The Discovery of Data-Driven Temporal Dietary Patterns and a Validation of Their Description Using Energy and Time Cut-Offs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Data Set
2.2. Dietary Data Assessment
2.3. Anthropometric Measurement
2.4. Measures for Covariates
2.5. Creating TDPs through Data-Driven Method
2.6. Visualization of TDPs through Data-Driven Method
2.7. Creating TDPs through Cut-Off Method
2.8. Visualization of TDPs through Cut-Off Method
2.9. Statistical Analysis
3. Results
3.1. Characteristics of Participants in the TDPs Clusters
3.2. Overlap between the Data-Driven Method and Cut-Off Method
3.3. Associations of TDPs with BMI and WC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025. p. 164. Available online: https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf (accessed on 20 August 2022).
- DietaryPatternsReport-FullFinal2.pdf. Available online: https://nesr.usda.gov/sites/default/files/2019-06/DietaryPatternsReport-FullFinal2.pdf (accessed on 1 June 2022).
- Aqeel, M.M.; Guo, J.; Lin, L.; Gelfand, S.B.; Delp, E.J.; Bhadra, A.; Richards, E.A.; Hennessy, E.; Eicher-Miller, H.A. Temporal Dietary Patterns Are Associated with Obesity in US Adults. J. Nutr. 2020, 150, 3259–3268. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Guo, J.; Aqeel, M.M.; Gelfand, S.B.; Delp, E.J.; Bhadra, A.; Richards, E.A.; Hennessy, E.; Eicher-Miller, H.A. Joint temporal dietary and physical activity patterns: Associations with health status indicators and chronic diseases. Am. J. Clin. Nutr. 2022, 115, 456–470. [Google Scholar] [CrossRef] [PubMed]
- Eicher-Miller, H.A.; Khanna, N.; Boushey, C.J.; Gelfand, S.B.; Delp, E.J. Temporal dietary patterns derived among the adult participants of NHANES 1999–2004 are associated with diet quality. J. Acad. Nutr. Diet. 2016, 116, 283–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanna, N.; Eicher-Miller, H.A.; Boushey, C.J.; Gelfand, S.B.; Delp, E.J. Temporal Dietary Patterns Using Kernel k-Means Clustering. In Proceedings of the 2011 IEEE International Symposium on Multimedia, Dana Point, CA, USA, 5–7 December 2011; pp. 375–380. [Google Scholar] [CrossRef] [Green Version]
- Huseinovic, E.; Winkvist, A.; Bertz, F.; Forslund, H.B.; Brekke, H.K. Eating frequency, energy intake and body weight during a successful weight loss trial in overweight and obese postpartum women. Eur. J. Clin. Nutr. 2014, 68, 71–76. [Google Scholar] [CrossRef]
- Hutchison, A.T.; Heilbronn, L.K. Metabolic impacts of altering meal frequency and timing—Does when we eat matter? Biochimie 2016, 124, 187–197. [Google Scholar] [CrossRef]
- NHANES-NCHS Research Ethics Review Board Approval. 9 November 2021. Available online: https://www.cdc.gov/nchs/nhanes/irba98.htm (accessed on 2 June 2022).
- AMPM-USDA Automated Multiple-Pass Method: USDA ARS. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/ampm-usda-automated-multiple-pass-method/ (accessed on 2 June 2022).
- NHANES Dietary Data. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/Search/DataPage.aspx?Component=Dietary (accessed on 2 June 2022).
- Fndds Download Databases: USDA ARS. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fndds-download-databases/ (accessed on 2 June 2022).
- Gibney, M.J.; Wolever, T.M.S. Periodicity of eating and human health: Present perspective and future directions. Br. J. Nutr. 1997, 77, S3–S5. [Google Scholar] [CrossRef] [Green Version]
- Anthropometric Reference Data for Children and Adults; United States, 2007–2010. Available online: https://stacks.cdc.gov/view/cdc/12223 (accessed on 2 June 2022).
- Anthropometric Reference Data for Children and Adults; United States, 2011–2014. Available online: https://stacks.cdc.gov/view/cdc/40572 (accessed on 2 June 2022).
- Anthropometric Reference Data for Children and Adults: United States, 2015–2018. Available online: https://stacks.cdc.gov/view/cdc/100478 (accessed on 2 June 2022).
- CDC. Defining Adult Overweight and Obesity. Centers for Disease Control and Prevention, 3 May 2022. Available online: https://www.cdc.gov/obesity/basics/adult-defining.html (accessed on 2 June 2022).
- Bureau, U.C. Poverty Thresholds. Census.gov. Available online: https://www.census.gov/data/tables/time-series/demo/income-poverty/historical-poverty-thresholds.html (accessed on 2 June 2022).
- Leech, R.M.; Worsley, A.; Timperio, A.; McNaughton, S.A. The role of energy intake and energy misreporting in the associations between eating patterns and adiposity. Eur. J. Clin. Nutr. 2018, 72, 142–147. [Google Scholar] [CrossRef]
- Wang, J.B.; Patterson, R.E.; Ang, A.; Emond, J.A.; Shetty, N.; Arab, L. Timing of energy intake during the day is associated with the risk of obesity in adults. J. Hum. Nutr. Diet. 2014, 27, 255–262. [Google Scholar] [CrossRef]
- Murakami, K.; Livingstone, M.B.E. Associations between meal and snack frequency and overweight and abdominal obesity in US children and adolescents from National Health and Nutrition Examination Survey (NHANES) 2003–2012. Br. J. Nutr. 2016, 115, 1819–1829. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; National Academy Press: Washington, DC, USA, 2002. [Google Scholar] [CrossRef]
- NHANES Tutorials-Module 3-Weighting. Available online: https://wwwn.cdc.gov/nchs/nhanes/tutorials/module3.aspx (accessed on 2 June 2022).
- NHANES Tutorials-Module 2-Sample Design. Available online: https://wwwn.cdc.gov/nchs/nhanes/tutorials/module2.aspx (accessed on 2 June 2022).
- Eicher-Miller, H.A.; Gelfand, S.; Hwang, Y.; Delp, E.; Bhadra, A.; Guo, J. Distance metrics optimized for clustering temporal dietary patterning among U.S. adults. Appetite 2020, 144, 104451. [Google Scholar] [CrossRef]
- Dhillon, I.S.; Guan, Y.; Kulis, B. Kernel k-means: Spectral clustering and normalized cuts. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, WA, USA, 22–25 August 2004; pp. 551–556. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Dunn, J.C. Well-Separated Clusters and Optimal Fuzzy Partitions. J. Cybern. 1974, 4, 95–104. [Google Scholar] [CrossRef]
- Bodegard, J.; Sundström, J.; Svennblad, B.; Östgren, C.J.; Nilsson, P.M.; Johansson, G. Changes in body mass index following newly diagnosed type 2 diabetes and risk of cardiovascular mortality: A cohort study of 8486 primary-care patients. Diabetes Metab. 2013, 39, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, A.A.; Lentjes, M.A.H.; Luben, R.N.; Wareham, N.J.; Khaw, K.-T. Changes in waist circumference and risk of all-cause and CVD mortality: Results from the European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk) cohort study. BMC Cardiovasc. Disord. 2019, 19, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietary Guidelines Advisory Committee. Scientific Report of the 2020 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Agriculture and Secretary of Health and Human Services; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2020. [CrossRef]
- Popp, C.J.; Curran, M.; Wang, C.; Prasad, M.; Fine, K.; Gee, A.; Nair, N.; Perdomo, K.; Chen, S.; Hu, L. Temporal Eating Patterns and Eating Windows among Adults with Overweight or Obesity. Nutrients 2021, 13, 4485. [Google Scholar] [CrossRef]
- Garaulet, M.; Gómez-Abellán, P.; Alburquerque-Béjar, J.J.; Lee, Y.-C.; Ordovás, J.M.; Scheer, F.A.J.L. Timing of food intake predicts weight loss effectiveness. Int. J. Obes. 2013, 37, 604–611. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.; Garaulet, M.; Scheer, F.A.J.L. Meal timing and obesity: Interactions with macronutrient intake and chronotype. Int. J. Obes. 2019, 43, 1701–1711. [Google Scholar] [CrossRef]
- Kutsuma, A.; Nakajima, K.; Suwa, K. Potential Association between Breakfast Skipping and Concomitant Late-Night-Dinner Eating with Metabolic Syndrome and Proteinuria in the Japanese Population. Scientifica 2014, 2014, e253581. [Google Scholar] [CrossRef]
- Yoshida, J.; Eguchi, E.; Nagaoka, K.; Ito, T.; Ogino, K. Association of night eating habits with metabolic syndrome and its components: A longitudinal study. BMC Pub. Health 2018, 18, 1366. [Google Scholar] [CrossRef]
- Mazri, F.H.; Manaf, Z.A.; Shahar, S.; Mat Ludin, A.F.; Karim, N.A.; Hazwari, N.D.D.; Kek, Q.W.; Basir, S.M.A.; Arifin, A. Do Temporal Eating Patterns Differ in Healthy versus Unhealthy Overweight/Obese Individuals? Nutrients 2021, 13, 4121. [Google Scholar] [CrossRef]
- Berg, C.; Lappas, G.; Wolk, A.; Strandhagen, E.; Torén, K.; Rosengren, A.; Thelle, D.; Lissner, L. Eating patterns and portion size associated with obesity in a Swedish population. Appetite 2009, 52, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Cleator, J.; Abbott, J.; Judd, P.; Sutton, C.; Wilding, H.J.P. Night eating syndrome: Implications for severe obesity. Nutr. Diabetes 2012, 2, e44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manoogian, E.N.C.; Wei-Shatzel, J.; Panda, S. Assessing temporal eating pattern in free living humans through the myCircadianClock app. Int. J. Obes. 2022, 46, 696–706. [Google Scholar] [CrossRef]
- Lopez-Minguez, J.; Gómez-Abellán, P.; Garaulet, M. Timing of Breakfast, Lunch, and Dinner. Effects on Obesity and Metabolic Risk. Nutrients 2019, 11, 2624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allison, K.C.; Ahima, R.S.; O’Reardon, J.P.; Dinges, D.F.; Sharma, V.; Cummings, D.E.; Heo, M.; Martino, N.S.; Stunkard, A.J. Neuroendocrine Profiles Associated with Energy Intake, Sleep, and Stress in the Night Eating Syndrome. J. Clin. Endocrinol. Metab. 2005, 90, 6214–6217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, H.M.; Allison, K.C.; O’Reardon, J.P.; Birketvedt, G.; Stunkard, A.J. Night eating syndrome among nonobese persons. Int. J. Eat. Disord. 2004, 35, 217–222. [Google Scholar] [CrossRef]
- Leech, R.M.; Worsley, A.; Timperio, A.; McNaughton, S.A. Temporal eating patterns: A latent class analysis approach. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 3. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, M.A.; Maslova, E.; Halldorsson, T.I.; Olsen, S.F. Characterization of Dietary Patterns in the Danish National Birth Cohort in Relation to Preterm Birth. PLoS ONE 2014, 9, e93644. [Google Scholar] [CrossRef] [Green Version]
- Chiu, C.-J.; Chang, M.-L.; Li, T.; Gensler, G.; Taylor, A. Visualization of Dietary Patterns and Their Associations With Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2017, 58, 1404–1410. [Google Scholar] [CrossRef]
- Update on NHANES Dietary Data: Focus on Collection, Release, Analytical Considerations, and Uses to Inform Public Policy|Advances in Nutrition|Oxford Academic. Available online: https://academic.oup.com/advances/article/7/1/121/4524042 (accessed on 16 November 2020).
Cluster K Partitions | |||||
---|---|---|---|---|---|
K = 3 | K = 4 | K = 5 | K = 6 | K = 7 | |
Silhouette Index | 0.27 | 0.25 | 0.19 | 0.18 | 0.15 |
Dunn Index | 0.07 | 0.05 | 0.02 | 0.01 | 0.04 |
Data-Driven TDPs | Cut-Off-Derived TDPs | ||||||||
---|---|---|---|---|---|---|---|---|---|
Characteristics | Total (n) | Cluster 1 1 | Cluster 2 1 | Cluster 3 1 | Cluster 4 1 | Cluster 1 1 | Cluster 2 1 | Cluster 3 1 | Cluster 4 1 |
Total | 17,915 | 8617 (48.1) | 3185 (17.8) | 3019 (16.8) | 3094 (17.3) | 7383 (41.2) | 3242 (18.1) | 3459 (19.3) | 3831 (21.4) |
Survey year | p-value 2 = 0.43 | p-value 2 = 0.17 | |||||||
2007–2008 | 3591 (20.0) | 1755 (20.4) | 648 (20.3) | 571 (18.9) | 617 (19.9) | 1518 (20.6) | 670 (20.7) | 651 (18.8) | 752 (19.6) |
2009–2010 | 3882 (21.7) | 1898 (22.0) | 692 (21.7) | 644 (21.3) | 648 (20.9) | 1631 (22.1) | 693 (21.4) | 743 (21.5) | 815 (21.3) |
2011–2012 | 3441 (19.2) | 1594 (18.5) | 603 (18.9) | 619 (20.5) | 625 (20.2) | 1361 (18.4) | 604 (18.6) | 711 (20.6) | 765 (20.0) |
2013–2014 | 3579 (20.0) | 1757 (20.4) | 628 (19.7) | 606 (20.1) | 588 (19.0) | 1494 (20.2) | 657 (20.3) | 690 (19.9) | 738 (19.3) |
2015–2016 | 3422 (19.1) | 1613 (18.7) | 614 (19.3) | 579 (19.2) | 616 (19.9) | 1379 (18.7) | 618 (19.1) | 664 (19.2) | 761 (19.9) |
Sex | p-value 2 < 0.0001 * | p-value 2 < 0.0001 * | |||||||
Male | 8826 (49.3) | 2884 (33.5) | 1943 (61.0) | 1987 (65.8) | 2012 (65.0) | 2346 (31.8) | 1891 (58.3) | 2190 (63.3) | 2399 (62.6) |
Female | 9089 (50.7) | 5733 (66.5) | 1242 (39.0) | 1032 (34.2) | 1082 (35.0) | 5037 (68.2) | 1351 (41.7) | 1269 (36.7) | 1432 (37.4) |
Race/Ethnicity | p-value 2 < 0.0001 * | p-value 2 < 0.0001 * | |||||||
Mexican American and Other Hispanic | 4838 (27.0) | 2341 (27.2) | 896 (28.1) | 739 (24.5) | 862 (27.9) | 1973 (26.7) | 929 (28.6) | 826 (23.9) | 1110 (29.0) |
Non-Hispanic white | 7218 (40.3) | 3310 (38.4) | 1425 (44.7) | 1262 (41.8) | 1221 (39.5) | 2901 (39.3) | 1397 (43.1) | 1432 (41.4) | 1488 (38.8) |
Non-Hispanic black and Other | 5859 (32.7) | 2966 (34.4) | 864 (27.1) | 1018 (33.7) | 1011 (32.7) | 2509 (34.0) | 916 (28.3) | 1201 (34.7) | 1233 (32.1) |
Age group (year) | p-value 2 < 0.0001 * | p-value 2 < 0.0001 * | |||||||
20–34 | 5761 (32.2) | 2478 (28.8) | 970 (30.5) | 1147 (38.0) | 1166 (37.7) | 2071 (28.1) | 1004 (31.0) | 1348 (39.0) | 1338 (34.9) |
35–49 | 5920 (33.0) | 2787 (32.3) | 1120 (35.2) | 978 (32.4) | 1035 (33.5) | 2364 (32.0) | 1125 (34.7) | 1107 (32.0) | 1324 (34.6) |
50–65 | 6234 (34.8) | 3352 (38.9) | 1095 (34.4) | 894 (29.6) | 893 (28.9) | 2948 (39.9) | 1113 (34.3) | 1004 (29.0) | 1169 (30.5) |
Household PIR | p-value 2 = 0.013 * | p-value 2 = 0.0005 * | |||||||
0–0.99 | 4154 (23.2) | 2029 (23.5) | 739 (23.2) | 660 (21.9) | 726 (23.5) | 1729 (23.4) | 763 (23.5) | 744 (21.5) | 918 (24.0) |
1.00–2.99 | 4525 (25.3) | 2234 (25.9) | 802 (25.2) | 716 (23.7) | 773 (25.0) | 1908 (25.8) | 805 (24.8) | 845 (24.4) | 967 (25.2) |
2.00–2.99 | 2567 (14.3) | 1205 (14.0) | 455 (14.3) | 415 (13.7) | 492 (15.9) | 1027 (13.9) | 468 (14.4) | 454 (13.1) | 618 (16.1) |
3.00–3.99 | 1946 (10.9) | 923 (10.7) | 360 (11.3) | 354 (11.7) | 309 (10.0) | 790 (10.7) | 350 (10.8) | 407 (11.8) | 399 (10.4) |
4.00–4.99 | 1425 (8.0) | 649 (7.5) | 270 (8.5) | 253 (8.4) | 253 (8.2) | 566 (7.7) | 278 (8.6) | 292 (8.4) | 289 (7.5) |
≥5.00 | 3298 (18.4) | 1577 (18.3) | 559 (17.6) | 621 (20.6) | 541 (17.5) | 1363 (18.5) | 578 (17.8) | 717 (20.7) | 640 (16.7) |
Adjusted Models 1 | n (%) | BMI (kg/m2) 2 | β 3 ± SE Compared to Cluster 2 | 95% CI | p-Value | β 3 ± SE Compared to Cluster 3 | 95% CI | p-Value | β 3 ± SE Compared to Cluster 4 | 95% CI | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|
Data-Driven Methods | |||||||||||
Cluster 1 | 8617 (48.1) | 29.1 (0.1) | −3.0 ± 0.2 | −3.7, −2.4 | <0.0001 * | −3.3 ± 0.2 | −3.8, −2.7 | <0.0001 * | −3.3 ± 0.2 | −3.9, −2.8 | <0.0001 * |
Cluster 2 | 3185 (17.8) | 29.5 (0.1) | −0.2 ± 0.2 | −0.8, 0.4 | 0.73 | −0.3 ± 0.2 | −0.9, 0.3 | 0.64 | |||
Cluster 3 | 3019 (16.8) | 29.2 (0.1) | −0.0 ± 0.2 | −0.5, 0.4 | 0.99 | ||||||
Cluster 4 | 3094 (17.3) | 29.3 (0.1) | |||||||||
Cut-Off Methods | |||||||||||
Cluster 1 | 7383 (41.2) | 29.1 (0.1) | −2.9 ± 0.2 | −3.5, −2.4 | <0.0001 * | −3.1 ± 0.2 | −3.6, −2.7 | <0.0001 * | −2.9 ± 0.2 | −3.4, −2.4 | <0.0001 * |
Cluster 2 | 3242 (18.1) | 29.5 (0.1) | −0.2 ± 0.2 | −0.7, 0.3 | 0.68 | −0.0 ± 0.2 | −0.6, 0.5 | 0.99 | |||
Cluster 3 | 3459 (19.3) | 29.4 (0.1) | 0.2 ± 0.2 | −0.2, 0.6 | 0.59 | ||||||
Cluster 4 | 3831 (21.4) | 29.1 (0.1) |
Adjusted Models 1 | n (%) | WC (cm) 2 | β 3 ± SE Compared to Cluster 2 | 95% CI | p-Value | β 3 ± SE Compared to Cluster 3 | 95% CI | p-Value | β 3 ± SE Compared to Cluster 4 | 95% CI | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|
Data-Driven Methods | |||||||||||
Cluster 1 | 8617 (48.1) | 97.7 (0.2) | −7.4 ± 0.6 | −9.0, −5.9 | <0.0001 * | −8.2 ± 0.5 | −9.5, −6.9 | <0.0001 * | −8.2 ± 0.5 | −9.4, −6.9 | <0.0001 * |
Cluster 2 | 3185 (17.8) | 100.1 (0.3) | −0.7 ± 0.6 | −2.3, 0.7 | 0.55 | −13.4 ± 1.7 | −2.2, 0.8 | 0.62 | |||
Cluster 3 | 3019 (16.8) | 99.4 (0.3) | −0.1 ± 0.4 | −1.1, 1.2 | 0.99 | ||||||
Cluster 4 | 3094 (17.3) | 99.3 (0.3) | |||||||||
Cut-Off Methods | |||||||||||
Cluster 1 | 7383 (41.2) | 97.5 (0.2) | −7.3 ± 0.5 | −8.6, −5.9 | <0.0001 * | −7.9 ± 0.4 | −8.9, −6.9 | <0.0001 * | −7.5 ± 0.4 | −8.7, −6.4 | <0.0001 * |
Cluster 2 | 3242 (18.1) | 100.0 (0.3) | −0.7 ± 0.5 | −2.0, 0.7 | 0.56 | −0.3 ± 0.5 | −1.7, 1.2 | 0.97 | |||
Cluster 3 | 3459 (19.3) | 99.6 (0.3) | 0.4± 0.4 | −0.6, 1.4 | 0.75 | ||||||
Cluster 4 | 3831 (21.4) | 99.1 (0.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.; Guo, J.; Li, Y.; Gelfand, S.B.; Delp, E.J.; Bhadra, A.; Richards, E.A.; Hennessy, E.; Eicher-Miller, H.A. The Discovery of Data-Driven Temporal Dietary Patterns and a Validation of Their Description Using Energy and Time Cut-Offs. Nutrients 2022, 14, 3483. https://doi.org/10.3390/nu14173483
Lin L, Guo J, Li Y, Gelfand SB, Delp EJ, Bhadra A, Richards EA, Hennessy E, Eicher-Miller HA. The Discovery of Data-Driven Temporal Dietary Patterns and a Validation of Their Description Using Energy and Time Cut-Offs. Nutrients. 2022; 14(17):3483. https://doi.org/10.3390/nu14173483
Chicago/Turabian StyleLin, Luotao, Jiaqi Guo, Yitao Li, Saul B. Gelfand, Edward J. Delp, Anindya Bhadra, Elizabeth A. Richards, Erin Hennessy, and Heather A. Eicher-Miller. 2022. "The Discovery of Data-Driven Temporal Dietary Patterns and a Validation of Their Description Using Energy and Time Cut-Offs" Nutrients 14, no. 17: 3483. https://doi.org/10.3390/nu14173483
APA StyleLin, L., Guo, J., Li, Y., Gelfand, S. B., Delp, E. J., Bhadra, A., Richards, E. A., Hennessy, E., & Eicher-Miller, H. A. (2022). The Discovery of Data-Driven Temporal Dietary Patterns and a Validation of Their Description Using Energy and Time Cut-Offs. Nutrients, 14(17), 3483. https://doi.org/10.3390/nu14173483