Why Should Pistachio Be a Regular Food in Our Diet?
Abstract
:1. Introduction
2. Nutritional Value of Pistachios
3. Antioxidant Phenolic Composition of Pistachios
4. Health Benefits of Pistachio Consumption
4.1. Effects of Pistachio Consumption on Blood Lipids
4.2. Effects of Pistachio on Blood Pressure and Endothelial Function
4.3. Effects of Pistachio on Glucose Metabolism
4.4. Effects of Pistachios on Satiety Regulation and Body-Weight Control
4.5. Effect of Pistachios on Inflammatory State
4.6. Effects of Pistachios on Oxidative Stress
4.7. Effects of Pistachios on Cancer
4.8. Effect of Pistachios on Intestinal Microbiota
5. Consumption and Uses of Pistachios
6. Barriers and Facilitators to Pistachio Consumption
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABTS | 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) |
BMI | Body mass index |
BP | Blood pressure |
CRP | C-reactive protein |
CVD | Cardiovascular disease |
FRAP | Ferric reducing antioxidant power |
DBP | Diastolic blood pressure |
DRI | Dietary reference intake |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
FMD | Flow-mediated dilation |
GAE | gallic acid equivalent |
GIP | Gastric inhibitory polypeptide |
GLP-1 | Glucagon-like peptide-1 |
HbA1c | Glycated hemoglobin |
HDL | High-density lipoprotein |
HOMA-IR | Homeostatic model assessment for insulin resistance |
LDL | Low-density lipoprotein |
MetS | Metabolic syndrome |
MUFA | Monounsaturated fatty acid |
NF-κB | Nuclear factor kappa B |
ORAC | Oxygen radical absorbance capacity |
oxLDL | oxidised-LDL |
PUFA | Polyunsaturated fatty acids |
RCT | Randomized controlled trials |
RDA | Recommended dietary allowance |
ROS | Reactive oxygen species |
SBP | Systolic blood pressure |
SFA | Saturated fatty acids |
sVCAM-1 | Soluble vascular cell adhesion molecule-1 |
T2DM | Type 2 diabetes mellitus |
TC | Total cholesterol |
TE | Trolox equivalent |
TEAC | Trolox equivalent antioxidant capacity |
TG | Tryglycerides |
TNFα | Tumour necrosis factor-alpha |
TPP | Total polar phenolics |
References
- Alasalvar, C.; Bolling, B.W. Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. Br. J. Nutr. 2015, 113, S68–S78. [Google Scholar] [CrossRef] [PubMed]
- Amarowicz, R.; Gong, Y.; Pegg, R.B. Recent advances in our knowledge of the biological properties of nuts. In Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications; Ferreira, I.C.F.R., Morales, P., Barros, L., Eds.; Blackwell: Hoboken, NJ, USA, 2017; ISBN 9781118944646. [Google Scholar]
- Machado de Souza, R.G.; Schincaglia, R.M.; Pimentel, G.D.; Mota, J.F. Nuts and human health outcomes: A systematic review. Nutrients 2017, 9, 1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FDA, Food and Drug Administration Docket No. 02P-0505. 2003. Available online: https://www.weightwatchers.com/images/1033/dynamic/articles/2010/03/FDA_Approved_Qualified_Health_Claim_on_Nuts.pdf (accessed on 4 July 2022).
- Estruch, R.; Ros, E.; Salas-Salvado, J.; Covas, M.I.; Corella, D.; Aros, F.; Gomez-Gracia, E.; Ruiz-Gutierrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a mediterranena diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Benefits of nut consumption on insulin resistance and cardiovascular risk factors: Multiple potential mechanisms of actions. Nutrients 2017, 22, 1271. [Google Scholar] [CrossRef] [Green Version]
- Terzo, S.; Baldassano, S.; Caldara, G.F.; Ferrantelli, V.; Lo Dico, G.L.; Mulè, F.; Amato, A. Health benefits of pistachios consumption. Nat. Prod. Res. 2019, 33, 715–726. [Google Scholar] [CrossRef]
- I.N.&D. Nuts & Dried Fruits Statistical Yearbook 2020/2021. 2021. Available online: https://www.iranpistachio.org/fa/images/INC/INC_Statistical_Yearbook_2019-2020.pdf?msclkid=89309733d05511ec99551a66d22f0de1) (accessed on 4 July 2022).
- Couceiro, J.F. (Ed.) El Cultivo del Pistachio; Ediciones Mundi-Prensa: Madrid, Spain, 2017; ISBN 9788484767220. [Google Scholar]
- Nadimi, A.E.; Ahmadi, Z.; Falahati-Pour, S.K.; Mohamadi, M.; Nazari, A.; Hassanshahi, G.; Ekramzadeh, M. Physicochemical properties and health benefits of pistachio nuts. Int. J. Vitam. Nutr. Res. 2020, 90, 564–574. [Google Scholar] [CrossRef]
- Mandalari, G.; Barreca, D.; Gervasi, T.; Roussell, M.A.; Klein, B.; Feeney, M.J.; Carughi, A. Pistachio nuts (Pistacia vera L.): Production, nutrients, bioactives and novel health effects. Plants 2022, 11, 18. [Google Scholar] [CrossRef]
- Neale, E.P.; Tapsell, L.C. Nuts in Healthy Dietary Patterns and Dietary Guidelines. In Health Benefits of Nuts and Dried Fruits; Alasalvar, C., Salas-Salvado, J., Ros, E., Sabate, J., Eds.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Tsantili, E.; Takidelli, C.; Christopoulos, M.V.; Lambrinea, E.; Rouskas, D.; Roussos, P.A. Physical, compositional and sensory differences in nuts among pistachio (Pistachia vera L.) varieties. Sci. Hortic. 2010, 125, 562–568. [Google Scholar] [CrossRef]
- Bulló, M.; Juanola-Falgarona, M.; Hernández-Alonso, P.; Salas-Salvadó, J. Nutrition attributes and health effects of pistachio nuts. Br. J. Nut. 2015, 113, S79–S93. [Google Scholar] [CrossRef] [Green Version]
- Ros, E.; Singh, A.; O’Keefe, J.H. Nuts: Natural pleiotropic nutraceuticals. Nutrients 2021, 13, 3269. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Zhao, G.; Binkoski, A.E.; Coval, S.M.; Etherton, T.D. The effects of nuts on coronary heart disease risk. Nutr. Rev. 2001, 59, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Halvorsen, B.L.; Carlsen, M.H.; Phillips, K.M.; Bøhn, S.K.; Holte, K.; Jacobs, D.R., Jr.; Blomhoff, R. Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States. Am. J. Clin. Nutr. 2006, 84, 95–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, K.M.; Ruggio, D.M.; Ashraf-Khorassani, M. Phytosterol composition of nuts and seeds commonly consumed in the United States. J. Agric. Food Chem. 2005, 53, 9436–9445. [Google Scholar] [CrossRef] [PubMed]
- Stuetz, W.; Schlörmann, W.; Glei, M. B-vitamins, carotenoids and α-/γ-tocopherol in raw and roasted nuts. Food Chem. 2017, 221, 222–227. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 2010, 64, S112–S120. [Google Scholar] [CrossRef]
- USDA. Available online: http://www.ars.usda.gov/nutrientdata (accessed on 2 May 2022).
- Chang, S.K.; Alasalvar, C.; Bolling, B.W.; Shahidi, F. Nuts and their co-products: The impact of processing (roasting) on phenolics, bioavailability, and health benefits—A comprehensive review. J. Funct. Foods 2016, 26, 88–122. [Google Scholar] [CrossRef]
- Ojeda-Amador, R.M.; Salvador, M.D.; Fregapane, G.; Gómez-Alonso, S. Comprehensive study of the phenolic compound profile and antioxidant activity of eight pistachio cultivars and their residual cakes and virgin oils. J. Agric. Food Chem. 2019, 67, 3583–3594. [Google Scholar] [CrossRef]
- Ojeda-Amador, R.M.; Trapani, S.; Fregapane, G.; Salvador, M.D. Phenolics, tocopherols, and volatiles changes during virgin pistachio oil processing under different technological conditions. Eur. J. Lipid Sci. Technol. 2018, 120, 180–221. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Rodríguez-Bencomo, J.J.; Kelebek, H.; Sonmezdag, A.S.; Rodríguez-Alcalá, L.M.; Fontecha, J.; Serkan, S. Characterization of the aroma-active, phenolic, and lipid profiles of the pistachio (Pistacia vera L.) nut as affected by the single and double roasting process. J. Agric. Food Chem. 2015, 63, 7830–7839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonmezdag, A.S.; Kelebek, H.; Selli, S. Effect of hulling methods and roasting treatment on phenolic compounds and physicochemical properties of cultivars ‘Ohadi’ and ‘Uzun’ pistachios (Pistacia vera L.). Food Chem. 2019, 272, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Prior, R.L. Identification and characterization of anthocyanins by high-performance liquid chromatography−electrospray ionization−tandem mass spectrometry in common foods in the United States: vegetables, nuts, and grains. J. Agric. Food Chem. 2005, 53, 3101–3113. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Moellering, D.R.; Garvey, W.T. The progression of cardiometabolic disease: Validation of a new cardiometabolic disease staging system applicable to obesity. Obesity 2014, 22, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 2013, 368, 1279–1290. [Google Scholar] [CrossRef] [Green Version]
- Mayhew, A.J.; de Souza, R.J.; Meyre, D.; Anand, S.S.; Mente, A. A systematic review and meta-analysis of nut consumption and incident risk of CVD and all-cause mortality. Br. J. Nutr. 2016, 115, 212–225. [Google Scholar] [CrossRef]
- Mohammadifard, N.; Salehi-Abargouei, A.; Salas-Salvadó, J.; Guasch-Ferré, M.; Humphries, K.; Sarrafzadegan, N. The effect of tree nut, peanut, and soy nut consumption on blood pressure: A systematic review and meta-analysis of randomized controlled clinical trials. Am. J. Clin. Nutr. 2015, 101, 966–982. [Google Scholar] [CrossRef] [Green Version]
- Viguiliouk, E.; Kendall, C.W.C.; Blanco Mejia, S.; Cozma, A.I.; Ha, V.; Mirrahimi, A.; Jayalath, V.H.; Augustin, L.S.A.; Chiavaroli, L.; Leiter, L.A.; et al. Effect of tree nuts on glycemic control in diabetes: A systematic review and meta-analysis of randomized controlled dietary trials. PLoS ONE 2014, 9, e103376. [Google Scholar] [CrossRef]
- Jackson, C.L.; Hu, F.B. Long-term associations of nut consumption with body weight and obesity. Am. J. Clin. Nutr. 2014, 100, 408–411. [Google Scholar] [CrossRef] [Green Version]
- Taş, N.G.; Gökmen, V. Phenolic compounds in natural and roasted nuts and their skins: A brief review. Curr. Opin. Food Sci. 2017, 14, 103–109. [Google Scholar] [CrossRef]
- Edwards, K.; Kwaw, I.; Matud, J.; Kurtz, I. Effect of pistachio nuts on serum lipid levels in patients with moderate hypercholesterolemia. J. Am. Coll. Nutr. 1999, 18, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Kocyigit, A.; Koylu, A.A.; Keles, H. Effects of pistachio nuts consumption on plasma lipid profile and oxidative status in healthy volunteers. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Gebauer, S.K.; West, S.G.; Kay, C.D.; Alaupovic, P.; Bagshaw, D.; Kris-Etherton, P.M. Effects of pistachios on cardiovascular disease risk factors and potential mechanisms of action: A dose-response study. Am. J. Clin. Nutr. 2008, 88, 651–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sari, I.; Baltaci, Y.; Bagci, C.; Davutoglu, V.; Erel, O.; Celik, H.; Ozer, O.; Aksoy, N.; Aksoy, M. Effect of pistachio diet on lipid parameters, endothelial function, inflammation, and oxidative status: A prospective study. Nutrition 2010, 26, 399–404. [Google Scholar] [CrossRef]
- Sheridan, M.J.; Cooper, J.N.; Erario, M.; Cheifetz, C.E. Pistachio nut consumption and serum lipid levels. J. Am. Coll. Nutr. 2007, 26, 141–148. [Google Scholar] [CrossRef]
- Aldemir, M.; Okulu, E.; Neşelioğlu, S.; Erel, O.; Kayıgil, O. Pistachio diet improves erectile function parameters and serum lipid profiles in patients with erectile dysfunction. Int. J. Impot. Res. 2011, 23, 32–38. [Google Scholar] [CrossRef]
- Hernandez-Alonso, P.; Baldrich-Mora, M.; Juanola-Falgarona, M.; Bullo, M. Beneficial effect of pistachio consumption on glucose metabolism, insulin resistance, inflammation, and related metabolic risk markers: A randomized clinical trial. Diabetes Care 2014, 37, 3098–3105. [Google Scholar] [CrossRef] [Green Version]
- Lippi, G.; Cervellin, G.; Mattiuzzi, C. More pistachio nuts for improving the blood lipid profile. Systematic review of epidemiological evidence. Acta Biomed. 2016, 87, 5–12. [Google Scholar]
- Holligan, S.D.; West, S.G.; Gebauer, S.K.; Kay, C.D.; Kris-Etherton, P.M. A moderate-fat diet containing pistachios improves emerging markers of cardiometabolic syndrome in healthy adults with elevated LDL levels. Br. J. Nutr. 2014, 112, 744–752. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Hui, S.; Wang, B.; Kaliannan, K.; Guo, X.; Liang, L. Comparative effects of different types of tree nut consumption on blood lipids: A network meta-analysis of clinical trials. Am. J. Clin. Nutr. 2020, 111, 219–227. [Google Scholar] [CrossRef]
- Hadi, A.; Pourmasoumi, M.; Kazemi, M.; Najafgholizadeh, A.; Marx, W. Efficacy of synbiotic interventions on blood pressure: A systematic review and meta-analysis of clinical trials. Crit. Rev. Food Sci. Nutr. 2022, 62, 5582–5591. [Google Scholar] [CrossRef] [PubMed]
- Gunathilake, M.; Van, N.T.H.; Kim, J. Effects of nut consumption on blood lipid profile: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 537–549. [Google Scholar] [CrossRef]
- West, S.G.; Gebauer, S.K.; Kay, C.D.; Bagshaw, D.M.; Savastano, D.M.; Diefenbach, C.; Kris-Etherton, P.M. Diets containing pistachios reduce systolic blood pressure and peripheral vascular responses to stress in adults with dyslipidemia. Hypertension 2012, 60, 58–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauder, K.A.; McCrea, C.E.; Ulbrecht, J.S.; Kris-Etherton, P.M.; West, S.G. Pistachio nut consumption modifies systemic hemodynamics, increases heart rate variability, and reduces ambulatory blood pressure in well-controlled type 2 diabetes: A randomized trial. J. Am. Heart Assoc. 2014, 3, e000873. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, Z.; Liu, Y.; Lv, X.; Yan, W. Effects of pistachios on body weight in Chinese subjects with metabolic syndrome. Nutr. J. 2012, 11, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orem, A.; Balaban Yucesan, F.; Orem, C.; Akcan, B.; Vanizor Kural, B.; Alasalvar, C.; Shahidi, F. Hazelnut-enriched diet improves cardiovascular risk biomarkers beyond a lipid-lowering effect in hypercholesterolemic subjects. J. Clin. Lipidol. 2013, 7, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Katz, D.L.; Davidhi, A.; Yanchou Njike, V. Effects of walnuts on endothelial function in overweight adults with visceral obesity: A randomized, controlled, crossover trial. J. Am. Coll. Nutr. 2012, 31, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Morgillo, S.; Hill, A.M.; Coates, A.M. The effects of nut consumption on vascular function. Nutrients 2019, 11, 116. [Google Scholar] [CrossRef] [Green Version]
- Kasliwal, R.R.; Bansal, M.; Mehrotra, R.; Yeptho, K.P.; Trehan, N. Effect of pistachio nut consumption on endothelial function and arterial stiffness. Nutrition 2015, 31, 678–685. [Google Scholar] [CrossRef]
- Fogacci, F.; Cicero, A.F.G.; Derosa, G.; Rizzo, M.; Veronesi, M.; Borghi, C. Effect of pistachio on brachial artery diameter and flow-mediated dilatation: A systematic review and meta-analysis of randomized, controlled-feeding clinical studies. Crit. Rev. Food Sci. Nutr. 2019, 59, 328–335. [Google Scholar] [CrossRef]
- Ahmad, R.; Almubayedh, H.; Ahmad, N.; Naqvi, A.A.; Riaz, M. Ethnobotany, ethnopharmacology, phytochemistry, biological activities and toxicity of Pistacia chinensis subsp. integerrima: A comprehensive review. Phytother. Res. 2020, 34, 2793–2819. [Google Scholar] [CrossRef] [PubMed]
- Ghanavati, M.; Rahmani, J.; Clark, C.C.T.; Hosseinabadi, S.M.; Rahimlou, M. Pistachios and cardiometabolic risk factors: A systematic review and meta-analysis of randomized controlled clinical trials. Complement. Ther. Med. 2020, 52, 102513. [Google Scholar] [CrossRef] [PubMed]
- Asbaghi, O.; Hadi, A.; Campbell, M.S.; Venkatakrishnan, K.; Ghaedi, E. Effects of pistachios on anthropometric indices, inflammatory markers, endothelial function and blood pressure in adults: A systematic review and meta-analysis of randomised controlled trials. Br. J. Nutr. 2020, 17, 718–729. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Godos, J.; Currenti, W.; Micek, A.; Falzone, L.; Libra, M.; Giampieri, F.; Forbes-Hernández, T.Y.; Quiles, J.L.; Battino, M.; et al. The effect of dietary polyphenols on vascular health and hypertension: Current evidence and mechanisms of action. Nutrients 2022, 14, 545. [Google Scholar] [CrossRef]
- Jamshidi, S.; Hejazi, N.; Golmakani, M.-T.; Tanideh, N. Wild pistachio (Pistacia atlantica mutica) oil improve metabolic syndrome features in rats with high fructose ingestion. Iran J. Basic Med. Sci. 2018, 21, 1255–1261. [Google Scholar]
- Hosseini, S.; Nili-Ahmadabadi, A.; Nachvak, S.M.; Dastan, D.; Moradi, S.; Abdollahzad, H.; Mostafai, R. Antihyperlipidemic and antioxidative properties of Pistacia atlantica subsp. kurdica in streptozotocin-induced diabetic mice. Diabetes Metab. Syndr. Obes. 2020, 13, 1231–1236. [Google Scholar] [CrossRef] [Green Version]
- Gorabi, S.A.; Mohammadzadeh, H.; Rostampour, M. The effects of ripe pistachio hulls hydro-alcoholic extract and aerobic training on learning and memory in streptozotocin-induced diabetic male rats. Basic Clin. Neurosci. 2020, 11, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Behmanesh, M.A.; Poormoosavi, S.M.; Pareidar, Y.; Ghorbanzadeh, B.; Mahmoodi-kouhi, A.; Najafzadehvarzi, H. Pistacia atlantica’s effect on ovary damage and oxidative stress in streptozotocin-induced diabetic rats. JBRA Assist. Reprod. 2021, 25, 28–33. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Hu, F.B.; Tapsell, L.C.; Josse, A.R.; Kendall, C.W.C. Possible benefit of nuts in type 2 diabetes. J. Nutr. 2008, 138, 1752S–1756S. [Google Scholar] [CrossRef] [Green Version]
- Kochar, J.; Gaziano, J.M.; Djoussé, L. Nut consumption and risk of type II diabetes in the Physicians’ Health Study. Eur. J. Clin. Nutr. 2010, 64, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Ros, E. Health Benefits of Nut Consumption. Nutrients 2010, 2, 652–682. [Google Scholar] [CrossRef] [Green Version]
- Damavandi, R.D.; Eghtesadi, S.; Shidfar, F.; Heydari, I.; Foroushani, A.R. Effects of hazelnuts consumption on fasting blood sugar and lipoproteins in patients with type 2 diabetes. J. Res. Med. Sci. 2013, 18, 314–321. [Google Scholar]
- Pan, A.; Sun, Q.; Manson, J.E.; Willett, W.C.; Hu, F.B. Walnut consumption is associated with lower risk of type 2 diabetes in women. J. Nutr. 2013, 143, 512–518. [Google Scholar] [CrossRef] [Green Version]
- Pachi, V.K.; Mikropoulou, E.V.; Gkiouvetidis, P.; Siafakas, K.; Argyropoulou, A.; Angelis, A.; Mitakou, S.; Halabalaki, M. Traditional uses, phytochemistry and pharmacology of Chios mastic gum (Pistacia lentiscus var. Chia, Anacardiaceae): A review. J. Ethnopharmacol. 2020, 254, 112485. [Google Scholar] [CrossRef]
- Kendall, C.W.C.; Josse, A.R.; Esfahani, A.; Jenkins, D.J.A. The impact of pistachio intake alone or in combination with high-carbohydrate foods on post-prandial glycemia. Eur. J. Clin. Nutr. 2011, 65, 696–702. [Google Scholar] [CrossRef] [Green Version]
- Kendall, C.W.C.; West, S.G.; Augustin, L.S.; Esfahani, A.; Vidgen, E.; Bashyam, B.; Sauder, K.A.; Campbell, J.; Chiavaroli, L.; Jenkins, A.L.; et al. Acute effects of pistachio consumption on glucose and insulin, satiety hormones and endothelial function in the metabolic syndrome. Eur. J. Clin. Nutr. 2014, 68, 370–375. [Google Scholar] [CrossRef]
- Feng, X.; Liu, H.; Li, Z.; Carughi, A.; Ge, S. Acute effect of pistachio intake on postprandial glycemic and gut hormone responses in women with gestational diabetes or gestational impaired glucose tolerance: A randomized, controlled, crossover study. Front. Nutr. 2019, 6, 186. [Google Scholar] [CrossRef] [Green Version]
- Melero, V.; García de la Torre, N.; Assaf-Balut, C.; Jiménez, I.; del Valle, L.; Durán, A.; Bordiú, E.; Valerio, J.J.; Herraiz, M.A.; Izquierdo, N.; et al. Effect of a Mediterranean diet-based nutritional intervention on the risk of developing gestational diabetes mellitus and other maternal-fetal adverse events in hispanic women residents in Spain. Nutrients 2020, 12, 3505. [Google Scholar] [CrossRef]
- Melero, V.; Assaf-Balut, C.; De La Torre, N.G.; Jiménez, I.; Bordiú, E.; Del Valle, L.; Valerio, J.; Familiar, C.; Durán, A.; Runkle, I.; et al. Benefits of adhering to a Mediterranean diet supplemented with extra virgin olive oil and pistachios in pregnancy on the health of offspring at 2 years of age. Results of the San Carlos gestational diabetes mellitus prevention study. J. Clin. Med. 2020, 9, 1454. [Google Scholar] [CrossRef]
- Gulati, S.; Misra, A. Sugar Intake, Obesity, and Diabetes in India. Nutrition 2014, 30, 192–197. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Kendall, C.W.C.; Banach, M.S.; Srichaikul. Nuts as a replacement for carbohydrates in the diabetic diet. Diabetes Care 2011, 34, 1706–1711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parham, M.; Heidari, S.; Khorramirad, A.; Hozoori, M.; Hosseinzadeh, F.; Bakhtyari, L.; Vafaeimanesh, J. Effects of pistachio nut supplementation on blood glucose in patients with type 2 diabetes: A randomized crossover trial. Rev. Diabet. Stud. 2014, 11, 190–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canudas, S.; Hernández-Alonso, P.; Galié, S.; Muralidharan, J.; Morell-Azanza, L.; Zalba, G.; García-Gavilán, J.; Martí, A.; Salas-Salvadó, J.; Bulló, M. Pistachio consumption modulates DNA oxidation and genes related to telomere maintenance: A crossover randomized clinical trial. Am. J. Clin. Nutr. 2019, 109, 1738–1745. [Google Scholar] [CrossRef] [Green Version]
- Bagetta, D.; Maruca, A.; Lupia, A.; Mesiti, F.; Catalano, R.; Romeo, I.; Moraca, F.; Ambrosio, F.A.; Costa, G.; Artese, A.; et al. Mediterranean products as promising source of multi-target agents in the treatment of metabolic syndrome. Eur. J. Med. Chem. 2020, 186, 111903. [Google Scholar] [CrossRef] [PubMed]
- Nowrouzi-Sohrabi, P.; Hassanipour, S.; Sisakht, M.; Daryabeygi-Khotbehsara, R.; Savardashtaki, A.; Fathalipour, M. The effectiveness of pistachio on glycemic control and insulin sensitivity in patients with type 2 diabetes, prediabetes and metabolic syndrome: A systematic review and meta-analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 1589–1595. [Google Scholar] [CrossRef] [PubMed]
- Assaf-Balut, C.; García de la Torre, N.; Durán, A.; Fuentes, M.; Bordiú, E.; del Valle, L.; Familiar, C.; Ortolá, A.; Jiménez, I.; Herraiz, M.A.; et al. A Mediterranean diet with additional extra virgin olive oil and pistachios reduces the incidence of gestational diabetes mellitus (GDM): A randomized controlled trial: The St. Carlos GDM prevention study. PLoS ONE 2017, 12, e0185873. [Google Scholar] [CrossRef] [PubMed]
- Vadivel, V.; Kunyanga, C.N.; Biesalski, H.K. Health benefits of nut consumption with special reference to body weight control. Nutrition 2012, 28, 1089–1097. [Google Scholar] [CrossRef]
- Tan, S.Y.; Dhillon, J.; Mattes, R.D. A review of the effects of nuts on appetite, food intake, metabolism, and body weight. Am. J. Clin. Nutr. 2014, 100 (Suppl. 1), 412S–422S. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Song, R.; Nguyen, C.; Zerlin, A.; Karp, H.; Naowamondhol, K. Pistachio nuts reduce triglycerides and body weight by comparison to refined carbohydrate snack in obese subjects on a 12-week weight loss program. J. Am. Coll. Nutr. 2010, 29, 198–203. [Google Scholar] [CrossRef]
- Fantino, M.; Bichard, C.; Mistretta, F.; Bellisle, F. Daily consumption of pistachios over 12 weeks improves dietary profile without increasing body weight in healthy women: A randomized controlled intervention. Appetite 2020, 144, 104483. [Google Scholar] [CrossRef]
- Rock, C.L.; Zunshine, E.; Nguyen, H.T.; Perez, A.O.; Zoumas, C.; Pakiz, B.; White, M.M. Effects of pistachio consumption in a behavioral weight loss intervention on weight change, cardiometabolic factors, and dietary intake. Nutrients 2020, 12, 2155. [Google Scholar] [CrossRef]
- Cassady, B.A.; Hollis, J.H.; Fulford, A.D.; Considine, R.V.; Mattes, R.D. Mastication of almonds: Effects of lipid bioaccessibility, appetite, and hormone response. Am. J. Clin. Nutr. 2009, 89, 794–800. [Google Scholar] [CrossRef] [Green Version]
- Carughi, A.; Bellisle, F.; Dougkas, A.; Giboreau, A.; Feeney, M.J.; Higgs, J. A randomized controlled pilot study to assess effects of a daily pistachio (Pistacia vera) afternoon snack on next-meal energy intake, satiety, and anthropometry in French women. Nutrients 2019, 11, 767. [Google Scholar] [CrossRef] [Green Version]
- Nuzzo, D.; Galizzi, G.; Amato, A.; Terzo, S.; Picone, P.; Cristaldi, L.; Mulè, F.; Di Carlo, M. Regular intake of pistachio mitigates the deleterious effects of a high fat-diet in the brain of obese mice. Antioxidants 2020, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- Xia, K.; Yang, T.; An, L.-Y.; Lin, Y.-Y.; Qi, Y.-X.; Chen, X.-Z.; Sun, D.-L. The relationship between pistachio (Pistacia vera L) intake and adiposity. A systematic review and meta-analysis of randomized controlled trials. Medicine 2020, 99, e21136. [Google Scholar] [CrossRef]
- Higgs, J.; Styles, K.; Carughi, A.; Roussell, M.A.; Bellisle, F.; Elsner, W.; Li, Z. Plant-based snacking: Research and practical applications of pistachios for health benefits. J. Nutr. Sci. 2021, 10, e87. [Google Scholar] [CrossRef]
- Gentile, C.; Perrone, A.; Attanzio, A.; Tesoriere, L.; Livrea, M.A. Sicilian pistachio (Pistacia vera L.) nut inhibits expression and release of inflammatory mediators and reverts the increase of paracellular permeability in IL-1b-exposed human intestinal epithelial cells. Eur. J. Nutr. 2015, 54, 811–821. [Google Scholar] [CrossRef]
- Ostovan, M.; Bagher Fazljou, S.M.; Khazraei, H.; Araj Khodaei, M.; Torbati, M. The anti-inflammatory effect of Pistacia lentiscus in a rat model of colitis. J. Inflamm. Res. 2020, 13, 369–376. [Google Scholar] [CrossRef]
- Terzo, S.; Mulè, F.; Caldara, G.F.; Baldassano, S.; Puleio, R.; Vitale, M.; Cassata, G.; Ferrantelli, V.; Amato, A. Pistachio consumption alleviates inflammation and improves gut microbiota composition in mice fed a high-fat diet. Int. J. Mol. Sci. 2020, 21, 365. [Google Scholar] [CrossRef] [Green Version]
- Zahouani, Y.; Rhouma, K.B.; Kacem, K.; Sebai, H.; Sakly, M. Aqueous leaf extract of Pistacia lentiscus improves acute acetic acid-induced colitis in rats by reducing inflammation and oxidative stress. J. Med. Food 2021, 24, 697–708. [Google Scholar] [CrossRef]
- Khedir, S.B.; Mzid, M.; Bardaa, S.; Moalla, D.; Sahnoun, Z.; Rebai, T. In vivo evaluation of the anti-inflammatory effect of Pistacia lentiscus fruit oil and its effects on oxidative stress. Evid. Based Complement. Alternat. Med. 2016, 2016, 6108203. [Google Scholar] [PubMed] [Green Version]
- Catalani, S.; Palma, F.; Battistelli, S.; Benedetti, S. Oxidative stress and apoptosis induction in human thyroid carcinoma cells exposed to the essential oil from Pistacia lentiscus aerial parts. PLoS ONE 2017, 12, e0172138. [Google Scholar] [CrossRef] [PubMed]
- Paterniti, I.; Impellizzeri, D.; Cordaro, M.; Siracusa, R.; Bisignano, C.; Gugliandolo, E.; Carughi, A.; Esposito, E.; Mandalari, G.; Cuzzocrea, S. The anti-inflammatory and antioxidant potential of pistachios (Pistacia vera L.) in vitro and in vivo. Nutrients 2017, 9, 915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, K.; Zine, K.; Fahima, K.; Abdelfattah, E.; Sharifudin, S.M.; Duduku, K. NiO nanoparticles induce cytotoxicity mediated through ROS generation and impairing the antioxidant defense in the human lung epithelial cells (A549): Preventive effect of Pistacia lentiscus essential oil. Toxicol. Rep. 2018, 5, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Ghzaiel, I.; Zarrouk, A.; Nury, T.; Libergoli, M.; Florio, F.; Hammouda, S.; Menetrier, F.; Avoscan, L.; Yammine, A.; Samadi, M.; et al. Antioxidant properties and cytoprotective effect of Pistacia lentiscus L. seed oil against 7β-hydroxycholesterol-induced toxicity in C2C12 myoblasts: Reduction in oxidative stress, mitochondrial and peroxisomal dysfunctions and attenuation of cell death. Antioxidants 2021, 10, 1772. [Google Scholar] [CrossRef] [PubMed]
- Tolooei, M.; Mirzaei, A. Effects of Pistacia atlantica extract on erythrocyte membrane rigidity, oxidative stress, and hepatotoxicity induced by CCl4 in rats. Glob. J. Health Sci. 2015, 7, 32–38. [Google Scholar] [CrossRef]
- Abidi, A.; Kourda, N.; Feki, M.; Khamsa, S.B. Protective Effect of Tunisian Flaxseed Oil against Bleomycin-Induced Pulmonary Fibrosis in Rats. Nutr. Cancer 2017, 69, 490–497. [Google Scholar] [CrossRef]
- Chebab, S.; Mekircha, F.; Leghouchi, E. Potential protective effect of Pistacia lentiscus oil against chlorpyrifos-induced hormonal changes and oxidative damage in ovaries and thyroid of female rats. Biomed. Pharmacother. 2017, 96, 1310–1316. [Google Scholar] [CrossRef]
- Saidi, S.A.; Ncir, M.; Chaaben, R.; Jamoussi, K.; van Pelt, J.; Elfeki, A. Liver injury following small intestinal ischemia reperfusion in rats is attenuated by Pistacia lentiscus oil: Antioxidant and anti-inflammatory effects. Arch. Physiol. Biochem. 2017, 123, 199–205. [Google Scholar] [CrossRef]
- Ammari, M.; Othman, H.; Hajri, A.; Sakly, M.; Abdelmelek, H. Pistacia lentiscus oil attenuates memory dysfunctionand decreases levels of biomarkers of oxidative stress inducedby lipopolysaccharide in rats. Brain Res. Bull. 2018, 140, 140–147. [Google Scholar]
- Hong, M.Y.; Groven, S.; Marx, A.; Rasmussen, C.; Beidler, J. Anti-inflammatory, antioxidant, and hypolipidemic effects of mixed nuts in atherogenic diet-fed rats. Molecules 2018, 23, 3126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagheri, S.; Sarabi, M.M.; Khosravi, P. Effects of Pistacia atlantica on oxidative stress markers and antioxidant enzymes expression in diabetic rats. J. Am. Coll. Nutr. 2019, 38, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Sauder, K.A.; McCrea, C.E.; Ulbrecht, J.S.; Kris-Etherton, P.M.; West, S.G. Effects of pistachios on the lipid/lipoprotein profile, glycemic control, inflammation, and endothelial function in type 2 diabetes: A randomized trial. Metabolism 2015, 64, 1521–1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kay, C.D.; Gebauer, S.K.; West, S.G.; Kris-Etherton, P.M. Pistachios Increase Serum Antioxidants and Lower Serum Oxidized-LDL in Hypercholesterolemic Adults. J. Nutr. 2010, 140, 1093–1098. [Google Scholar] [CrossRef] [Green Version]
- Papada, E.; Forbes, A.; Amerikanou, C.; Torovic, L.; Kalogeropoulos, N.; Tzavara, C.; Triantafillidis, J.K.; Kaliora, A.C. Antioxidative efficacy of a Pistacia lentiscus supplement and its effect on the plasma amino acid profile in inflammatory bowel disease: A randomised, double-blind, placebo-controlled trial. Nutrients 2018, 10, 1779. [Google Scholar] [CrossRef] [Green Version]
- Rahman, H.S. Phytochemical analysis and antioxidant and anticancer activities of mastic gum resin from Pistacia atlantica subspecies kurdica. Onco Targets Ther. 2018, 11, 4559–4572. [Google Scholar] [CrossRef] [Green Version]
- Kirollos, F.N.; Elhawary, S.S.; Salama, O.M.; Elkhawas, Y.A. LC-ESI-MS/MS and cytotoxic activity of three Pistacia species. Nat. Prod. Res. 2018, 33, 1747–1750. [Google Scholar] [CrossRef]
- Pasban-Aliabadi, H. Effects of baneh (Pistacia atlantica) gum on human breast cancer cell line (MCF-7) and its interaction with anticancer drug doxorubicin. Iran. J. Pharm. Res. 2019, 18, 1959–1966. [Google Scholar]
- Dousti, M.; Sari, S.; Saffari, M.; Kelidari, H.; Asare-Addo, K.; Nokhodchi, A. Loading Pistacia atlantica essential oil in solid lipid nanoparticles and its effect on apoptosis of breast cancer cell line MDA-MB-231. Pharm. Dev. Technol. 2022, 27, 63–71. [Google Scholar] [CrossRef]
- Glei, M.; Ludwig, D.; Lamberty, J.; Fischer, S.; Lorkowski, S.; Schlörmann, W. Chemopreventive potential of raw and roasted pistachios regarding colon carcinogenesis. Nutrients 2017, 18, 1368. [Google Scholar] [CrossRef] [Green Version]
- Koyuncu, I.; Gönel, A.; Temiz, E.; Karaoğul, E.; Uyar, Z. Pistachio green hull extract induces apoptosis through multiple signaling pathways by causing oxidative stress on colon cancer cells. Anticancer. Agents Med. Chem. 2021, 21, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Seifaddinipour, M.; Farghadani, R.; Namvar, F.; Bin Mohamad, J.; Muhamad, N.A. In vitro and in vivo anticancer activity of the most cytotoxic fraction of pistachio hull extract in breast cancer. Molecules 2020, 25, 1776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostovan, M.; Andabar, M.H.; Khazraei, H.; Bagher Fazljou, S.M.; Khodabandeh, Z.; Shamsdin, S.A.; Araj Khodaei, M.; Torbati, M. The short-term effects of Pistacia lentiscus oil and sesame oil on liver and kidney pathology of rats and human cancer cell lines. Galen Med. J. 2020, 9, e2001. [Google Scholar] [CrossRef] [PubMed]
- Tabanca, N.; Nalbantsoy, A.; Kendra, P.E.; Demirci, F.; Demirci, B. Chemical characterization and biological activity of the mastic gum essential oils of Pistacia lentiscus var. chia from Turkey. Molecules 2020, 25, 2136. [Google Scholar] [CrossRef] [PubMed]
- Soulaidopoulos, S.; Tsiogka, A.; Chrysohoou, C.; Lazarou, E.; Aznaouridis, K.; Doundoulakis, I.; Tyrovola, D.; Tousoulis, D.; Tsioufis, K.; Vlachopoulos, C.; et al. Overview of chios mastic gum (Pistacia lentiscus) effects on human health. Nutrients 2022, 14, 590. [Google Scholar] [CrossRef]
- Doi, K.; Wei, M.; Kitano, M.; Uematsu, N.; Inoue, M.; Wanibuchi, H. Enhancement of preneoplastic lesion yield by Chios Mastic Gum in a rat liver medium-term carcinogenesis bioassay. Toxicol. Appl. Pharmacol. 2009, 234, 135–142. [Google Scholar] [CrossRef]
- Janakat, S.; Al-Merie, H. Evaluation of hepatoprotective effect of Pistacia lentiscus, Phillyrea latifolia and Nicotiana glauca. J. Ethnopharmacol. 2002, 83, 135–138. [Google Scholar] [CrossRef]
- Naghshi, S.; Sadeghian, M.; Nasiri, M.; Mobarak, S.; Asadi, M.; Sadegh, O. Association of total nut, tree nut, peanut, and peanut butter consumption with cancer incidence and mortality: A comprehensive systematic review and dose-response meta-analysis of observational studies. Adv. Nutr. 2021, 12, 793–808. [Google Scholar] [CrossRef]
- Harandi, H.; Khanamani Falahati-pour, S.K.; Mahmoodi, M.; Faramarz, S.; Maleki, H.; Nasab, F.B.; Shiri, H.; Fooladi, S.; Nematollahi, M.H. Nanoliposomal formulation of pistachio hull extract: Preparation, characterization and anti-cancer evaluation through Bax/Bcl2 modulation. Mol. Biol. Rep. 2022, 49, 2735–2743. [Google Scholar] [CrossRef]
- Ukhanova, M.; Wang, X.; Baer, D.J.; Novotny, J.A.; Fredborg, M.; Mai, V. Effects of almond and pistachio consumption on gut microbiota composition in a randomised cross-over human feeding study. Br. J. Nutr. 2014, 111, 2146–2152. [Google Scholar] [CrossRef]
- Yanni, A.E.; Mitropoulou, G.; Prapa, I.; Agrogiannis, G.; Kostomitsopoulos, N.; Bezirtzoglou, E.; Kourkoutas, Y.; Karathanos, V.T. Functional modulation of gut microbiota in diabetic rats following dietary intervention with pistachio nuts (Pistacia vera L.). Metabol. Open 2020, 7, 100040. [Google Scholar] [CrossRef] [PubMed]
- Creedon, A.S.; Hung, E.S.; Berry, S.E.; Whelan, K. Nuts and their effect on gut microbiota, gut function and symptoms in adults: A systematic review and meta-analysis of randomised controlled trials. Nutrients 2020, 12, 2347. [Google Scholar] [CrossRef] [PubMed]
- Catalán, L.; Alvarez-Orti, M.; Pardo-Giménez, A.; Gómez, R.; Rabadán, A.; Pardo, J.E. Pistachio oil: A review on its Chemical composition, extraction systems, and uses. Eur. J. Lipid Sci. Technol. 2017, 119, 1600126. [Google Scholar] [CrossRef]
- Ojeda-Amador, R.M.; Fregapane, G.; Salvador, M.D. Composition and properties of virgin pistachio oils and their by-products from different cultivars. Food Chem. 2018, 240, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Fregapane, G.; Guisantes-Batan, E.; Ojeda-Amador, R.M.; Salvador, M.D. Development of functional edible oils enriched with pistachio and walnut phenolic extracts. Food Chem. 2020, 310, 125917. [Google Scholar] [CrossRef] [PubMed]
- Fregapane, G.; Cabezas Fernández, C.; Salvador, M.D. Emulsion and Microemulsion Systems to Improve Functional Edible Oils Enriched with Walnut and Pistachio Phenolic Extracts. Foods 2022, 11, 1210. [Google Scholar] [CrossRef]
- Arribas, C.; Cabellos, B.; Sánchez, C.; Cuadrado, C.; Guillamón, E.; Pedrosa, M.M. The impact of extrusion on the nutritional composition, dietary fiber and in vitro digestibility of gluten-free snacks based on rice, pea and carob flour blends. Food Funct. 2017, 18, 3654–3663. [Google Scholar] [CrossRef]
- Sanchiz, A.; Pedrosa, M.; Guillamon, E.; Arribas, C.; Cabellos, B.; Linacero, R.; Cuadrado, C. Influence of boiling and autoclave processing on the phenolic content, antioxidant activity and functional properties of pistachio, cashew and chestnut flours. LWT 2019, 105, 250–256. [Google Scholar] [CrossRef]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-Based Milk Alternatives an Emerging Segment of Functional Beverages: A Review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef]
- Shakerardekani, A.; Karim, R.; Ghazali, H.M.; Chin, N.L. Oxidative Stability of Pistachio (Pistacia vera L.) Paste and Spreads. J. Am. Oil Chem. Soc. 2015, 92, 1015–1021. [Google Scholar] [CrossRef]
- Polmann, G.; Badia, V.; Danielski, R.; Salvador-Ferreira, S.R.; Block, J.M. Nuts and nut-based products: A meta-analysis from intake health benefits and functional characteristics from recovered constituents. Food Rev. Int. 2022, 29, 197–210. [Google Scholar] [CrossRef]
- Elloumi, W.; Maalej, A.; Ortiz, S.; Michel, S.; Chamkha, M.; Boutefnouchet, S.; Sayadi, S. Pistacia lentiscus L. Distilled Leaves as a Potential Cosmeceutical Ingredient: Phytochemical Characterization, Transdermal Diffusion, and Anti-Elastase and Anti-Tyrosinase Activities. Molecules 2022, 27, 855. [Google Scholar] [CrossRef] [PubMed]
- Kahleova, H.; Levin, S.; Barnard, N.D. Vegetarian Dietary Patterns and Cardiovascular Disease. Prog. Cardiovasc. Dis. 2018, 61, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Neale, E.P.; Tran, G.; Brown, R.C. Barriers and facilitators to nut consumption: A narrative review. Int. J. Environ. Res. Public Health 2020, 17, 9127. [Google Scholar] [CrossRef]
- Brown, R.C.; Gray, A.R.; Yong, L.C.; Chisholm, A.; Leong, S.L.; Tey, S.L. A comparison of perceptions of nuts between the general public, dietitians, general practitioners, and nurses. Peer J. 2018, 6, e5500. [Google Scholar] [CrossRef]
- Yong, L.C.; Gray, A.R.; Chisholm, A.; Leong, S.L.; Tey, S.L.; Brown, R.C. Barriers to and facilitators and perceptions of nut consumption among the general population in New Zealand. Public Health Nutr. 2017, 20, 3166–3182. [Google Scholar] [CrossRef] [Green Version]
- Hong, L.; Yao, L.; Xie, P.; Li, W. An empirical study on consumer purchase intention for nuts and influencing factors—Survey based on consumers from Zhejiang. Food Control 2020, 117, 107343. [Google Scholar] [CrossRef]
- Tran, G. Investigating the Role of Nutrition Information and Misinformation in Dietetic Practice: A Case Study Exploring the Perceptions of Nut Consumption in Health Professionals and Consumers. Bachelor’s Thesis, University of Wollongong, Wollongong, Australia, 2020. [Google Scholar]
- O’Neil, C.E.; Nicklas, T.A. Tree Nut Consumption Is Associated with Better Nutrient Adequacy and Diet Quality in Adults: National Health and Nutrition Examination Survey 2005–2010. Nutrients 2015, 7, 595–607. [Google Scholar] [CrossRef] [Green Version]
- Nikodijevic, C.J.; Probst, Y.C.; Batterham, M.J.; Tapsell, L.C.; Neale, E.P. Nut consumption in a representative survey of Australians: A secondary analysis of the 2011–2012 National Nutrition and Physical Activity Survey. Public Health Nutr. 2020, 23, 3368–3378. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.C.; Tey, S.L.; Gray, A.R.; Chisholm, A.; Smith, C.; Fleming, E.; Blakey, C.; Parnell, W. Patterns and predictors of nut consumption: Results from the 2008/09 New Zealand Adult Nutrition Survey. Br. J. Nutr. 2014, 112, 2028–2040. [Google Scholar] [CrossRef] [Green Version]
- Dikariyanto, V.; Berry, S.E.; Pot, G.K.; Francis, L.; Smith, L.; Hall, W.L. Tree nut snack consumption is associated with better diet quality and CVD risk in the UK adult population: National Diet and Nutrition Survey (NDNS) 2008–2014. Public Health Nutr. 2020, 23, 3160–3169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
g/100 g | Pistachio | Walnut | Almond | Hazelnut |
---|---|---|---|---|
Water | 1.85 | 4.39 | 2.41 | 2.52 |
Energy (Kcal) | 572 | 643 | 598 | 646 |
Lipids | 45.82 | 60.71 | 52.54 | 62.40 |
SFA | 5.64 | 5.36 | 4.10 | 4.51 |
PUFA | 13.35 | 44.18 | 12.96 | 8.46 |
MUFA | 24.53 | 8.37 | 33.08 | 46.61 |
C16:0 | 8.0–13.0 | 6.0–8.0 | 4.0–13.0 | 4.0–9.0 |
C18:0 | 0.5–2.0 | 1.0–3.0 | 2.0–10.0 | 1.0–4.0 |
C16:1 | 0.5–1.0 | 0.1–0.2 | 0.2–0.6 | 0.1–0.3 |
C18:1 | 45.0–70.0 | 13.0–21.0 | 48.0–80.0 | 66.0–85.0 |
C18:2 | 16.0–37.0 | 54.0–65.0 | 15.0–34.0 | 5.7–25.0 |
C18:3 | 0.1–0.4 | 13.0–14.0 | N.D. | 0.0–0.2 |
Proteins | 21.05 | 14.29 | 20.96 | 15.03 |
Carbohydrates | 28.28 | 17.86 | 21.01 | 17.60 |
Fiber | 10.30 | 7.10 | 10.90 | 9.40 |
Sugars | 7.74 | 3.57 | 4.86 | 4.89 |
Type of Pistachio | Status of Pistacho | TPP | Antioxidant Assay | Value of Antioxidant Capacity | References |
---|---|---|---|---|---|
Larnaka (Spanish cultivar) | Natural | 4900 mg/Kg fw | ORAC | 330 mmol of TE/Kg | [24] |
DPPH | 35 mmol of TE/Kg | ||||
Kastel (Spanish cultivar) | Natural | 1600 mg/Kg fw | ORAC | 89 mmol of TE/Kg | [24] |
DPPH | 13 mmol of TE/Kg | ||||
Kerman (Spanish cultivar) | Natural | 1900 mg/Kg fw | ORAC | 61 mmol of TE/Kg | [24] |
DPPH | 10 mmol of TE/Kg | ||||
Uzun (Turkish cultivar) | Natural | 26.2 mg/100 g fw | DPPH | 8.05 μmol of TE/g | [27] |
Roasted | 32.4–42.4 mg/100 g fw | DPPH | 9.76–11.5 μmol of TE/g | [27] | |
Ohadi (Turkish cultivar) | Natural | 9.23–10.55 mg/Kg GAE | DPPH | 4.34–5.56 mmol TE/Kg | [28] |
ABTS | 4.11–5.95 mmol TE/Kg | [28] | |||
Roasted | 10.35–11.23 mg/Kg GAE | DPPH | 3.53–6.32 mmol TE/Kg | [28] | |
ABTS | 5.80–7.35 mmol TE/Kg | [28] | |||
Uzum (Turkish cultivar) | Natural | 9.19–11.46 mg/Kg GAE | DPPH | 7.16–13.58 mmol Trolox/Kg | [28] |
ABTS | 15.69–28.28 mmol Trolox/Kg | [28] | |||
Roasted | 10.46–12.73 mg/Kg GAE | DPPH | 13.5–18.00 mmol Trolox/Kg | [28] | |
ABTS | 26.81–35.86 mmol Trolox/Kg | [28] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateos, R.; Salvador, M.D.; Fregapane, G.; Goya, L. Why Should Pistachio Be a Regular Food in Our Diet? Nutrients 2022, 14, 3207. https://doi.org/10.3390/nu14153207
Mateos R, Salvador MD, Fregapane G, Goya L. Why Should Pistachio Be a Regular Food in Our Diet? Nutrients. 2022; 14(15):3207. https://doi.org/10.3390/nu14153207
Chicago/Turabian StyleMateos, Raquel, María Desamparados Salvador, Giuseppe Fregapane, and Luis Goya. 2022. "Why Should Pistachio Be a Regular Food in Our Diet?" Nutrients 14, no. 15: 3207. https://doi.org/10.3390/nu14153207
APA StyleMateos, R., Salvador, M. D., Fregapane, G., & Goya, L. (2022). Why Should Pistachio Be a Regular Food in Our Diet? Nutrients, 14(15), 3207. https://doi.org/10.3390/nu14153207