Body Composition and “Catch-Up” Fat Growth in Healthy Small for Gestational Age Preterm Infants and Neurodevelopmental Outcomes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korff, S.G.; Ross, J.; Morella, K.; Taylor, S.N. Investigation of a Common Clinical Approach to Poor Growth in Preterm Infants. Am. J. Perinatol. 2020, 37, 1462–1466. [Google Scholar] [CrossRef] [PubMed]
- Ehrenkranz, R.A.; Dusick, A.M.; Vohr, B.R.; Wright, L.L.; Wrage, L.A.; Poole, W.K. Growth in the Neonatal Intensive Care Unit Influences Neurodevelopmental and Growth Outcomes of Extremely Low Birth Weight Infants. Pediatrics 2006, 117, 1253–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belfort, M. Infant growth before and after term: Effects on Neurodevelopment in Preterm Infants. Pediatrics 2011, 128, e899–e906. [Google Scholar] [PubMed]
- Coviello, C.; Keunen, K.; Kersbergen, K.J.; Groenendaal, F.; Leemans, A.; Peels, B.; Isgum, I.; Viergever, M.A.; De Vries, L.S.; Buonocore, G.; et al. Effects of early nutrition and growth on brain volumes, white matter microstructure, and neurodevelopmental outcome in preterm newborns. Pediatr. Res. 2018, 83, 102–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfister, K.M.; Zhang, L.; Miller, N.C.; Ingolfsland, E.; Demerath, E.W.; Ramel, S.E. Early body composition changes are associated with neurodevelopmental and metabolic outcomes at 4 years of age in very preterm infants. Pediatr. Res. 2018, 84, 713–718. [Google Scholar] [CrossRef]
- Ramel, S.E.; Gray, H.L.; Christiansen, E.; Boys, C.; Georgieff, M.K.; Demerath, E.W. Greater Early Gains in Fat-Free Mass, but Not Fat Mass, Are Associated with Improved Neurodevelopment at 1 Year Corrected Age for Prematurity in Very Low Birth Weight Preterm Infants. J. Pediatr. 2016, 173, 108–115. [Google Scholar] [CrossRef]
- Sacchi, C.; Marino, C.; Nosarti, C.; Vieno, A.; Vesentin, S.; Simonelli, A. Association of Intrauterine Growth Restriction and Small for Gestational Age Status With Childhood Cognitive Outcomes: A Systematic Review and Meta-analysis. JAMA Pediatr. 2020, 174, 772–781. [Google Scholar] [PubMed]
- Morrison, K.M.; Ramsingh, L.; Gunn, E.; Streiner, D.; Van Lieshout, R.; Boyle, M.; Gerstein, H.; Schmidt, L.; Saigal, S. Cardiometabolic Health in Adults Born Premature with Extremely Low Birth Weight. Pediatrics 2016, 138, e20160515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markopoulou, P.; Papanikolaou, E.; Analytis, A.; Zoumakis, E.; Siahanidou, T. Preterm Birth as a Risk Factor for Metabolic Syndrome and Cardiovascular Disease in Adult Life: A Systematic Review and Meta-Analysis. J. Pediatr. 2019, 210, 69–80.e5. [Google Scholar] [CrossRef] [PubMed]
- Okada, T.; Takahashi, S.; Nagano, N.; Yoshikawa, K.; Usukura, Y.; Hosono, S. Early postnatal alteration of body composition in preterm and small-for-gestational-age infants: Implications of catch-up fat. Pediatr. Res. 2015, 77, 136–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leunissen, R.W.J.; Kerkhof, G.F.; Stijnen, T.; Hokken-Koelega, A. Timing and Tempo of First-Year Rapid Growth in Relation to Cardiovascular and Metabolic Risk Profile in Early Adulthood. JAMA 2009, 301, 2234–2242. [Google Scholar] [CrossRef] [Green Version]
- Lapillonne, A.; Griffin, I.J. Feeding preterm infants today for later metabolic and cardiovascular outcomes. J. Pediatr. 2013, 162 (Suppl. S3), S7–S16. [Google Scholar] [CrossRef]
- Taylor, S.N.; Martin, C.R. Evidence-based Discharge Nutrition to Optimize Preterm Infant Outcomes. NeoReviews 2022, 23, e108–e116. [Google Scholar] [CrossRef]
- Kube, D.A.; Wilson, W.M.; Petersen, M.C.; Palmer, F.B. CAT/CLAMS: Its use in detecting early childhood cognitive impairment. Pediatr. Neurol. 2000, 23, 208–215. [Google Scholar] [CrossRef]
- McCurdy, M.; Bellows, A.; Deng, D.; Leppert, M.; Mahone, E.M.; Pritchard, A. Test-retest reliability of the Capute scales for neurodevelopmental screening of a high risk sample: Impact of test-retest interval and degree of neonatal risk. J. Neonatal-Perinatal Med. 2015, 8, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Roggero, P.; Gianni, M.L.; Liotto, N.; Taroni, F.; Orsi, A.; Amato, O.; Morlacchi, L.; Piemontese, P.; Agosti, M.; Mosca, F. Rapid Recovery of Fat Mass in Small for Gestational Age Preterm Infants after Term. PLoS ONE 2011, 6, e14489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norris, T.; Ramel, S.E.; Catalano, P.; Ni Caoimh, C.; Roggero, P.; Murray, D.; Fields, D.A.; Demerath, E.W.; Johnson, W. New charts for the assessment of body composition, according to air-displacement plethysmography, at birth and across the first 6 mo of life. Am. J. Clin. Nutr. 2019, 109, 1353–1360. [Google Scholar] [CrossRef] [PubMed]
- Hamatschek, C.; Yousuf, E.I.; Möllers, L.S.; So, H.Y.; Morrison, K.M.; Fusch, C.; Rochow, N. Fat and Fat-Free Mass of Preterm and Term Infants from Birth to Six Months: A Review of Current Evidence. Nutrients 2020, 12, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Theyab, N.A.; Donovan, T.J.; Eiby, Y.A.; Colditz, P.B.; Lingwood, B.E. Fat trajectory after birth in very preterm infants mimics healthy term infants. Pediatr. Obes. 2019, 14, e12472. [Google Scholar] [CrossRef] [PubMed]
- Chmielewska, A.; Farooqi, A.; Domellöf, M.; Ohlund, I. Lean Tissue Deficit in Preterm Infants Persists up to 4 Months of Age: Results from a Swedish Longitudinal Study. Neonatology 2020, 117, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Roggero, P.; Giani, M.L.; Amato, O.; Orsi, A.; Piemontese, P.; Cosma, B.; Morlacchi, B.; Mosca, F. Postnatal growth failure in preterm infants: Recovery of growth and body composition after term. Early Hum. Dev. 2008, 84, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Forsum, E.; Olhager, E.; Törnqvist, C. An Evaluation of the Pea Pod System for Assessing Body Composition of Moderately Premature Infants. Nutrients 2016, 8, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagel, E.; Hickey, M.; Teigen, L.; Kuchnia, A.; Curran, K.; Soumekh, L.; Earthman, C.; Demerath, E.; Ramel, S. Clinical Application of Body Composition Methods in Premature Infants. J. Parenter. Enter. Nutr. 2020, 44, 785–795. [Google Scholar] [CrossRef]
- Larsson, A.; Ottosson, P.; Törnqvist, C.; Olhager, E. Body composition and growth in full-term small for gestational age and large for gestational age Swedish infants assessed with air displacement plethysmography at birth and at 3-4 months of age. PLoS ONE 2019, 14, e0207978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincer, M.J.; Cake, H.; Graven, M.; Dodds, L.; McHugh, S.; Fraboni, T. A Population-Based Study to Determine the Performance of the Cognitive Adaptive Test/Clinical Linguistic and Auditory Milestone Scale to Predict the Mental Developmental Index at 18 Months on the Bayley Scales of Infant Development-II in Very Preterm Infants. Pediatrics 2005, 116, e864–e867. [Google Scholar] [CrossRef] [Green Version]
- Macias, M.M.; Saylor, C.F.; Greer, M.G.; Charles, J.M.; Bell, N.; Katikaneni, L.D. Infant screening: The usefulness of the Bayley Infant Neurodevelopmental Screener and the Clinical Adaptive Test/Clinical Linguistic Auditory Milestone Scale. J. Dev. Behav. Pediatr. 1998, 19, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Accardo, P.C.A. The Capute Scales: Cognitive Adaptive Test/Clinical Linguistic and Auditory Milestone Scale; Brooks Publishing: Pacific Groove, CA, USA, 2005; p. 136. [Google Scholar]
- Tavasoli, A.; Azimi, P.; Montazeri, A. Reliability and Validity of the Peabody Developmental Motor Scales-Second Edition for Assessing Motor Development of Low Birth Weight Preterm Infants. Pediatr. Neurol. 2014, 51, 522–526. [Google Scholar] [CrossRef]
- Caple, J.; Armentrout, D.; Huseby, V.; Halbardier, B.; Garcia, J.; Sparks, J.W.; Moya, F.R. Randomized, Controlled Trial of Slow Versus Rapid Feeding Volume Advancement in Preterm Infants. Pediatrics 2004, 114, 1597–1600. [Google Scholar] [CrossRef] [PubMed]
- Cobb, B.A.; Carlo, W.A.; Ambalavanan, N. Gastric Residuals and Their Relationship to Necrotizing Enterocolitis in Very Low Birth Weight Infants. Pediatrics 2004, 113, 50–53. [Google Scholar] [CrossRef]
- Kennedy, K.; Tyson, J. Rapid versus slow rate of advancement of feedings for promoting growth and preventing necrotizing enterocolitis in parenterally fed low-birth-weight infants. Cochrane Database Syst. Rev. 1998, CD001241. [Google Scholar] [CrossRef]
- Preventing necrotizing enterocolitis in parenterally fed low birth weight infants (Review). Cochrane Database Syst. Rev. 2005, 4, 1–11.
- Mishra, S.; Agarwal, R.; Jeevasankar, M.; Deorari, A.K.; Paul, V.K. Minimal enteral nutrition. Indian J. Pediatr. 2008, 75, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Mosqueda, E.; Sapiegiene, L.; Glynn, L.; Wilson-Costello, D.; Weiss, M. The use of minimal enteral nutrition in extremely low birthweight newborns. J. Perinatol. 2008, 28, 249–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Premji, S.S.; Paes, B.; Jacobson, K.; Chessell, L. Evidence-based feeding guidelines for very low-birthweight infants. Adv. Neonatal Care 2002, 2, 5–18. [Google Scholar] [CrossRef]
- Rayyis, S.F.; Ambalavanan, N.; Wright, L.; Carlo, W.A. Randomized trial of “slow” versus “fast” feed advancements on the incidence of necrotizing enterocolitis in very low birth weight infants. J. Pediatr. 1999, 134, 293–297. [Google Scholar] [CrossRef]
- Reiter, P.D.; Thureen, P.J. Nutrition support in neonatology. In The Science and Practice of Nutrition Support; Gottschlich, M.M., Ed.; Kendall/Hunt Publishing Company: Dubuque, IA, USA, 2001; pp. 325–333. [Google Scholar]
- Rd, J.L.S.; Montgomery, D.; Alder, S.C.; Rn, D.K.L.; Gerstmann, D.R.; Christensen, R.D. Implementing Feeding Guidelines for NICU Patients <2000 g Results in Less Variability in Nutrition Outcomes. J. Parenter. Enter. Nutr. 2006, 30, 515–518. [Google Scholar] [CrossRef]
- Simmer, K. Aggressive nutrition for preterm infants—Benefits and risks. Early Hum. Dev. 2007, 83, 631–634. [Google Scholar] [CrossRef]
- Tyson, J.E.; Kennedy, K.A. Trophic feedings for parenterally fed infants (Review). Cochrane Database Syst. Rev. 2005, 3, 1–21. [Google Scholar]
- Yu, V.; Simmer, K. Enteral nutrition: Practical aspects, strategy and management. In Nutrition of the Preterm Infant: Scientific Basis and Practical Guidelines, 2nd ed.; Digital Educational Publishing, Inc.: Cincinnati, OH, USA, 2005; pp. 311–332. [Google Scholar]
Demographic | Subgroup | n of 92 |
---|---|---|
Sex | Male | 43 (46.7) |
Female | 49 (53.2) | |
Race | African American | 59 (64.1) |
Caucasian/Hispanic | 33 (35.9) | |
Growth classification | Small for gestational age | 29 (31.5) |
Appropriate for gestational age | 63 (68.4) | |
Nutrition | Days of TPN | 12.9 ± 7.5 |
Breast milk feeding during hospitalization | 85 (92) | |
Breast milk feeding at discharge | 47 (51) |
Anthropometrics | Time | SGA (n = 14) | AGA (n = 43) | p-Value |
---|---|---|---|---|
Weight gain (grams/day) | ADP1 | 19.8 ± 5.1 | 23.9 ± 4.1 | 0.003 |
ADP2 | 19.9 ± 2.8 | 20.9 ± 3.0 | 0.3 | |
Length (cm/week) | ADP1 | 1.0 ± 0.3 | 0.9 ± 0.2 | 0.5 |
ADP2 | 0.7 ± 0.1 | 0.8 ± 0.1 | 0.6 | |
Head circumference (cm/week) | Birth to discharge | 0.8 ± 0.3 | 0.8 ± 0.3 | 0.8 |
ADP | Body Composition | SGA (n = 14) | AGA (n = 43) | p-Value |
---|---|---|---|---|
ADP1 | % Fat | 14.3 ± 5.2 [9.4–23.5] | 18.8 ± 4.8 [11.7–34.1] | 0.004 |
% Lean | 85.7 ± 5.2 [76.5–90.6] | 81.2 ± 4.8 [65.9–88.3] | 0.004 | |
ADP2 | % Fat | 19.2 ± 5.9 [9.7–30.8] | 17.8 ± 5.0 [4.0–29.0] | 0.37 |
% Lean | 80.8 ± 5.9 [69.2–90.3] | 82.2 ± 5.0 [71.0–96.0] | 0.40 |
Variable | Visit | SGA | AGA | 95% Confidence Interval | |
---|---|---|---|---|---|
SGA | AGA | ||||
Weight (kg) | 1 * | 4.6 ± 0.3 | 5.7 ± 0.2 | 3.9–5.2 | 5.3–6.0 |
2 | 6.4 ± 0.4 | 7.8 ± 0.2 | 5.5–7.3 | 7.3–8.2 | |
3 | 7.7 ± 0.6 | 9.3 ± 0.3 | 6.6–8.9 | 8.7–9.9 | |
4 | 9.9 ± 0.6 | 10.0 ± 0.3 | 8.7–11.2 | 10.2–11.5 | |
Height (cm) | 1 | 56.6 ± 1.1 | 59.5 ± 0.6 | 54.4–58.9 | 58.3–60.7 |
2 | 63.9 ± 1.5 | 67.7 ± 0.8 | 60.9–66.9 | 66.1–69.3 | |
3 | 70.4 ± 1.8 | 74.4 ± 1.0 | 66.6–74.1 | 72.5–76.4 | |
4 | 78.0 ± 1.6 | 81.0 ± 0.8 | 74.8–81.2 | 79.4–82.7 | |
Head circumference (cm) | 1 * | 37.2 ± 0.5 | 40.7 ± 0.2 | 36.2–38.2 | 40.2–41.2 |
2 * | 41.3 ± 0.5 | 44.1 ± 0.3 | 40.2–42.4 | 43.5–44.7 | |
3 * | 43.6 ± 0.5 | 46.1 ± 0.3 | 42.5–44.6 | 45.5–46.7 | |
4 * | 45.3 ± 0.5 | 47.6 ± 0.3 | 44.2–46.4 | 47.0–48.2 | |
Adjusted CAT DQ | 1 | 124.8 ± 9.4 | 113.8 ± 5.0 | 105.6–143.9 | 103.5–124.0 |
2 | 96.8 ± 6.4 | 109.2 ± 3.4 | 83.8–109.8 | 102.3–116.2 | |
3 | 102.5 ± 6.1 | 105.5 ± 3.3 | 90.1–114.9 | 98.9–112.1 | |
4 | 97.4 ± 7.6 | 104.8 ± 4.1 | 82.0–112.8 | 96.5–113.0 | |
Adjusted CLAMS DQ | 1 | 131.4 ± 12.8 | 135.0 ± 6.8 | 105.4–157.3 | 121.0–148.8 |
2 | 101.0 ± 7.8 | 108.4 ± 4.2 | 85.2–116.8 | 99.9–116.8 | |
3 | 105.3 ± 6.9 | 99.1 ± 3.7 | 91.3–119.2 | 91.7–106.6 | |
4 | 98.8 ± 8.0 | 98.5 ± 4.3 | 82.5–115.1 | 89.8–107.3 | |
Adjusted gross motor DQ | 1 | 112.6 ± 5.4 | 124.3 ± 10.2 | 101.5–123.6 | 103.6–144.9 |
2 | 99.9 ± 3.7 | 95.0 ± 6.9 | 92.3–107.4 | 80.9–109.1 | |
3 | 103.1 ± 3.7 | 103.9 ± 6.8 | 95.7–110.5 | 90.0–117.8 | |
4 | 105.8 ± 3.6 | 106.8 ± 6.7 | 98.5–113.0 | 93.2–120.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lach, L.E.; Chetta, K.E.; Ruddy-Humphries, A.L.; Ebeling, M.D.; Gregoski, M.J.; Katikaneni, L.D. Body Composition and “Catch-Up” Fat Growth in Healthy Small for Gestational Age Preterm Infants and Neurodevelopmental Outcomes. Nutrients 2022, 14, 3051. https://doi.org/10.3390/nu14153051
Lach LE, Chetta KE, Ruddy-Humphries AL, Ebeling MD, Gregoski MJ, Katikaneni LD. Body Composition and “Catch-Up” Fat Growth in Healthy Small for Gestational Age Preterm Infants and Neurodevelopmental Outcomes. Nutrients. 2022; 14(15):3051. https://doi.org/10.3390/nu14153051
Chicago/Turabian StyleLach, Laura E., Katherine E. Chetta, Amy L. Ruddy-Humphries, Myla D. Ebeling, Mathew J. Gregoski, and Lakshmi D. Katikaneni. 2022. "Body Composition and “Catch-Up” Fat Growth in Healthy Small for Gestational Age Preterm Infants and Neurodevelopmental Outcomes" Nutrients 14, no. 15: 3051. https://doi.org/10.3390/nu14153051
APA StyleLach, L. E., Chetta, K. E., Ruddy-Humphries, A. L., Ebeling, M. D., Gregoski, M. J., & Katikaneni, L. D. (2022). Body Composition and “Catch-Up” Fat Growth in Healthy Small for Gestational Age Preterm Infants and Neurodevelopmental Outcomes. Nutrients, 14(15), 3051. https://doi.org/10.3390/nu14153051