Pretreatment Glasgow Prognostic Score Correlated with Serum Histidine Level and Three-Year Mortality of Patients with Locally Advanced Head and Neck Squamous Cell Carcinoma and Optimal Performance Status
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Recruitment
2.2. Clinicopathological Data
2.3. Biochemical Data and Blood NIBs
2.4. Body Composition Measurements
2.5. Ultra-Performance Liquid Chromatography (UPLC)-Based Measurement
2.6. Statistical Analysis
3. Results
3.1. Comparison between Patients with LAHNSCC and Control Participants
3.2. Characteristics of Patients with LAHNSCC before CCRT
3.3. Correlation among the Pretreatment Levels of Biochemical and Anthropometric Variables, NIBs, DXA-Related Measurements, and Serum Metabolites in Patients with LAHNSCC
3.4. Pretreatment GPS Independently Correlated with 3-Year Mortality Rate in Patients with LAHNSCC
3.5. Pretreatment GPS Correlated with Age and Histidine Levels in Patients with LAHNSCC Undergoing CCRT
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Legrand, A.J.; Poletto, M.; Pankova, D.; Clementi, E.; Moore, J.; Castro-Giner, F.; Ryan, A.J.; O’Neill, E.; Markkanen, E.; Dianov, G.L. Persistent DNA strand breaks induce a CAF-like phenotype in normal fibroblasts. Oncotarget 2018, 9, 13666–13681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshadwi, A.; Nadershah, M.; Carlson, E.R.; Young, L.S.; Burke, P.A.; Daley, B.J. Nutritional considerations for head and neck cancer patients: A review of the literature. J. Oral Maxillofac. Surg. 2013, 71, 1853–1860. [Google Scholar] [CrossRef] [PubMed]
- Gorenc, M.; Kozjek, N.R.; Strojan, P. Malnutrition and cachexia in patients with head and neck cancer treated with (chemo)radiotherapy. Rep. Pract. Oncol. Radiother. 2015, 20, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.; Senesse, P.; Gioulbasanis, I.; Antoun, S.; Bozzetti, F.; Deans, C.; Strasser, F.; Thoresen, L.; Jagoe, R.T.; Chasen, M.; et al. Diagnostic criteria for the classification of cancer-associated weight loss. J. Clin. Oncol. 2015, 33, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Ravasco, P.; Monteiro-Grillo, I.; Marques Vidal, P.; Camilo, M.E. Impact of nutrition on outcome: A prospective randomized controlled trial in patients with head and neck cancer undergoing radiotherapy. Head Neck 2005, 27, 659–668. [Google Scholar] [CrossRef]
- Capuano, G.; Gentile, P.C.; Bianciardi, F.; Tosti, M.; Palladino, A.; Di Palma, M. Prevalence and influence of malnutrition on quality of life and performance status in patients with locally advanced head and neck cancer before treatment. Support Care Cancer 2010, 18, 433–437. [Google Scholar] [CrossRef]
- Orell-Kotikangas, H.; Osterlund, P.; Makitie, O.; Saarilahti, K.; Ravasco, P.; Schwab, U.; Makitie, A.A. Cachexia at diagnosis is associated with poor survival in head and neck cancer patients. Acta Otolaryngol. 2017, 137, 778–785. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Arends, J. The causes and consequences of cancer-associated malnutrition. Eur. J. Oncol. Nurs. 2005, 9, S51–S63. [Google Scholar] [CrossRef]
- Agarwal, E.; Ferguson, M.; Banks, M.; Batterham, M.; Bauer, J.; Capra, S.; Isenring, E. Nutrition care practices in hospital wards: Results from the Nutrition Care Day Survey 2010. Clin. Nutr. 2012, 31, 995–1001. [Google Scholar] [CrossRef] [Green Version]
- Caccialanza, R.; Cereda, E.; Pinto, C.; Cotogni, P.; Farina, G.; Gavazzi, C.; Gandini, C.; Nardi, M.; Zagonel, V.; Pedrazzoli, P. Awareness and consideration of malnutrition among oncologists: Insights from an exploratory survey. Nutrition 2016, 32, 1028–1032. [Google Scholar] [CrossRef]
- Spiro, A.; Baldwin, C.; Patterson, A.; Thomas, J.; Andreyev, H.J. The views and practice of oncologists towards nutritional support in patients receiving chemotherapy. Br. J. Cancer 2006, 95, 431–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muscaritoli, M.; Arends, J.; Aapro, M. From guidelines to clinical practice: A roadmap for oncologists for nutrition therapy for cancer patients. Ther. Adv. Med. Oncol. 2019, 11, 1758835919880084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, P.H.; Yeh, K.Y.; Huang, J.S.; Lai, C.H.; Wu, T.H.; Lan, Y.J.; Tsai, J.C.; Chen, E.Y.; Yang, S.W.; Wang, C.H. Pretreatment performance status and nutrition are associated with early mortality of locally advanced head and neck cancer patients undergoing concurrent chemoradiation. Eur. Arch. Otorhinolaryngol. 2013, 270, 1909–1915. [Google Scholar] [CrossRef] [PubMed]
- Dixon, L.; Garcez, K.; Lee, L.W.; Sykes, A.; Slevin, N.; Thomson, D. Ninety day mortality after radical radiotherapy for head and neck cancer. Clin. Oncol. (R Coll. Radiol.) 2017, 29, 835–840. [Google Scholar] [CrossRef]
- Schlumpf, M.; Fischer, C.; Naehrig, D.; Rochlitz, C.; Buess, M. Results of concurrent radio-chemotherapy for the treatment of head and neck squamous cell carcinoma in everyday clinical practice with special reference to early mortality. BMC Cancer 2013, 13, 610. [Google Scholar] [CrossRef]
- Capuano, G.; Grosso, A.; Gentile, P.C.; Battista, M.; Bianciardi, F.; Di Palma, A.; Pavese, I.; Satta, F.; Tosti, M.; Palladino, A.; et al. Influence of weight loss on outcomes in patients with head and neck cancer undergoing concomitant chemoradiotherapy. Head Neck 2008, 30, 503–508. [Google Scholar] [CrossRef]
- Bruixola, G.; Caballero, J.; Papaccio, F.; Petrillo, A.; Iranzo, A.; Civera, M.; Moriana, M.; Bosch, N.; Maronas, M.; Gonzalez, I.; et al. Prognostic Nutritional Index as an independent prognostic factor in locoregionally advanced squamous cell head and neck cancer. ESMO Open 2018, 3, e000425. [Google Scholar] [CrossRef] [Green Version]
- Dechaphunkul, T.; Martin, L.; Alberda, C.; Olson, K.; Baracos, V.; Gramlich, L. Malnutrition assessment in patients with cancers of the head and neck: A call to action and consensus. Crit. Rev. Oncol. Hematol. 2013, 88, 459–476. [Google Scholar] [CrossRef]
- Lin, Y.C.; Wang, C.H.; Ling, H.H.; Pan, Y.P.; Chang, P.H.; Chou, W.C.; Chen, F.P.; Yeh, K.Y. Inflammation status and body composition predict two-year mortality of patients with locally advanced head and neck squamous cell carcinoma under provision of recommended energy intake during concurrent chemoradiotherapy. Biomedicines 2022, 10, 388. [Google Scholar] [CrossRef]
- Mascarella, M.A.; Mannard, E.; Silva, S.D.; Zeitouni, A. Neutrophil-to-lymphocyte ratio in head and neck cancer prognosis: A systematic review and meta-analysis. Head Neck 2018, 40, 1091–1100. [Google Scholar] [CrossRef]
- Lin, Y.C.; Ling, H.H.; Chang, P.H.; Pan, Y.P.; Wang, C.H.; Chou, W.C.; Chen, F.P.; Yeh, K.Y. Comorbidity, Radiation duration, and pretreatment body muscle mass predict early treatment failure in Taiwanese patients with locally advanced oral cavity squamous cell carcinoma after completion of adjuvant concurrent chemoradiotherapy. Diagnostics 2021, 11, 1203. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.H.; Wang, C.H.; Chen, E.Y.; Yang, S.W.; Chou, W.C.; Hsieh, J.C.; Kuan, F.C.; Yeh, K.Y. Glasgow prognostic score after concurrent chemoradiotherapy is a prognostic factor in advanced head and neck cancer. Chin. J. Cancer Res. 2017, 29, 172–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iuchi, H.; Kyutoku, T.; Ito, K.; Matsumoto, H.; Ohori, J.; Yamashita, M. Impacts of inflammation-based prognostic scores on survival in patients with hypopharyngeal squamous cell carcinoma. OTO Open 2020, 4, 2473974X20978137. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, M.; Yasumatsu, R.; Masuda, M.; Toh, S.; Wakasaki, T.; Hashimoto, K.; Jiromaru, R.; Manako, T.; Nakagawa, T. Inflammation-based prognostic score as a prognostic biomarker in patients with recurrent and/or metastatic head and neck squamous cell carcinoma treated with Nivolumab therapy. In Vivo 2022, 36, 907–917. [Google Scholar] [CrossRef]
- Nakayama, M.; Tabuchi, K.; Hara, A. Clinical utility of the modified Glasgow prognostic score in patients with advanced head and neck cancer. Head Neck 2015, 37, 1745–1749. [Google Scholar] [CrossRef]
- Ueki, Y.; Takahashi, T.; Ota, H.; Shodo, R.; Yamazaki, K.; Horii, A. Predicting the treatment outcome of nivolumab in recurrent or metastatic head and neck squamous cell carcinoma: Prognostic value of combined performance status and modified Glasgow prognostic score. Eur. Arch. Otorhinolaryngol. 2020, 277, 2341–2347. [Google Scholar] [CrossRef]
- Chikuie, N.; Hamamoto, T.; Ueda, T.; Taruya, T.; Kono, T.; Furuie, H.; Ishino, T.; Takeno, S. Baseline Neutrophil-to-lymphocyte ratio and Glasgow prognostic score are associated with clinical outcome in patients with recurrent or metastatic head and neck squamous cell carcinoma treated with Nivolumab. Acta Med. Okayama 2021, 75, 335–343. [Google Scholar] [CrossRef]
- Shin, J.M.; Kamarajan, P.; Fenno, J.C.; Rickard, A.H.; Kapila, Y.L. Metabolomics of head and neck cancer: A mini-review. Front. Physiol. 2016, 7, 526. [Google Scholar] [CrossRef] [Green Version]
- Tiziani, S.; Lopes, V.; Gunther, U.L. Early stage diagnosis of oral cancer using 1H NMR-based metabolomics. Neoplasia 2009, 11, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Yonezawa, K.; Nishiumi, S.; Kitamoto-Matsuda, J.; Fujita, T.; Morimoto, K.; Yamashita, D.; Saito, M.; Otsuki, N.; Irino, Y.; Shinohara, M.; et al. Serum and tissue metabolomics of head and neck cancer. Cancer Genom. Proteom. 2013, 10, 233–238. [Google Scholar]
- Zhou, J.; Xu, B.; Huang, J.; Jia, X.; Xue, J.; Shi, X.; Xiao, L.; Li, W. 1H NMR-based metabonomic and pattern recognition analysis for detection of oral squamous cell carcinoma. Clin. Chim. Acta 2009, 401, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.X.; Chen, T.L.; Qiu, Y.P.; Shi, P.; Zheng, X.J.; Su, M.M.; Zhao, A.H.; Zhou, Z.T.; Jia, W. Urine Metabolite Profiling Offers Potential Early Diagnosis of Oral Cancer. Metabolomics 2012, 8, 220–231. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.H.; Cheng, M.L.; Liu, M.H. Simplified plasma essential amino acid-based profiling provides metabolic information and prognostic value additive to traditional risk factors in heart failure. Amino Acids 2018, 50, 1739–1748. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Cheng, M.L.; Liu, M.H. Amino Acid-Based Metabolic Panel Provides Robust Prognostic value additive to B-natriuretic peptide and traditional risk factors in heart failure. Dis. Markers 2018, 2018, 3784589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.S.; Lin, J.Y.; Chen, W.S.; Liu, M.H.; Cheng, C.W.; Cheng, M.L.; Wang, C.H. Phenylalanine- and leucine-defined metabolic types identify high mortality risk in patients with severe infection. Int. J. Infect. Dis. 2019, 85, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Hsu, H.J.; Yen, C.H.; Wu, I.W.; Liu, M.H.; Cheng, H.Y.; Lin, Y.T.; Lee, C.C.; Hsu, K.H.; Sun, C.Y.; Chen, C.Y.; et al. The association between low protein diet and body composition, muscle function, inflammation, and amino acid-based metabolic profile in chronic kidney disease stage 3-5 patients. Clin. Nutr. ESPEN 2021, 46, 405–415. [Google Scholar] [CrossRef]
- Kuo, W.K.; Liu, Y.C.; Chu, C.M.; Hua, C.C.; Huang, C.Y.; Liu, M.H.; Wang, C.H. Amino acid-based metabolic indexes identify patients with chronic obstructive pulmonary disease and further discriminates patients in advanced BODE stages. Int. J. Chron. Obstruct. Pulmon. Dis. 2019, 14, 2257–2266. [Google Scholar] [CrossRef] [Green Version]
- Boje, C.R.; Dalton, S.O.; Primdahl, H.; Kristensen, C.A.; Andersen, E.; Johansen, J.; Andersen, L.J.; Overgaard, J. Evaluation of comorbidity in 9388 head and neck cancer patients: A national cohort study from the DAHANCA database. Radiother. Oncol. 2014, 110, 91–97. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Read, J.A.; Choy, S.T.; Beale, P.J.; Clarke, S.J. Evaluation of nutritional and inflammatory status of advanced colorectal cancer patients and its correlation with survival. Nutr. Cancer 2006, 55, 78–85. [Google Scholar] [CrossRef]
- Araki, K.; Ito, Y.; Fukada, I.; Kobayashi, K.; Miyagawa, Y.; Imamura, M.; Kira, A.; Takatsuka, Y.; Egawa, C.; Suwa, H.; et al. Predictive impact of absolute lymphocyte counts for progression-free survival in human epidermal growth factor receptor 2-positive advanced breast cancer treated with pertuzumab and trastuzumab plus eribulin or nab-paclitaxel. BMC Cancer 2018, 18, 982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, J.; Capra, S.; Ferguson, M. Use of the scored patient-generated subjective global assessment (PG-SGA) as a nutrition assessment tool in patients with cancer. Eur. J. Clin. Nutr. 2002, 56, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.P.; Chang, P.H.; Fan, C.W.; Tseng, W.K.; Huang, J.S.; Chen, C.H.; Chou, W.C.; Wang, C.H.; Yeh, K.Y. Relationship between pre-treatment nutritional status, serum glutamine, arginine levels and clinicopathological features in Taiwan colorectal cancer patients. Asia Pac. J. Clin. Nutr. 2015, 24, 598–604. [Google Scholar] [CrossRef]
- Hangartner, T.N.; Warner, S.; Braillon, P.; Jankowski, L.; Shepherd, J. The official positions of the International Society for Clinical Densitometry: Acquisition of dual-energy X-ray absorptiometry body composition and considerations regarding analysis and repeatability of measures. J. Clin. Densitom. 2013, 16, 520–536. [Google Scholar] [CrossRef] [PubMed]
- Franks, P.W.; Jablonski, K.A.; Delahanty, L.M.; McAteer, J.B.; Kahn, S.E.; Knowler, W.C.; Florez, J.C. Assessing gene-treatment interactions at the FTO and INSIG2 loci on obesity-related traits in the Diabetes Prevention Program. Diabetologia 2008, 51, 2214–2223. [Google Scholar] [CrossRef] [Green Version]
- Pappa-Louisi, A.; Nikitas, P.; Agrafiotou, P.; Papageorgiou, A. Optimization of separation and detection of 6-aminoquinolyl derivatives of amino acids by using reversed-phase liquid chromatography with on line UV, fluorescence and electrochemical detection. Anal. Chim. Acta 2007, 593, 92–97. [Google Scholar] [CrossRef]
- Couch, M.E.; Dittus, K.; Toth, M.J.; Willis, M.S.; Guttridge, D.C.; George, J.R.; Chang, E.Y.; Gourin, C.G.; Der-Torossian, H. Cancer cachexia update in head and neck cancer: Pathophysiology and treatment. Head Neck 2015, 37, 1057–1072. [Google Scholar] [CrossRef]
- Lonbro, S.; Dalgas, U.; Primdahl, H.; Johansen, J.; Nielsen, J.L.; Overgaard, J.; Overgaard, K. Lean body mass and muscle function in head and neck cancer patients and healthy individuals—Results from the DAHANCA 25 study. Acta Oncol. 2013, 52, 1543–1551. [Google Scholar] [CrossRef] [Green Version]
- Ghadjar, P.; Hayoz, S.; Zimmermann, F.; Bodis, S.; Kaul, D.; Badakhshi, H.; Bernier, J.; Studer, G.; Plasswilm, L.; Budach, V.; et al. Impact of weight loss on survival after chemoradiation for locally advanced head and neck cancer: Secondary results of a randomized phase III trial (SAKK 10/94). Radiat. Oncol. 2015, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Correia, M.I.; Waitzberg, D.L. The impact of malnutrition on morbidity, mortality, length of hospital stay and costs evaluated through a multivariate model analysis. Clin. Nutr. 2003, 22, 235–239. [Google Scholar] [CrossRef]
- Degens, H.; Gayan-Ramirez, G.; van Hees, H.W. Smoking-induced skeletal muscle dysfunction: From evidence to mechanisms. Am. J. Respir. Crit. Care Med. 2015, 191, 620–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.C.; Cheng, A.J.; Lee, L.Y.; Huang, Y.C.; Chang, J.T. Multifaceted mechanisms of areca nuts in oral carcinogenesis: The molecular pathology from precancerous condition to malignant transformation. J. Cancer 2019, 10, 4054–4062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, B.A.; Wulff-Burchfield, E.; Ghiam, M.; Bond, S.M.; Deng, J. Chronic systemic symptoms in head and neck cancer patients. J. Nat. Cancer Inst. Monogr. 2019, 2019, lgz004. [Google Scholar] [CrossRef] [PubMed]
- Ralli, M.; Grasso, M.; Gilardi, A.; Ceccanti, M.; Messina, M.P.; Tirassa, P.; Fiore, M.; Altissimi, G.; Salazano, A.F.; De Vincentiis, M.; et al. The role of cytokines in head and neck squamous cell carcinoma: A review. Clin. Ter. 2020, 171, e268–e274. [Google Scholar] [CrossRef]
- Simon, L.; Jolley, S.E.; Molina, P.E. Alcoholic myopathy: Pathophysiologic mechanisms and clinical implications. Alcohol Res. 2017, 38, 207–217. [Google Scholar]
- Takenaka, Y.; Yamamoto, M.; Nakahara, S.; Yamamoto, Y.; Yasui, T.; Hanamoto, A.; Takemoto, N.; Fukusumi, T.; Michiba, T.; Cho, H.; et al. Factors associated with malnutrition in patients with head and neck cancer. Acta Otolaryngol. 2014, 134, 1079–1085. [Google Scholar] [CrossRef]
- Baxi, S.S.; Pinheiro, L.C.; Patil, S.M.; Pfister, D.G.; Oeffinger, K.C.; Elkin, E.B. Causes of death in long-term survivors of head and neck cancer. Cancer 2014, 120, 1507–1513. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.J.; Chang, J.T.; Liao, C.T.; Wang, H.M.; Yen, T.C.; Chiu, C.C.; Lu, Y.C.; Li, H.F.; Cheng, A.J. Head and neck cancer in the betel quid chewing area: Recent advances in molecular carcinogenesis. Cancer Sci. 2008, 99, 1507–1514. [Google Scholar] [CrossRef]
- Mulasi, U.; Vock, D.M.; Kuchnia, A.J.; Jha, G.; Fujioka, N.; Rudrapatna, V.; Patel, M.R.; Teigen, L.; Earthman, C.P. Malnutrition identified by the Academy of Nutrition and Dietetics and American Society for Parenteral and Enteral Nutrition consensus criteria and other bedside tools is highly prevalent in a aample of individuals undergoing treatment for head and neck cancer. JPEN J. Parenter. Enteral. Nutr. 2018, 42, 139–147. [Google Scholar] [CrossRef]
- McMillan, D.C. The systemic inflammation-based Glasgow prognostic score: A decade of experience in patients with cancer. Cancer Treat. Rev. 2013, 39, 534–540. [Google Scholar] [CrossRef]
- Griffin, J.L.; Atherton, H.; Shockcor, J.; Atzori, L. Metabolomics as a tool for cardiac research. Nat. Rev. Cardiol. 2011, 8, 630–643. [Google Scholar] [CrossRef] [PubMed]
- Hakuno, D.; Hamba, Y.; Toya, T.; Adachi, T. Plasma amino acid profiling identifies specific amino acid associations with cardiovascular function in patients with systolic heart failure. PLoS ONE 2015, 10, e0117325. [Google Scholar] [CrossRef]
- Cheng, M.L.; Wang, C.H.; Shiao, M.S.; Liu, M.H.; Huang, Y.Y.; Huang, C.Y.; Mao, C.T.; Lin, J.F.; Ho, H.Y.; Yang, N.I. Metabolic disturbances identified in plasma are associated with outcomes in patients with heart failure: Diagnostic and prognostic value of metabolomics. J. Am. Coll. Cardiol. 2015, 65, 1509–1520. [Google Scholar] [CrossRef] [Green Version]
- Ganapathy, V.; Thangaraju, M.; Prasad, P.D. Nutrient transporters in cancer: Relevance to Warburg hypothesis and beyond. Pharmacol. Ther. 2009, 121, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, Y.; Li, D.; Fu, L.; Zhang, X.; Bao, Y.; Zheng, L. Review of the correlation of LAT1 with diseases: Mechanism and treatment. Front. Chem. 2020, 8, 564809. [Google Scholar] [CrossRef]
- Kim, D.K.; Ahn, S.G.; Park, J.C.; Kanai, Y.; Endou, H.; Yoon, J.H. Expression of L-type amino acid transporter 1 (LAT1) and 4F2 heavy chain (4F2hc) in oral squamous cell carcinoma and its precusor lesions. Anticancer Res. 2004, 24, 1671–1675. [Google Scholar]
- Feng, L.; Li, W.; Liu, Y.; Jiang, W.D.; Kuang, S.Y.; Wu, P.; Jiang, J.; Tang, L.; Tang, W.N.; Zhang, Y.A.; et al. Protective role of phenylalanine on the ROS-induced oxidative damage, apoptosis and tight junction damage via Nrf2, TOR and NF-kappaB signalling molecules in the gill of fish. Fish Shellfish Immunol. 2017, 60, 185–196. [Google Scholar] [CrossRef]
- Iwasa, M.; Kobayashi, Y.; Mifuji-Moroka, R.; Hara, N.; Miyachi, H.; Sugimoto, R.; Tanaka, H.; Fujita, N.; Gabazza, E.C.; Takei, Y. Branched-chain amino acid supplementation reduces oxidative stress and prolongs survival in rats with advanced liver cirrhosis. PLoS ONE 2013, 8, e70309. [Google Scholar] [CrossRef] [Green Version]
- Son, D.O.; Satsu, H.; Shimizu, M. Histidine inhibits oxidative stress- and TNF-alpha-induced interleukin-8 secretion in intestinal epithelial cells. FEBS Lett. 2005, 579, 4671–4677. [Google Scholar] [CrossRef] [Green Version]
- Ouali, A.; Gagaoua, M.; Boudida, Y.; Becila, S.; Boudjellal, A.; Herrera-Mendez, C.H.; Sentandreu, M.A. Biomarkers of meat tenderness: Present knowledge and perspectives in regards to our current understanding of the mechanisms involved. Meat Sci. 2013, 95, 854–870. [Google Scholar] [CrossRef]
- Peterson, J.W.; King, D.; Ezell, E.L.; Rogers, M.; Gessell, D.; Hoffpauer, J.; Reuss, L.; Chopra, A.K.; Gorenstein, D. Cholera toxin-induced PGE(2) activity is reduced by chemical reaction with L-histidine. Biochim. Biophys. Acta 2001, 1537, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Jabbarzadeh, E.; Starnes, T.; Khan, Y.M.; Jiang, T.; Wirtel, A.J.; Deng, M.; Lv, Q.; Nair, L.S.; Doty, S.B.; Laurencin, C.T. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: A combined gene therapy-cell transplantation approach. Proc. Natl. Acad. Sci. USA 2008, 105, 11099–11104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, K.G.; von Zeidler, S.V.; Lamas, A.Z.; Podesta, J.R.; Sena, A.; Souza, E.D.; Lenzi, J.; Lemos, E.M.; Gouvea, S.A.; Bissoli, N.S. Relationship of inflammatory markers and pain in patients with head and neck cancer prior to anticancer therapy. Braz. J. Med. Biol. Res. 2014, 47, 600–604. [Google Scholar] [CrossRef] [PubMed]
- Belinskaia, D.A.; Voronina, P.A.; Batalova, A.A.; Goncharov, N.V. Serum albumin. Encyclopedia 2021, 1, 9. [Google Scholar] [CrossRef]
- Neinast, M.; Murashige, D.; Arany, Z. Branched chain amino acids. Ann. Rev. Physiol. 2019, 81, 139–164. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Wang, Y.; Luo, W. Multifaceted role of branched-chain amino acid metabolism in cancer. Oncogene 2020, 39, 6747–6756. [Google Scholar] [CrossRef]
- Duan, Y.; Li, F.; Li, Y.; Tang, Y.; Kong, X.; Feng, Z.; Anthony, T.G.; Watford, M.; Hou, Y.; Wu, G.; et al. The role of leucine and its metabolites in protein and energy metabolism. Amino Acids 2016, 48, 41–51. [Google Scholar] [CrossRef]
- Zhou, Y.; Jetton, T.L.; Goshorn, S.; Lynch, C.J.; She, P. Transamination is required for {alpha}-ketoisocaproate but not leucine to stimulate insulin secretion. J. Biol. Chem. 2010, 285, 33718–33726. [Google Scholar] [CrossRef] [Green Version]
- Ohm, J.E.; Gabrilovich, D.I.; Sempowski, G.D.; Kisseleva, E.; Parman, K.S.; Nadaf, S.; Carbone, D.P. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 2003, 101, 4878–4886. [Google Scholar] [CrossRef]
- Salgado, R.; Vermeulen, P.B.; Benoy, I.; Weytjens, R.; Huget, P.; Van Marck, E.; Dirix, L.Y. Platelet number and interleukin-6 correlate with VEGF but not with bFGF serum levels of advanced cancer patients. Br. J. Cancer 1999, 80, 892–897. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Song, M.; Zhang, B.; Zhang, Y. Reactive oxygen species regulate T cell immune response in the tumor microenvironment. Oxid. Med. Cell Longev. 2016, 2016, 1580967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasry, W.H.S.; Martin, C.K. Intersecting mechanisms of hypoxia and prostaglandin E2-mediated inflammation in the comparative biology of oral squamous cell carcinoma. Front. Oncol. 2021, 11, 539361. [Google Scholar] [CrossRef] [PubMed]
- Poirault-Chassac, S.; Nivet-Antoine, V.; Houvert, A.; Kauskot, A.; Lauret, E.; Lai-Kuen, R.; Dusanter-Fourt, I.; Baruch, D. Mitochondrial dynamics and reactive oxygen species initiate thrombopoiesis from mature megakaryocytes. Blood Adv. 2021, 5, 1706–1718. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Druhan, L.J.; Zweier, J.L. Reactive oxygen and nitrogen species regulate inducible nitric oxide synthase function shifting the balance of nitric oxide and superoxide production. Arch. Biochem. Biophys. 2010, 494, 130–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tejero, J.; Shiva, S.; Gladwin, M.T. Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol. Rev. 2019, 99, 311–379. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H.; Esumi, H. Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis. Acta Biochim. Pol. 2003, 50, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Soufli, I.; Toumi, R.; Rafa, H.; Touil-Boukoffa, C. Overview of cytokines and nitric oxide involvement in immuno-pathogenesis of inflammatory bowel diseases. World J. Gastrointest. Pharmacol. Ther. 2016, 7, 353–360. [Google Scholar] [CrossRef]
- Bauer, P.M.; Buga, G.M.; Fukuto, J.M.; Pegg, A.E.; Ignarro, L.J. Nitric oxide inhibits ornithine decarboxylase via S-nitrosylation of cysteine 360 in the active site of the enzyme. J. Biol. Chem. 2001, 276, 34458–34464. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Shao, Z.Y.; Xiao, Y.Y.; Xie, Z.H.; Chen, W.; Xie, H.; Qin, G.Y.; Zhao, N.Q. Comparison of the Glasgow Prognostic Score (GPS) and the modified Glasgow Prognostic Score (mGPS) in evaluating the prognosis of patients with operable and inoperable non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 2016, 142, 1285–1297. [Google Scholar] [CrossRef]
- He, L.; Li, H.; Cai, J.; Chen, L.; Yao, J.; Zhang, Y.; Xu, W.; Geng, L.; Yang, M.; Chen, P.; et al. Prognostic value of the Glasgow prognostic score or modified Glasgow prognostic score for patients with colorectal cancer receiving various treatments: A systematic review and meta-analysis. Cell Physiol. Biochem. 2018, 51, 1237–1249. [Google Scholar] [CrossRef]
- Nie, D.; Zhang, L.; Wang, C.; Guo, Q.; Mao, X. A high Glasgow prognostic score (GPS) or modified Glasgow prognostic score (mGPS) predicts poor prognosis in gynecologic cancers: A systematic review and meta-analysis. Arch. Gynecol. Obstet. 2020, 301, 1543–1551. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; Xu, Y.; Zheng, Y.; Li, X.; Gao, Y. Pre-treatment Glasgow prognostic score and modified Glasgow prognostic score may be potential prognostic biomarkers in urological cancers: A systematic review and meta-analysis. Ann. Transl. Med. 2019, 7, 531. [Google Scholar] [CrossRef]
- Tong, T.; Guan, Y.; Xiong, H.; Wang, L.; Pang, J. A meta-analysis of Glasgow prognostic score and modified Glasgow prognostic score as biomarkers for predicting survival outcome in renal cell carcinoma. Front. Oncol. 2020, 10, 1541. [Google Scholar] [CrossRef] [PubMed]
- Valdes, M.; Villeda, J.; Mithoowani, H.; Pitre, T.; Chasen, M. Inflammatory markers as prognostic factors of recurrence in advanced-stage squamous cell carcinoma of the head and neck. Curr. Oncol. 2020, 27, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Hanai, N.; Sawabe, M.; Kimura, T.; Suzuki, H.; Ozawa, T.; Hirakawa, H.; Fukuda, Y.; Hasegawa, Y. The high-sensitivity modified Glasgow prognostic score is superior to the modified Glasgow prognostic score as a prognostic predictor for head and neck cancer. Oncotarget 2018, 9, 37008–37016. [Google Scholar] [CrossRef] [Green Version]
- Fearon, K.C.; Barber, M.D.; Falconer, J.S.; McMillan, D.C.; Ross, J.A.; Preston, T. Pancreatic cancer as a model: Inflammatory mediators, acute-phase response, and cancer cachexia. World J. Surg. 1999, 23, 584–588. [Google Scholar] [CrossRef]
- McMillan, D.C.; Crozier, J.E.; Canna, K.; Angerson, W.J.; McArdle, C.S. Evaluation of an inflammation-based prognostic score (GPS) in patients undergoing resection for colon and rectal cancer. Int. J. Colorectal. Dis. 2007, 22, 881–886. [Google Scholar] [CrossRef]
- McMillan, D.C.; Elahi, M.M.; Sattar, N.; Angerson, W.J.; Johnstone, J.; McArdle, C.S. Measurement of the systemic inflammatory response predicts cancer-specific and non-cancer survival in patients with cancer. Nutr. Cancer. 2001, 41, 64–69. [Google Scholar] [CrossRef]
- Gom, I.; Fukushima, H.; Shiraki, M.; Miwa, Y.; Ando, T.; Takai, K.; Moriwaki, H. Relationship between serum albumin level and aging in community-dwelling self-supported elderly population. J. Nutr. Sci. Vitaminol. 2007, 53, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Kriengsinyos, W.; Wykes, L.J.; Ball, R.O.; Pencharz, P.B. Oral and intravenous tracer protocols of the indicator amino acid oxidation method provide the same estimate of the lysine requirement in healthy men. J. Nutr. 2002, 132, 2251–2257. [Google Scholar] [CrossRef] [Green Version]
- Moro, J.; Tome, D.; Schmidely, P.; Demersay, T.C.; Azzout-Marniche, D. Histidine: A systematic review on metabolism and physiological effects in human and different animal species. Nutrients 2020, 12, 1414. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, M.E.; Brosnan, J.T. Histidine metabolism and function. J. Nutr. 2020, 150, 2570S–2575S. [Google Scholar] [CrossRef] [PubMed]
- Nagabhushan, V.S.; Narasinga Rao, B.S. Studies on 3-methylhistidine metabolism in children with protein-energy malnutrition. Am. J. Clin. Nutr. 1978, 31, 1322–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanarek, N.; Keys, H.R.; Cantor, J.R.; Lewis, C.A.; Chan, S.H.; Kunchok, T.; Abu-Remaileh, M.; Freinkman, E.; Schweitzer, L.D.; Sabatini, D.M. Histidine catabolism is a major determinant of methotrexate sensitivity. Nature 2018, 559, 632–636. [Google Scholar] [CrossRef]
- Park, Y.; Han, Y.; Kim, D.; Cho, S.; Kim, W.; Hwang, H.; Lee, H.W.; Han, D.H.; Kim, K.S.; Yun, M.; et al. Impact of exogenous treatment with histidine on hepatocellular carcinoma cells. Cancers 2022, 14, 1205. [Google Scholar] [CrossRef]
- Tayek, J.A.; Bistrian, B.R.; Hehir, D.J.; Martin, R.; Moldawer, L.L.; Blackburn, G.L. Improved protein kinetics and albumin synthesis by branched chain amino acid-enriched total parenteral nutrition in cancer cachexia. A prospective randomized crossover trial. Cancer 1986, 58, 147–157. [Google Scholar] [CrossRef]
Variables, Number (%) or Mean ± SD | Control Group | LAHNSCC Group | p-Value * |
---|---|---|---|
Included participant number | 43 | 50 | |
Age (years) | 53.6 | 54.98.9 | 0.516 |
Male:Female | 37 (86.0):6 (14.0) | 48 (96.0):2 (4.0) | 0.098 |
Smoking exposure (no:yes) | 32 (74.4):11 (25.6) | 8 (16.0):42 (84.0) | <0.001 * |
Alcohol consumption (no:yes) | 32 (74.4):11 (25.6) | 14 (28.0):36 (72.0) | <0.001 * |
Betel quid use (no:yes) | 43 (100.0):0 (0.0) | 19 (38.0):31 (62.0) | <0.001 * |
Comorbid illness | |||
Diabetes mellitus (no:yes) | 43 (100.0):0 (0.0) | 38 (76.0):12 (24.0) | 0.001 * |
Hypertension (no:yes) | 43 (100.0):0 (0.0) | 33 (75.0):11 (25.0) | 0.001 * |
Dyslipidemia (no:yes) | 41 (95.4):2 (4.6) | 45 (90.0):5 (10.0) | 0.366 |
Congestive heart failure (no:yes) | 43 (100.0):0 (0.0) | 44 (100.0):0 (0.0) | --- |
Cardiovascular accident (no:yes) | 43 (100.0):0 (0.0) | 46 (92.0):4 (8.0) | 0.068 |
Chronic obstructive pulmonary disease (no:yes) | 43 (100.0):0 (0.0) | 44 (100.0):0 (0.0) | --- |
Liver cirrhosis with no decompensation (no:yes) | 42 (97.7):1 (2.3) | 38 (76.0):12 (24.0) | 0.003 * |
Anthropometric data | |||
BH (m) | 1.660.05 | 1.660.06 | 0.829 |
BW (kg) | 69.9 | 64.0 | 0.272 * |
BWL ≤ 5%:>5% | 42 (97.7):1 (2.3) | 37 (74.0):13 (26.0) | 0.001 * |
BMI (kg/m2) | 25.2 | 22.9 | 0.015 * |
<18.5:≥18.5 | 0 (0.0):43 (100.0) | 9 (18.0):41 (82.0) | 0.003 * |
Biochemical data | |||
eGFR (mL/min/1.73 m2) | 0.237 | ||
ALT (U/L, normal ≤ 36) | 0.114 | ||
Total bilirubin (mg/dL, normal ≤ 1.3) | 0.380 | ||
Uric acid (mg/dL, normal < 7.0) | 0.008 * | ||
Sugar (fasting, mg/dL) | 0.032 * | ||
Nutrition-Inflammation Biomarkers | |||
Hb (g/dL) | 14.8 | 12.0 | <0.001 * |
WBC (×103 cells/mm3) | 0.930 | ||
Platelet count (×103/mm3) | 222.2 | 261.3 | 0.013 * |
TLC (×103 cells/mm3) | 0.007 * | ||
<1.5:≥1.5 | 6 (14.0):37 (86.0) | 17 (34.0): 33(66.0) | <0.001 * |
TNC (×103 cells/mm3) | 0.462 | ||
TMC (×103 cells/mm3) | 0.045 * | ||
Teso (cells/mm3) | 0.590 | ||
Tbaso (cells/mm3) | 0.954 | ||
Albumin (g/dL, normal:3.5–5.5) | <0.001 * | ||
<3.5:≥3.5 | 0 (0.0):43 (100.0) | 7 (14.0):43 (86.0) | <0.001 * |
Total cholesterol (mg/dL, normal < 200) | 170.0 | <0.001 * | |
Triglycerides (mg/dL, normal < 150) | 0.629 | ||
CRP (mg/L) | <0.001 * | ||
<5:≥5 | 42 (97.7):1 (2.3) | 33 (66.0): 7 (34.0) | 0.001* |
NLR | 0.075 | ||
PLR | <0.001 * | ||
PNI | 0.934 | ||
GPS 0:1:2 | 42 (97.7):1 (2.3):0 (0.0) | 33 (66.0):13 (26.0):4 (8.0) | 0.001 * |
Serum HLOP Metabolites | |||
Histidine (μM) | 92.8 | <0.001 * | |
Leucine (μM) | 152.8 | 127.8 | <0.001 * |
Ornithine (μM) | 93.6 | 122.1 | <0.001 * |
Phenylalanine (μM) | 68.4 | 62.9 | 0.016 * |
Variables, Numbers (%) or SD | ALL | GPS 0 | GPS 1 | GPS 2 | p-Value * |
---|---|---|---|---|---|
Included patient number | 50 (100.0) | 33 (66.0) | 13 (26.0) | 4 (8.0) | |
Clinicopathologic | |||||
Age (years) | 54.9 | 53.6 | 57.3 | 57.8 | 0.367 |
<65:≥65 | 44 (88.0):6 (12.0) | 32 (97.0):1 (3.0) | 9 (69.2):4 (30.8) | 3 (75.0):1 (25.0) | 0.024 * |
Sex (male:female) | 48 (96.0):2 (4.0) | 32 (97.0):1 (3.0) | 12 (92.3):1 (7.7) | 4(100.0):0 (0.0) | 0.702 |
Tumor site | 0.072 | ||||
Oral cavity | 28 (56.0) | 20 (60.6) | 7 (53.8) | 1 (25.0) | |
Oropharynx | 9 (18.0) | 6 (18.2) | 1 (7.7) | 2 (50.0) | |
Hypopharynx | 11 (22.0) | 6 (18.2) | 5 (3.5) | 0 (0.0) | |
Larynx | 2 (4.0) | 1 (3.0) | 0 (0.0) | 1 (25.0) | |
TNM stage | 0.671 | ||||
III IVA IVB | 4 (8.0) 23 (46.0) 23 (46.0) | 3 (9.1) 17 (51.5) 13 (39.4) | 1 (7.7) 5 (38.5) 7 (53.8) | 0 (0.0) 1 (25.0) 3 (75.0) | |
T status | 0.123 | ||||
T0–2 T3–4 | 15 (30.0) 35 (70.0) | 11 (33.3) 22 (66.7) | 2 (15.4) 11 (84.6) | 2 (50.0) 2 (50.0) | |
N status | 0.936 | ||||
N0–1 N2–3 | 16 (32.0) 34 (68.0) | 11 (33.3) 22 (66.7) | 4 (30.8) 9 (69.2) | 1 (25.0) 3 (75.0) | |
Histological differentiation grade | |||||
Well Moderate Poor | 6 (12.0) 37 (74.0) 7 (14.0) | 5 (15.2) 23 (69.6) 5 (15.2) | 1 (7.7) 11 (84.6) 1 (7.7) | 0 (0.0) 3 (75.0) 1 (25.0) | 0.739 |
ECOG performance status | 0.024 * | ||||
0 1 2 | 3 (6.0) 43 (86.0) 4 (8.0) | 2 (6.1) 30 (90.9) 1 (3.0) | 1 (7.7) 11 (84.6) 1 (7.7) | 0 (22.2) 2 (50.0) 2 (50.0) | |
Tracheostomy | 0.159 | ||||
No Yes | 30 (60.0) 20 (40.0) | 19 (57.6) 14 (42.8) | 10 (76.9) 3 (23.1) | 1 (25.0) 3 (75.0) | |
Smoking exposure | 0.443 | ||||
No Yes | 8 (16.0) 42 (84.0) | 6 (18.2) 27 (81.8) | 2 (15.4) 11 (84.6) | 0 (0.0) 4 (100) | |
Alcohol consumption | 0.470 | ||||
No Yes | 14 (28.0) 36 (72.0) | 11 (33.3) 22 (66.7) | 2 (15.4) 11 (84.6) | 1 (25.0) 3 (75.0) | |
Betel quid use | 0.018 * | ||||
No Yes | 19 (38.0) 31 (62.0) | 16 (48.5) 17 (51.5) | 3 (23.1) 10 (76.9) | 0 (0.0) 4 (100.0) | |
HN-CCI | 0.233 | ||||
0 ≥1 | 20 (40.0) 30 (60.0) | 16 (48.5) 17 (51.5) | 3 (23.1) 10 (76.9) | 1 (25.0) 3 (75.0) | |
PG-SGA assessment before CCRT | 0.948 | ||||
Malnutrition none moderate severe | 1 (2.0) 21 (42.0) 28 (56.0) | 1 (3.0) 14 (42.4) 18 (54.6) | 0 (0.0) 5 (38.5) 8 (61.5) | 0 (22.2) 2 (50.0) 2 (50.0) | |
Biochemical data | |||||
eGFR (mL/min/1.73 m2) | 109.8 ± 29.5 | 97.2 ± 29.4 | 104.8 ± 14.3 | 0.408 | |
ALT (U/L, normal ≤ 36) | 20.3 | 37.0 | 0.153 | ||
Total bilirubin (mg/dL, normal ≤ 1.3) | 0.8 | 0.4 | 0.148 | ||
Uric acid (mg/dL, normal < 7.0) | 4.7 | 3.7 | 0.074 | ||
Sugar (fasting, mg/dL) | 111.8 ± 45.9 | 125.2 ± 54.1 | 108.9 ± 21.6 | 0.606 | |
Anthropometric and blood NIB data | |||||
BW (kg) | 64.0 | 0.755 | |||
BWL ≤5% >5% | 37 (74.0) 13 (26.0) | 24 (72.7) 9 (27.3) | 11 (84.6) 2 (15.4) | 2 (50.0) 2 (50.0) | 0.370 |
BMI (kg/m2) | 22.9 | 0.924 | |||
<18.5 ≥18.5 | 9 (18.0) 41 (82.0) | 6 (18.2) 27 (81.8) | 1 (7.7) 12 (92.3) | 2 (50.0) 2 (50.0) | 0.252 |
Hb (g/dL) | 12.0 | 0.027 *b | |||
WBC (×103 cells/mm3) | 6.0 | 8.0 | 6.4 | 0.189 | |
Platelet count (×103/mm3) | 261.3 | 257.5 ± 75.4 | 293.9 ± 99.3 | 207.7 ± 108.3 | 0.197 |
TLC (×103 cells/mm3) | 1.9 | 1.8 | 1. | 0.189 | |
17 (34.0) 33 (66.0) | <1.5 ≥1.5 | 9 (27.3) 24 (72.7) | 5 (38.5) 8 (61.5) | 3 (75.0) 1 (25.0) | 0.151 |
TNC (×103 cells/mm3) | 3.5 | 5.2 | 4.6 | 0.061 | |
TMC (×103 cells/mm3) | 0.4 | 06 | 0.4 | 0.080 | |
Teso (cells/mm3) | 195.9 ± 116.4 | 254.8 ± 64.8 | 212.7 ± 67.2 | 0.202 | |
Tbaso (cells/mm3) | 34.5 ± 20.3 | 35.7.9 ± 25.0 | 29.5 ± 14.5 | 0.184 | |
Albumin (g/dL) | 3.9 | 3.9 | 3.9 | 2.9 | <0.001 *bc |
<3.5 ≥3.5 | 7 (14.0) 43 (86.0) | 0 (0.0) 33 (100.0) | 3 (23.1) 10 (76.9) | 4 (100.0) 0 (0.0) | <0.001 * |
Prealbumin (g/dL, normal: 20–40) | 0.002 *b | ||||
Transferrin (g/dL normal: 200–360) | 203.1 ± 37.9 | 208.2 ± 36.1 | 206.5 ± 31.2 | 149.8 ± 32.8 | 0.010 *bc |
Total cholesterol (mg/dL, normal < 200) | 170.0 | 175.6 ± 37.7 | 172.3 ± 51.5 | 117.0 ± 15.1 | 0.032 *bc |
Triglycerides (mg/dL, normal < 150) | 157.0 ± 95.0 | 172.5 ± 71.7 | 139.0 ± 57.3 | 0.536 | |
CRP (mg/L) | 2.3 | 13.0 | 23.1 | <0.001 *abc | |
NLR | 0.001 *bc | ||||
PLR | 0.230 | ||||
PNI | <0.001 *bc | ||||
DXA-related measurements | |||||
LBM (kg) | 0.914 | ||||
TFM (kg) | 0.415 | ||||
ASM (kg) | 0.008 *bc | ||||
Serum HLOP metabolites | |||||
Histidine (μM) | 0.007 *b | ||||
Leucine (μM) | 127.8 | 0.431 | |||
Ornithine (μM) | 122.1 | 0.462 | |||
Phenylalanine (μM) | 62.9 | 61.3 | 0.528 | ||
Three-year mortality rate (%) | 28.0 | 15.2 | 46.2 | 75.0 | 0.010 * |
Variables | Univariate Analysis | Multivariate Analysis | |
---|---|---|---|
Odds Ratio (95% CI) | Odds Ratio (95% CI) | p-Value | |
Clinicopathologic | |||
Sex (ref: male) | 1.000 (0.989;1.002) | ||
Age (years) | 1.041 (0.965;1.123) | ||
Age (ref: ≥ 65 years) | 0.147 (0.023;0.974) | ||
Tumor stage (ref: stage III) | 1.600 (0.142;18.011) | ||
T status (ref: T0–2) | 1.110 (0.283;4.282) | ||
N status (ref: N0–1) | 2.072 (0.498;8.804) | ||
Tumor site (ref: non oral cavity) | 0.477 (0.136;1.670) | ||
Histologic differentiation grade (ref: poorly differentiated) | 0.846 (0.135;5.317) | ||
HN-CCI (ref: 0) | 2.000 (0.527;7.584) | ||
ECOG PS (ref: 0) | 3.110 (0.521;10.013) | ||
Smoking (%) (ref: no) | 3.138 (0.349;28.180) | ||
Alcohol (%) (ref: no) | 3.000 (0.576;15.614) | ||
Betel quid (%) (ref: no) | 2.754 (0.354;26.523) | ||
Tracheostomy (ref: no) | 1.179 (0.337;4.125) | ||
PG-SGA (ref: none) | 1.235 (0.835;2.449) | ||
Biochemical data | |||
eGFR (ml/min/1.73 m2) | 0.977 (0.953;1.002) | ||
ALT (U/L) | 0.976 (0.927;1.026) | ||
Total bilirubin (mg/dL) | 1.392 (0.460;4.215) | ||
Uric acid (mg/dL) | 0.798 (0.546;1.168) | ||
Sugar (fasting, mg/dL) | 1.001 (0.987;1.014) | ||
Anthropometric and blood NIB data | |||
BW (kg) | 0.985 (0.932;1.040) | ||
BWL (ref: < 5%) | 1.944 (0.506;7.473) | ||
BMI (kg/m2) | 0.941 (0.791;1.119) | ||
BMI (ref: > 18.5 kg/m2) | 1.384 (0.290;6.415) | ||
Hb (g/dL) | 0.659 * (0.437;0.996) | ||
WBC (×103 cells/mm3) | 1.224 (0.935;1.603) | ||
Platelet (×103/mm3) | 0.997 (0.989;1.004) | ||
TLC (×103 cells/mm3) | 0.999 (0.998;1.004) | ||
TNC (×103 cells/mm3) | 1.002 * (1.001;1.033) | ||
TMC (×103 cells/mm3) | 1.001 (0.999;1.004) | ||
Teso (cells/mm3) | 1.001 (0.997;1.005) | ||
Tbaso (cells/mm3) | 0.983 (0.954;1.013) | ||
Albumin (g/dL) | 0.314 (0.074;1.342) | ||
Prealbumin (g/dL) | 0.923 (0.825;1.034) | ||
Transferrin (g/dL) | 0.980 * (0.961;0.998) | ||
Total cholesterol (mg/dL) | 0.983 * (0.966;0.997) | ||
Triglycerides (mg/dL) | 0.997 (0.989;1.014) | ||
CRP (mg/L) | 1.102 * (1.018;1.193) | ||
NLR | 2.045 * (1.030;4.059) | ||
PLR | 1.004 (0.957;1.011) | ||
PNI | 0.907 (0.813;1.008) | ||
GPS (ref: 0) | 6.300 * (1.639;24.212) | 6.180 * (1.639;24.212) | 0.007 * |
DXA-related measurements | |||
LBM (kg) | 1.012 (0.953;1.134) | ||
TFM (kg) | 0.951 (0.863;1.048) | ||
ASM (kg) | 0.911 (0.785;1.057) | ||
Serum HLOP metabolites | |||
Histidine (μM) | 0.977 (0.939;1.017) | ||
Leucine (μM) | 0.997 (0.980;1.013) | ||
Ornithine (μM) | 0.997 (0.979;1.016) | ||
Phenylalanine (μM) | 1.008 (0.971;1.046) |
Variables | Univariate Analysis | Multivariate Analysis | |
---|---|---|---|
Odds Ratio (95% CI) | Odds Ratio (95% CI) | p-Value | |
Clinicopathologic | |||
Sex (ref: male) | 2.000 (0.117;34.092) | ||
Age (years) | 1.055 (0.980;1.136) | ||
Age (ref: ≥ 65 years) | 0.075 * (0.008;0.710) | 0.041 * (0.003;0.546) | 0.016 * |
Tumor stage (ref: stage III) | 2.308 (0.208;12.234) | ||
T status (ref: T0–2) | 1.625 (0.428;6.169) | ||
N status (ref: N0–1) | 1.200 (0.337;4.272) | ||
Tumor site (ref: non oral cavity) | 0.578 (0.177;1.882) | ||
Histologic differentiation grade (ref: poorly differentiated) | 0.500 (0.034;1.452) | ||
HN-CCI (ref: 0) | 3.059 (0.824;11.324) | ||
ECOG PS (ref: 0) | 6.000 (0.221;10.423) | ||
Smoking (%) (ref: no) | 1.667 (0.298;6.310) | ||
Alcohol (%) (ref: no) | 2.333 (0.552;9.866) | ||
Betel quid (%) (ref: no) | 1.375* (1.049;3.624) | ||
Tracheostomy (ref: no) | 1.351 (0.403;4.534) | ||
PG-SGA (ref: none) | 4.000 (0.437;36.576) | ||
Biochemical data | |||
eGFR (ml/min/1.73 m2) | 0.986 (0.964;1.008) | ||
ALT (U/L) | 0.990 (0.950;1.031) | ||
Total bilirubin (mg/dL) | 8.369 * (1.013;69.919) | ||
Uric acid (mg/dL) | 0.665 * (0.445;0.995) | ||
Sugar (fasting, mg/dL) | 1.004 (0.991;1.016) | ||
Anthropometric and blood NIB data | |||
BW (kg) | 0.993 (0.944;1.045) | ||
BMI (kg/m2) | 0.998 (0.850;1.172) | ||
Hb (g/dL) | 0.710 (0.489;1.030) | ||
WBC (×103 cells/mm3) | 1.314 (0.956;1.805) | ||
Platelet (×103/mm3) | 1.001 (0.995;1.008) | ||
TLC (×103 cells/mm3) | 0.999 (0.998;1.002) | ||
TNC (×103 cells/mm3) | 1.030 * (1.001;1.200) | ||
TMC (×103 cells/mm3) | 1.002 (0.998;1.002) | ||
Teso (cells/mm3) | 1.002 (0.996;1.006) | ||
Tbaso (cells/mm3) | 0.989 (0.962;1.017) | ||
Albumin (g/dL) | 0.198 * (0.042;0.920) | ||
Prealbumin (g/dL) | 0.835 * (0.732;0.952) | ||
Transferrin (g/dL) | 0.989 (0.972;1.005) | ||
Total cholesterol (mg/dL) | 0.991 (0.976;1.005) | ||
Triglycerides (mg/dL) | 1.000 (0.994;1.006) | ||
CRP (mg/L) | 1.693 * (1.230;2.331) | ||
NLR | 3.655 * (1.437;9.298) | ||
PLR | 1.005 (0.998;1.013) | ||
PNI | 0.890 * (0.798;0.992) | ||
DXA-related measurements | |||
LBM (kg) | 0.977 (0.880;1.085) | ||
TFM (kg) | 0.998 (0.917;1.086) | ||
ASM (kg) | 0.881 (0.751;1.033) | ||
Serum HLOP metabolites | |||
Histidine (μM) | 0.938 * (0.896;0.983) | 0.906 * (0.835;0.984) | 0.019 * |
Leucine (μM) | 1.000 (0.985;1.016) | ||
Ornithine (μM) | 1.003 (0.986;1.020) | ||
Phenylalanine (μM) | 1.030 (0.993;1.068) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeh, K.-Y.; Wang, C.-H.; Ling, H.H.; Peng, C.-L.; Chen, Z.-S.; Hsia, S. Pretreatment Glasgow Prognostic Score Correlated with Serum Histidine Level and Three-Year Mortality of Patients with Locally Advanced Head and Neck Squamous Cell Carcinoma and Optimal Performance Status. Nutrients 2022, 14, 3475. https://doi.org/10.3390/nu14173475
Yeh K-Y, Wang C-H, Ling HH, Peng C-L, Chen Z-S, Hsia S. Pretreatment Glasgow Prognostic Score Correlated with Serum Histidine Level and Three-Year Mortality of Patients with Locally Advanced Head and Neck Squamous Cell Carcinoma and Optimal Performance Status. Nutrients. 2022; 14(17):3475. https://doi.org/10.3390/nu14173475
Chicago/Turabian StyleYeh, Kun-Yun, Chao-Hung Wang, Hang Huong Ling, Chia-Lin Peng, Zih-Syuan Chen, and Simon Hsia. 2022. "Pretreatment Glasgow Prognostic Score Correlated with Serum Histidine Level and Three-Year Mortality of Patients with Locally Advanced Head and Neck Squamous Cell Carcinoma and Optimal Performance Status" Nutrients 14, no. 17: 3475. https://doi.org/10.3390/nu14173475
APA StyleYeh, K. -Y., Wang, C. -H., Ling, H. H., Peng, C. -L., Chen, Z. -S., & Hsia, S. (2022). Pretreatment Glasgow Prognostic Score Correlated with Serum Histidine Level and Three-Year Mortality of Patients with Locally Advanced Head and Neck Squamous Cell Carcinoma and Optimal Performance Status. Nutrients, 14(17), 3475. https://doi.org/10.3390/nu14173475