.; Chen, X.; Cadet, S.; Goeller, M.; Razipour, A.; Gransar, H.; Cantu, S.; Miller, R.J.; et al. Deep Learning–Based Quantification of Epicardial Adipose Tissue Volume and Attenuation Predicts Major Adverse Cardiovascular Events in Asymptomatic Subjects. Circ. Cardiovasc. Imaging 2020, 13, e009829. [Google Scholar] [CrossRef]
- Tok, D.; Çağli, K.; Kadife, I.; Turak, O.; Özcan, F.; Başar, F.N.; Gölbaşi, Z.; Aydoğdu, S. Impaired coronary flow reserve is associated with increased echocardiographic epicardial fat thickness in metabolic syndrome patients. Coron. Artery Dis. 2013, 24, 191–195. [Google Scholar] [CrossRef]
- Mazzoccoli, G.; Copetti, M.; Dagostino, M.P.; Grilli, M.; Fontana, A.; Pellegrini, F.; Greco, A. Epicardial adipose tissue and idiopathic deep venous thrombosis: An association study. Atherosclerosis 2012, 223, 378–383. [Google Scholar] [CrossRef]
- Malavazos, A.E.; Goldberger, J.J.; Iacobellis, G. Does Epicardial Fat Contribute to COVID-19 Myocardial Inflammation? Eur. Heart J. 2020, 41, 2333. [Google Scholar] [CrossRef]
- Meini, S.; Zanichelli, A.; Sbrojavacca, R.; Iuri, F.; Roberts, A.T.; Suffritti, C.; Tascini, C. Understanding the Pathophysiology of COVID-19: Could the Contact System Be the Key? Front. Immunol. 2020, 11, 2014. [Google Scholar] [CrossRef]
- Patel, V.B.; Mori, J.; McLean, B.A.; Basu, R.; Das, S.K.; Ramprasath, T.; Parajuli, N.; Penninger, J.M.; Grant, M.B.; Lopaschuk, G.D.; et al. ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity. Diabetes 2015, 65, 85–95. [Google Scholar] [CrossRef]
- Rossi, A.P.; Donadello, K.; Schweiger, V.; Zamboni, G.A.; Dalla Valle, Z.; Zamboni, M.; Polati, E.; Gottin, L. Epicardial adipose tissue volume and CT-attenuation as prognostic factors for pulmonary embolism and mortality in critically ill patients affected by COVID-19. Eur. J. Clin. Nutr. 2022. [Google Scholar] [CrossRef]
- Anfossi, G.; Russo, I.; Trovati, M. Platelet dysfunction in central obesity. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 440–449. [Google Scholar] [CrossRef]
- Iacobellis, G.; Corradi, D.; Sharma, A.M. Epicardial adipose tissue: Anatomic, biomolecular and clinical relationships with the heart. Nat. Clin. Pract. Cardiovasc. Med. 2005, 2, 536–543. [Google Scholar] [CrossRef]
- Levi, M.; van der Poll, T.; Schultz, M. Infection and Inflammation as Risk Factors for Thrombosis and Atherosclerosis. Semin. Thromb. Hemost. 2012, 38, 506–514. [Google Scholar] [CrossRef]
- Riuzzi, F.; Sorci, G.; Sagheddu, R.; Chiappalupi, S.; Salvadori, L.; Donato, R. RAGE in the pathophysiology of skeletal muscle. J. Cachexia Sarcopenia Muscle 2018, 9, 1213–1234. [Google Scholar] [CrossRef]
- McLeod, M.; Breen, L.; Hamilton, D.; Philp, A. Live strong and prosper: The importance of skeletal muscle strength for healthy ageing. Biogerontology 2016, 17, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Rantanen, T. Muscle strength, disability and mortality: Strengths and disablement. Scand. J. Med. Sci. Sports 2003, 13, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Gariballa, S.; Alessa, A. Impact of poor muscle strength on clinical and service outcomes of older people during both acute illness and after recovery. BMC Geriatr. 2017, 17, 123. [Google Scholar] [CrossRef] [PubMed]
- Guadalupe-Grau, A.; Carnicero, J.A.; Gómez-Cabello, A.; Avila, G.G.; Humanes, S.; Alegre, L.M.; Castro, M.; Rodríguez-Mañas, L.; García-García, F.J. Association of regional muscle strength with mortality and hospitalisation in older people. Age Ageing 2015, 44, 790–795. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Ali, A.M.; Kunugi, H. Skeletal Muscle Damage in COVID-19: A Call for Action. Medicina 2021, 57, 372. [Google Scholar] [CrossRef]
- Ali, A.; Kunugi, H. Physical Frailty/Sarcopenia as a Key Predisposing Factor to Coronavirus Disease 2019 (COVID-19) and Its Complications in Older Adults. BioMed 2021, 1, 11–40. [Google Scholar] [CrossRef]
- Wang, P.-Y.; Li, Y.; Wang, Q. Sarcopenia: An underlying treatment target during the COVID-19 pandemic. Nutrition 2020, 84, 111104. [Google Scholar] [CrossRef]
- Beaudart, C.; Veronese, N.; Sabico, S. Sarcopenia: Research and Clinical Implications; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Menozzi, R.; Valoriani, F.; Prampolini, F.; Banchelli, F.; Boldrini, E.; Martelli, F.; Galetti, S.; Fari’, R.; Gabriele, S.; Palumbo, P.; et al. Impact of sarcopenia in SARS-CoV-2 patients during two different epidemic waves. Clin. Nutr. ESPEN 2021, 47, 252–259. [Google Scholar] [CrossRef]
- Silva, R.N.; Goulart, C.D.L.; Oliveira, M.R.; Tacao, G.Y.; Back, G.D.; Severin, R.; Faghy, M.A.; Arena, R.; Borghi-Silva, A. Cardiorespiratory and skeletal muscle damage due to COVID-19: Making the urgent case for rehabilitation. Expert Rev. Respir. Med. 2021, 15, 1107–1120. [Google Scholar] [CrossRef]
- Kirwan, R.; McCullough, D.; Butler, T.; de Heredia, F.P.; Davies, I.G.; Stewart, C. Sarcopenia during COVID-19 lockdown restrictions: Long-term health effects of short-term muscle loss. GeroScience 2020, 42, 1547–1578. [Google Scholar] [CrossRef]
- Bettis, T.; Kim, B.-J.; Hamrick, M.W. Impact of muscle atrophy on bone metabolism and bone strength: Implications for muscle-bone crosstalk with aging and disuse. Osteoporos. Int. 2018, 29, 1713–1720. [Google Scholar] [CrossRef]
- Narici, M.; De Vito, G.; Franchi, M.; Paoli, A.; Moro, T.; Marcolin, G.; Grassi, B.; Baldassarre, G.; Zuccarelli, L.; Biolo, G.; et al. Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: Physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures. Eur. J. Sport Sci. 2021, 21, 614–635. [Google Scholar] [CrossRef]
- Paneroni, M.; Simonelli, C.; Saleri, M.; Bertacchini, L.; Venturelli, M.; Troosters, T.; Ambrosino, N.; Vitacca, M. Muscle Strength and Physical Performance in Patients Without Previous Disabilities Recovering from COVID-19 Pneumonia. Am. J. Phys. Med. Rehabil. 2021, 100, 105–109. [Google Scholar] [CrossRef]
- Besutti, G.; Pellegrini, M.; Ottone, M.; Cantini, M.; Milic, J.; Bonelli, E.; Dolci, G.; Cassone, G.; Ligabue, G.; Spaggiari, L.; et al. The impact of chest CT body composition parameters on clinical outcomes in COVID-19 patients. PLoS ONE 2021, 16, e0251768. [Google Scholar] [CrossRef]
- Rossi, A.P.; Gottin, L.; Donadello, K.; Schweiger, V.; Brandimarte, P.; Zamboni, G.A.; Florio, A.; Boetti, R.; Pavan, G.; Zamboni, M.; et al. Intermuscular Adipose Tissue as a Risk Factor for Mortality and Muscle Injury in Critically Ill Patients Affected by COVID-19. Front. Physiol. 2021, 12, 651167. [Google Scholar] [CrossRef]
- Moro, T.; Paoli, A. When COVID-19 Affects Muscle: Effects of Quarantine in Older Adults. Eur. J. Transl. Myol. 2020, 30, 9069. [Google Scholar] [CrossRef]
- Calder, P.C.; Carr, A.C.; Gombart, A.F.; Eggersdorfer, M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients 2020, 12, 1181. [Google Scholar] [CrossRef]
- Keusch, G.T. The History of Nutrition: Malnutrition, Infection and Immunity. J. Nutr. 2003, 133, 336S–340S. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Gong, C.; Wang, J.; Liu, B.; Shi, L.; Duan, J. Prevalence of malnutrition and analysis of related factors in elderly patients with COVID-19 in Wuhan, China. Eur. J. Clin. Nutr. 2020, 74, 871–875. [Google Scholar] [CrossRef]
- Li, G.; Zhou, C.-L.; Ba, Y.-M.; Wang, Y.-M.; Song, B.; Cheng, X.-B.; Dong, Q.-F.; Wang, L.-L.; You, S.-S. Nutritional risk and therapy for severe and critical COVID-19 patients: A multicenter retrospective observational study. Clin. Nutr. 2020, 40, 2154–2161. [Google Scholar] [CrossRef] [PubMed]
- Di Filippo, L.; De Lorenzo, R.; D’Amico, M.; Sofia, V.; Roveri, L.; Mele, R.; Saibene, A.; Rovere-Querini, P.; Conte, C. COVID-19 Is Associated with Clinically Significant Weight Loss and Risk of Malnutrition, Independent of Hospitalisation: A Post-Hoc Analysis of a Prospective Cohort Study. Clin. Nutr. 2021, 40, 2420–2426. [Google Scholar] [CrossRef] [PubMed]
- Allard, L.; Ouedraogo, E.; Molleville, J.; Bihan, H.; Giroux-Leprieur, B.; Sutton, A.; Baudry, C.; Josse, C.; Didier, M.; Deutsch, D.; et al. Malnutrition: Percentage and Association with Prognosis in Patients Hospitalized for Coronavirus Disease 2019. Nutrients 2020, 12, 3679. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Ye, J.; Chen, M.; Jiang, C.; Lin, W.; Lu, Y.; Ye, H.; Li, Y.; Wang, Y.; Liao, Q.; et al. Malnutrition Prolongs the Hospitalization of Patients with COVID-19 Infection: A Clinical Epidemiological Analysis. J. Nutr. Health Aging 2020, 25, 369–373. [Google Scholar] [CrossRef]
- Földi, M.; Farkas, N.; Kiss, S.; Dembrovszky, F.; Szakács, Z.; Balaskó, M.; Erőss, B.; Hegyi, P.; Szentesi, A. Visceral Adiposity Elevates the Risk of Critical Condition in COVID-19: A Systematic Review and Meta-Analysis. Obesity 2020, 29, 521–528. [Google Scholar] [CrossRef]
- Simonnet, A.; Chetboun, M.; Poissy, J.; Raverdy, V.; Noulette, J.; Duhamel, A.; Labreuche, J.; Mathieu, D.; Pattou, F.; Jourdain, M. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. Obesity 2020, 28, 1195–1199. [Google Scholar] [CrossRef]
- Mechanick, J.I.; Carbone, S.; Dickerson, R.N.; Hernandez, B.J.; Hurt, R.T.; Irving, S.Y.; Li, D.; McCarthy, M.S.; Mogensen, K.M.; Gautier, J.B.O. Clinical Nutrition Research and the COVID-19 Pandemic: A Scoping Review of the ASPEN COVID-19 Task Force on Nutrition Research. J. Parenter. Enter. Nutr. 2021, 45, 13–31. [Google Scholar] [CrossRef]
- Zampelas, A. Nutritional Habits and Recommendations in the COVID-19 Era. Nutrients 2022, 14, 693. [Google Scholar] [CrossRef]
- James, P.T.; Ali, Z.; Armitage, A.E.; Bonell, A.; Cerami, C.; Drakesmith, H.; Jobe, M.; Jones, K.S.; Liew, Z.; Moore, S.E.; et al. The Role of Nutrition in COVID-19 Susceptibility and Severity of Disease: A Systematic Review. J. Nutr. 2021, 151, 1854–1878. [Google Scholar] [CrossRef]
- Chiodini, I.; Gatti, D.; Soranna, D.; Merlotti, D.; Mingiano, C.; Fassio, A.; Adami, G.; Falchetti, A.; Eller Vainicher, C.; Rossini, M. Vitamin D Status and SARS-CoV-2 Infection and COVID-19 Clinical Outcomes. Front. Public Health 2021, 9, 1968. [Google Scholar] [CrossRef]
- Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients 2020, 12, 988. [Google Scholar] [CrossRef]
- Liu, N.; Sun, J.; Wang, X.; Zhang, T.; Zhao, M.; Li, H. Low vitamin D status is associated with coronavirus disease 2019 outcomes: A systematic review and meta-analysis. Int. J. Infect. Dis. 2021, 104, 58–64. [Google Scholar] [CrossRef]
- Barazzoni, R.; Bischoff, S.C.; Breda, J.; Wickramasinghe, K.; Krznaric, Z.; Nitzan, D.; Pirlich, M.; Singer, P. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clin. Nutr. 2020, 39, 1631–1638. [Google Scholar] [CrossRef]
- Martindale, R.; Patel, J.J.; Taylor, B.; Arabi, Y.M.; Warren, M.; McClave, S.A. Nutrition Therapy in Critically Ill Patients with Coronavirus Disease 2019. JPEN J. Parenter. Enter. Nutr. 2020, 44, 1174–1184. [Google Scholar] [CrossRef]
- Schueren, M.A.v.B.-d.v.d.; Guaitoli, P.R.; Jansma, E.P.; de Vet, H.C. Nutrition screening tools: Does one size fit all? A systematic review of screening tools for the hospital setting. Clin. Nutr. 2014, 33, 39–58. [Google Scholar] [CrossRef]
- Reignier, J.; Thenoz-Jost, N.; Fiancette, M.; Legendre, E.; Lebert, C.; Bontemps, F.; Clementi, E.; Martin-Lefevre, L. Early enteral nutrition in mechanically ventilated patients in the prone position. Crit. Care Med. 2004, 32, 94–99. [Google Scholar] [CrossRef]
- Wolfe, R.R. The role of dietary protein in optimizing muscle mass, function and health outcomes in older individuals. Br. J. Nutr. 2012, 108, S88–S93. [Google Scholar] [CrossRef]
- Volpi, E.; Kobayashi, H.; Sheffield-Moore, M.; Mittendorfer, B.; Wolfe, R.R. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am. J. Clin. Nutr. 2003, 78, 250–258. [Google Scholar] [CrossRef]
- Hathaway, D.; Pandav, K.; Patel, M.; Riva-Moscoso, A.; Singh, B.M.; Patel, A.; Min, Z.C.; Singh-Makkar, S.; Sana, M.K.; Sanchez-Dopazo, R.; et al. Omega 3 Fatty Acids and COVID-19: A Comprehensive Review. Infect. Chemother. 2020, 52, 478–495. [Google Scholar] [CrossRef]
- Annweiler, C.; Beaudenon, M.; Gautier, J.; Simon, R.; Dubée, V.; Gonsard, J.; Parot-Schinkel, E.; Aidoud, A.; Albaret, G.; Audemard-Verger, A.; et al. COvid-19 and high-dose VITamin D supplementation TRIAL in high-risk older patients (COVIT-TRIAL): Study protocol for a randomized controlled trial. Trials 2020, 21, 1031. [Google Scholar] [CrossRef]



| Study (Year) | PMID | Country | Diagnostic Criteria (Parameters) | Age (Mean +/− SD) | Study Design | Sample Size and Sex Distribution (Female %) | Methods for Diagnosis | Outcome |
|---|---|---|---|---|---|---|---|---|
| Rossi et al. (2022) | in press N/A | Italy | Epicardial AT | 64.7 (10.6) | cross-sectional | 138 (45%) | Computer tomography (CT) | Association with mortality, association with pulmonary embolism |
| Popkin et al. (2020) | 32845580 | worldwide | Obesity | NA (NA) | meta-analyses | sample size varied based upon the studied outcome | Anthropometry (BMI) | Association with SARS-CoV-2 incidence, hospitalization, ICU admission, mortality |
| Ho et al. (2020) | 33463658 | worldwide | Obesity | NA (NA) | meta-analyses | sample size varied based upon the studied outcome | Anthropometry (BMI) | Obesity is associated with risk of severe disease, mortality and infection with COVID-19. Higher BMI is associated with ICU admission and critical disease |
| O’Hearn et al. (2021) | 33629868 | US | Obesity | 47 (NA) | cross-sectional | 11,268 (51.8%) | Anthropometry (BMI) | Obesity increases risk of hospitalization in COVID-19 by 30.2- fold |
| Williamson et al. (2020) | 32640463 | UK | Obesity | NA (NA) | cross-sectional | 10,926 (44%) | Anthropometry (BMI) | Obesity increases risk of death in COVID-19 patients |
| Onder et al. (2020) | 32812383 | Italy | Obesity | 70.2 (12) | cross-sectional | 3694 (NA) | Anamnestic | Association with non-respiratory deaths, particularly AKI and shock |
| Huang et al. (2020) | 33002478 | worldwide | Obesity, VAT | NA (NA) | meta-analyses | NA (NA) | Anthropometry (BMI), NA for VAT | Association with hospitalization, ICU admission, IMV requirement and death. Excessive VAT is associated with severe COVID-19 outcomes. |
| Rossi et al. (2021) | 33549439 | Italy | Obesity | NA (NA) | cross-sectional | 95 (18%) | Anthropometry (BMI) | Association with mortality and muscle damage |
| Calleluori et al. (2022) | 35082385 | Italy | Obesity | 65 (14) | cross-sectional | 42 (35%) | Anthropometry (BMI) | Fat embolism syndrome was more prevalent among COVID-19+ whether they were obese or not, fat embolism was prevalent among obese patients whether they were COVID-19+ or not. All infected subjects’ lungs presented lipids-rich hyaline membranes |
| Favre et al. (2021) | 33246009 | France | VAT | 64 (17) | cross-sectional | 112 (40%) | Computer tomography (CT) | Subcutaneous/visceral fat ratio was lower in patients with severe COVID-19. VAT area ≥ 128.5 cm2 is the best predictor for severe COVID-19. VAT was a better predictor of COVID-19 severity than BMI. |
| Petersen et al. (2020) | 32673651 | Germany | VAT | 66 (13) | cross-sectional | 30 (40%) | Computer tomography (CT) and abdominal circumference | VAT, both CT-measured and circumference-based, is associated with higher ICU admission and mechanical ventilation need |
| Menozzi et al. (2021) | 35063210 | Italy | Sarcopenia | 71 (NA) | retrospective | 272 (37%) | Computer tomography (CT) | Significant association between sarcopenia and poor clinical outcomes only during first wave |
| Besutti et al. (2021) | 33989341 | Italy | SAT, VAT, IMAT, pectoral muscle area and density | 66 (NA) | observational | 318 (38%) | Computer tomography (CT) | VAT and IMAT were significantly associated with hospitalization and MV or death, increased muscle density showed a protective effect on hospitalization and MV or death. |
| Rossi et al. (2021) | 34025446 | Italy | IMAT/muscle | 64 (10) | cross-sectional | 153 (31%) | Computer tomography (CT) | IMAT/muscle was associated with death and muscle damage in severe ICU-admitted COVID-19 patients |
| Foldi (2021) | 33263191 | worldwide | VAT, SAT | NA (NA) | meta-analyses | 509 (NA) | Computer tomography (CT) | Visceral fat is associated with severity of COVID-19 |
| Simonnet et al. (2020) | 32271993 | France | Obesity | 60 (NA) | cross-sectional | 124 (27%) | Anthropometry (BMI) | High frequency of obesity among patients admitted in ICU for SARS-CoV-2. BMI associated with IMV need. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, A.P.; Muollo, V.; Dalla Valle, Z.; Urbani, S.; Pellegrini, M.; El Ghoch, M.; Mazzali, G. The Role of Obesity, Body Composition, and Nutrition in COVID-19 Pandemia: A Narrative Review. Nutrients 2022, 14, 3493. https://doi.org/10.3390/nu14173493
Rossi AP, Muollo V, Dalla Valle Z, Urbani S, Pellegrini M, El Ghoch M, Mazzali G. The Role of Obesity, Body Composition, and Nutrition in COVID-19 Pandemia: A Narrative Review. Nutrients. 2022; 14(17):3493. https://doi.org/10.3390/nu14173493
Chicago/Turabian StyleRossi, Andrea P., Valentina Muollo, Zeno Dalla Valle, Silvia Urbani, Massimo Pellegrini, Marwan El Ghoch, and Gloria Mazzali. 2022. "The Role of Obesity, Body Composition, and Nutrition in COVID-19 Pandemia: A Narrative Review" Nutrients 14, no. 17: 3493. https://doi.org/10.3390/nu14173493
APA StyleRossi, A. P., Muollo, V., Dalla Valle, Z., Urbani, S., Pellegrini, M., El Ghoch, M., & Mazzali, G. (2022). The Role of Obesity, Body Composition, and Nutrition in COVID-19 Pandemia: A Narrative Review. Nutrients, 14(17), 3493. https://doi.org/10.3390/nu14173493

