Fat, Sugar, and Bone Health: A Complex Relationship
Abstract
:1. Introduction
2. Studies in Animals
2.1. High Fat Diet and Bone Health
High-Fat Diet and Bone Volume, Bone Microarchitecture, and Bone Strength
2.2. High Sugar Diet and Bone Health
2.2.1. Fructose Diet and Bone Volume, Bone Microarchitecture, and Bone Strength
2.2.2. Glucose Diet and Bone Volume, Bone Microarchitecture, and Bone Strength
2.2.3. Sucrose Diet and Bone Volume, Bone Microarchitecture, and Bone Strength
3. The Effect of Fat and Sugar Diet on Bone Health among Human Population Studies
3.1. Different Dietary Patterns and Bone Health
3.2. Bone Marrow Tissue and Bone Health
3.3. Obesity and Bone Health
3.4. T2DM and Bone Health
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Beier, E.E.; Inzana, J.A.; Sheu, T.J.; Shu, L.; Puzas, J.E.; Mooney, R.A. Effects of Combined Exposure to Lead and High-Fat Diet on Bone Quality in Juvenile Male Mice. Environ. Health Perspect. 2015, 123, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Macri, E.V.; Gonzales Chaves, M.M.; Rodriguez, P.N.; Mandalunis, P.; Zeni, S.; Lifshitz, F.; Friedman, S.M. High-fat diets affect energy and bone metabolism in growing rats. Eur. J. Nutr. 2012, 51, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Scheller, E.L.; Khoury, B.; Moller, K.L.; Wee, N.K.; Khandaker, S.; Kozloff, K.M.; Abrishami, S.H.; Zamarron, B.F.; Singer, K. Changes in Skeletal Integrity and Marrow Adiposity during High-Fat Diet and after Weight Loss. Front. Endocrinol. 2016, 7, 102. [Google Scholar] [CrossRef] [PubMed]
- Lac, G.; Cavalie, H.; Ebal, E.; Michaux, O. Effects of a high fat diet on bone of growing rats. Correlations between visceral fat, adiponectin and bone mass density. Lipids Health Dis. 2008, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dellatore, P.; Douard, V.; Qin, L.; Watford, M.; Ferraris, R.P.; Lin, T.; Shapses, S.A. High fat diet enriched with saturated, but not monounsaturated fatty acids adversely affects femur, and both diets increase calcium absorption in older female mice. Nutr. Res. 2016, 36, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.J.; Gregoire, B.R. A high-fat diet increases body weight and circulating estradiol concentrations but does not improve bone structural properties in ovariectomized mice. Nutr. Res. 2016, 36, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Lecka-Czernik, B.; Stechschulte, L.A.; Czernik, P.J.; Dowling, A.R. High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Mol. Cell. Endocrinol. 2015, 410, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Lorincz, C.; Reimer, R.A.; Boyd, S.K.; Zernicke, R.F. High-fat, sucrose diet impairs geometrical and mechanical properties of cortical bone in mice. Br. J. Nutr. 2010, 103, 1302–1308. [Google Scholar] [CrossRef] [PubMed]
- Jatkar, A.; Kurland, I.J.; Judex, S. Diets High in Fat or Fructose Differentially Modulate Bone Health and Lipid Metabolism. Calcif. Tissue Int. 2016, 100, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Shu, L.; Beier, E.; Sheu, T.; Zhang, H.; Zuscik, M.J.; Puzas, E.J.; Boyce, B.F.; Mooney, R.A.; Xing, L. High-fat diet causes bone loss in young mice by promoting osteoclastogenesis through alteration of the bone marrow environment. Calcif. Tissue Int. 2015, 96, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S.; Park, S.J.; Lee, Z.H.; Lim, S.K. The Effects of a High Fat Diet Containing Diacylglycerol on Bone in C57BL/6J Mice. Yonsei Med. J. 2015, 56, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Malvi, P.; Piprode, V.; Chaube, B.; Pote, S.T.; Mittal, M.; Chattopadhyay, N.; Wani, M.R.; Bhat, M.K. High fat diet promotes achievement of peak bone mass in young rats. Biochem. Biophys. Res. Commun. 2014, 455, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Doucette, C.R.; Horowitz, M.C.; Berry, R.; MacDougald, O.A.; Anunciado-Koza, R.; Koza, R.A.; Rosen, C.J. A High Fat Diet Increases Bone Marrow Adipose Tissue (MAT) But Does Not Alter Trabecular or Cortical Bone Mass in C57BL/6J Mice. J. Cell. Physiol. 2015, 230, 2032–2037. [Google Scholar] [CrossRef] [PubMed]
- Bass, E.F.; Baile, C.A.; Lewis, R.D.; Giraudo, S.Q. Bone quality and strength are greater in growing male rats fed fructose compared with glucose. Nutr. Res. 2013, 33, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Yarrow, J.F.; Toklu, H.Z.; Balaez, A.; Phillip, E.G.; Otzel, D.M.; Chen, C.; Wronski, T.J.; Aguirre, J.I.; Sakarya, Y.; Tümer, N.; et al. Fructose consumption does not worsen bone deficits resulting from high-fat feeding in young male rats. Bone 2016, 85, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Tsanzi, E.; Light, H.R.; Tou, J.C. The effect of feeding different sugar-sweetened beverages to growing female Sprague-Dawley rats on bone mass and strength. Bone 2008, 42, 960–968. [Google Scholar] [CrossRef] [PubMed]
- Felice, J.I.; Gangoiti, M.V.; Molinuevo, M.S.; McCarthy, A.D.; Cortizo, A.M. Effects of a metabolic syndrome induced by a fructose-rich diet on bone metabolism in rats. Metabolism 2014, 63, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Bergstra, A.E.; Lemmens, A.G.; Beynen, A.C. Dietary fructose vs. glucose stimulates nephrocalcinogenesis in female rats. J. Nutr. 1993, 123, 1320–1327. [Google Scholar] [PubMed]
- Milne, D.B.; Nielsen, F.H. The interaction between dietary fructose and magnesium adversely affects macromineral homeostasis in men. J. Am. Coll. Nutr. 2000, 19, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Gerbaix, M.; Metz, L.; Mac-Way, F.; Lavet, C.; Guillet, C.; Walrand, S.; Masgrau, A.; Linossier, M.T.; Vico, L.; Courteix, D. Impact of an obesogenic diet program on bone densitometry, micro architecture and metabolism in male rat. Lipids Health Dis. 2012, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Lavet, C.; Martin, A.; Linossier, M.T.; Bossche, A.V.; Laroche, N.; Thomas, M.; Gerbaix, M.; Ammann, P.; Fraissenon, A.; Lafage-Proust, M.H.; et al. Fat and Sucrose Intake Induces Obesity-Related Bone Metabolism Disturbances: Kinetic and Reversibility Studies in Growing and Adult Rats. J. Bone Miner. Res. 2016, 31, 98–115. [Google Scholar] [CrossRef] [PubMed]
- Tjaderhane, L.; Larmas, M. A high sucrose diet decreases the mechanical strength of bones in growing rats. J. Nutr. 1998, 128, 1807–1810. [Google Scholar] [PubMed]
- Zernicke, R.F.; Salem, G.J.; Barnard, R.J.; Schramm, E. Long-term, high-fat-sucrose diet alters rat femoral neck and vertebral morphology, bone mineral content, and mechanical properties. Bone 1995, 16, 25–31. [Google Scholar] [CrossRef]
- Salem, G.J.; Zernicke, R.F.; Barnard, R.J. Diet-related changes in mechanical properties of rat vertebrae. Am. J. Physiol. 1992, 262, R318–R321. [Google Scholar] [PubMed]
- Terada, M.; Inaba, M.; Yano, Y.; Hasuma, T.; Nishizawa, Y.; Morii, H.; Otani, S. Growth-inhibitory effect of a high glucose concentration on osteoblast-like cells. Bone 1998, 22, 17–23. [Google Scholar] [CrossRef]
- Smith, E.E.; Ferguson, V.L.; Simske, S.J.; Gayles, E.C.; Pagliassotti, M.J. Effects of high fat or high sucrose diets on rat femora mechanical and compositional properties. Biomed. Sci. Instrum. 2000, 36, 385–390. [Google Scholar] [PubMed]
- Von, M.D.; Safii, S.; Jassal, S.K.; Svartberg, J.; Barrett-Connor, E. Associations between the metabolic syndrome and bone health in older men and women: The Rancho Bernardo Study. Osteoporos. Int. 2007, 18, 1337–1344. [Google Scholar] [CrossRef]
- Schwartz, A.V.; Kelsey, J.L.; Maggi, S.; Tuttleman, M.; Ho, S.C.; Jónsson, P.V.; Poór, G.; Sisson De Castro, J.A.; Xu, L.; Matkin, C.C.; et al. International variation in the incidence of hip fractures: Cross-national project on osteoporosis for the World Health Organization Program for Research on Aging. Osteoporos. Int. 1999, 9, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Mu, M.; Wang, S.F.; Sheng, J.; Zhao, Y.; Wang, G.X.; Liu, K.Y.; Hu, C.L.; Tao, F.B.; Wang, H.L. Dietary patterns are associated with body mass index and bone mineral density in Chinese freshmen. J. Am. Coll. Nutr. 2014, 33, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Hu, X.M.; Chen, T.J.; Bai, M.J. Rural-Urban Differences of Dietary Patterns, Overweight, and Bone Mineral Status in Chinese Students. Nutrients 2016, 8, 537. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.F.; Wu, B.H.; Fan, F.; Xie, H.L.; Xue, W.Q.; Zhu, H.L.; Chen, Y.M. Dietary patterns and the risk of hip fractures in elderly Chinese: A matched case-control study. J. Clin. Endocrinol. Metab. 2013, 98, 2347–2355. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ravn, P.; Wang, S.; Overgaard, K.; Hassager, C.; Christiansen, C. Bone mineral density in immigrants from southern China to Denmark. A cross-sectional study. Eur. J. Endocrinol. 1996, 134, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Melaku, Y.A.; Gill, T.K.; Adams, R.; Shi, Z. Association between dietary patterns and low bone mineral density among adults aged 50 years and above: Findings from the North West Adelaide Health Study (NWAHS). Br. J. Nutr. 2016, 116, 1437–1446. [Google Scholar] [CrossRef] [PubMed]
- Fung, T.T.; Feskanich, D. Dietary patterns and risk of hip fractures in postmenopausal women and men over 50 years. Osteoporos. Int. 2015, 26, 1825–1830. [Google Scholar] [CrossRef] [PubMed]
- Langsetmo, L.; Hanley, D.A.; Prior, J.C.; Barr, S.I.; Anastassiades, T.; Towheed, T.; Goltzman, D.; Morin, S.; Poliquin, S.; Kreiger, N.; et al. Dietary patterns and incident low-trauma fractures in postmenopausal women and men aged ≥50 years: A population-based cohort study. Am. J. Clin. Nutr. 2011, 93, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Joo, S.E.; Min, H.; Park, J.K.; Kim, Y.; Kim, S.S.; Ahn, Y. Dietary patterns and osteoporosis risk in postmenopausal Korean women. Osong Public Health Res. Perspect. 2012, 3, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Okubo, H.; Sasaki, S.; Horiguchi, H.; Oguma, E.; Miyamoto, K.; Hosoi, Y.; Kim, M.K.; Kayama, F. Dietary patterns associated with bone mineral density in premenopausal Japanese farmwomen. Am. J. Clin. Nutr. 2006, 83, 1185–1192. [Google Scholar] [PubMed]
- Hardcastle, A.C.; Aucott, L.; Fraser, W.D.; Reid, D.M.; Macdonald, H.M. Dietary patterns, bone resorption and bone mineral density in early post-menopausal Scottish women. Eur. J. Clin. Nutr. 2011, 65, 378–385. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, S.A.; Wattanapenpaiboon, N.; Wark, J.D.; Nowson, C.A. An energy-dense, nutrient-poor dietary pattern is inversely associated with bone health in women. J. Nutr. 2011, 141, 1516–1523. [Google Scholar] [CrossRef] [PubMed]
- Langsetmo, L.; Barr, S.I.; Dasgupta, K.; Berger, C.; Kovacs, C.S.; Josse, R.G.; Adachi, J.D.; Hanley, D.A.; Prior, J.C.; Brown, J.P.; et al. Dietary patterns in men and women are simultaneously determinants of altered glucose metabolism and bone metabolism. Nutr. Res. 2016, 36, 328–336. [Google Scholar] [CrossRef] [PubMed]
- De Franca, N.A.; Camargo, M.B.; Lazaretti-Castro, M.; Peters, B.S.; Martini, L.A. Dietary patterns and bone mineral density in Brazilian postmenopausal women with osteoporosis: A cross-sectional study. Eur. J. Clin. Nutr. 2016, 70, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Bermeo, S.; Gunaratnam, K.; Duque, G. Fat and bone interactions. Curr. Osteoporos. Rep. 2014, 12, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Hardouin, P.; Rharass, T.; Lucas, S. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue? Front. Endocrinol. Lausanne 2016, 7, 85. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, P.K.; Horowitz, M.C.; MacDougald, O.A.; Scheller, E.L.; Rodeheffer, M.S.; Rosen, C.J.; Klibanski, A. Marrow fat and bone—New perspectives. J. Clin. Endocrinol. Metab. 2013, 98, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Nuttall, M.E.; Shah, F.; Singh, V.; Thomas-Porch, C.; Frazier, T.; Gimble, J.M. Adipocytes and the regulation of bone remodeling: A balancing act. Calcif. Tissue Int. 2014, 94, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Lecka-Czernik, B. Marrow fat metabolism is linked to the systemic energy metabolism. Bone 2012, 50, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.V. Marrow fat and bone: Review of clinical findings. Front. Endocrinol. Lausanne 2015, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Paccou, J.; Hardouin, P.; Cotton, A.; Penel, G.; Cortet, B. The Role of Bone Marrow Fat in Skeletal Health: Usefulness and Perspectives for Clinicians. J. Clin. Endocrinol. Metab. 2015, 100, 3613–3621. [Google Scholar] [CrossRef] [PubMed]
- Bredella, M.A.; Fazeli, P.K.; Miller, K.K.; Misra, M.; Torriani, M.; Thomas, B.J.; Ghomi, R.H.; Rosen, C.J.; Klibanski, A. Increased bone marrow fat in anorexia nervosa. J. Clin. Endocrinol. Metab. 2009, 94, 2129–2136. [Google Scholar] [CrossRef] [PubMed]
- Baum, T.; Yap, S.P.; Karampinos, D.C.; Nardo, L.; Kuo, D.; Burghardt, A.J.; Masharani, U.B.; Schwartz, A.V.; Li, X.; Link, T.M. Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus? J. Magn. Reson. Imaging 2012, 35, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Patsch, J.M.; Li, X.; Baum, T.; Yap, S.P.; Karampinos, D.C.; Schwartz, A.V.; Link, T.M. Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J. Bone Miner. Res. 2013, 28, 1721–1728. [Google Scholar] [CrossRef] [PubMed]
- Bredella, M.A.; Lin, E.; Gerweck, A.V.; Landa, M.G.; Thomas, B.J.; Torriani, M.; Bouxsein, M.L.; Miller, K.K. Determinants of bone microarchitecture and mechanical properties in obese men. J. Clin. Endocrinol. Metab. 2012, 97, 4115–4122. [Google Scholar] [CrossRef] [PubMed]
- Albala, C.; Yáñez, M.; Devoto, E.; Sostin, C.; Zeballos, L.; Santos, J.L. Obesity as a protective factor for postmenopausal osteoporosis. Int. J. Obes. Relat. Metab. Disord. 1996, 20, 1027–1032. [Google Scholar] [PubMed]
- Reid, I.R. Relationships among body mass, its components, and bone. Bone 2002, 31, 547–555. [Google Scholar] [CrossRef]
- Holecki, M.; Chudek, J.; Titz-Bober, M.; Wiecek, A.; Zahorska-Markiewicz, B.; Dulawa, J. Changes of bone mineral density in obese perimenopausal women during 5-year follow-up. Pol. Arch. Med. Wewn. 2012, 122, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Mosca, L.N.; Goldberg, T.B.; da Silva, V.N.; da Silva, C.C.; Kurokawa, C.S.; Bisi Rizzo, A.C.; Corrente, J.E. Excess body fat negatively affects bone mass in adolescents. Nutrition 2014, 30, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.J.; Liu, Y.J.; Liu, P.Y.; Hamilton, J.; Recker, R.R.; Deng, H.W. Relationship of obesity with osteoporosis. J. Clin. Endocrinol. Metab. 2007, 92, 1640–1646. [Google Scholar] [CrossRef] [PubMed]
- Bredella, M.A.; Torriani, M.; Ghomi, R.H.; Thomas, B.J.; Brick, D.J.; Gerweck, A.V.; Harrington, L.M.; Breggia, A.; Rosen, C.J.; Miller, K.K. Determinants of bone mineral density in obese premenopausal women. Bone 2011, 48, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Greco, E.A.; Lenzi, A.; Migliaccio, S. The obesity of bone. Ther. Adv. Endocrinol. Metab. 2015, 6, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Moschen, A.R. Inflammatory mechanisms in the regulation of insulin resistance. Mol. Med. 2008, 14, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Magni, P.; Dozio, E.; Galliera, E.; Ruscica, M.; Corsi, M.M. Molecular aspects of adipokine-bone interactions. Curr. Mol. Med. 2010, 10, 522–532. [Google Scholar] [CrossRef] [PubMed]
- Napoli, N.; Chandran, M.; Pierroz, D.D.; Abrahamsen, B.; Schwartz, A.V.; Ferrari, S.L.; IOF Bone and Diabetes Working Group. Mechanisms of diabetes mellitus-induced bone fragility. Nat. Rev. Endocrinol. 2017, 13, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, R.; Rosen, C.J. Type 2 Diabetes and Aging: A Not so Sweet Scenario for Bone. Horm. Metab. Res. 2016, 48, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Montagnani, A.; Gonnelli, S.; Alessandri, M.; Nuti, R. Osteoporosis and risk of fracture in patients with diabetes: An update. Aging Clin. Exp. Res. 2011, 23, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Burghardt, A.J.; Issever, A.S.; Schwartz, A.V.; Davis, K.A.; Masharani, U.; Majumdar, S.; Link, T.M. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 2010, 95, 5045–5055. [Google Scholar] [CrossRef] [PubMed]
- Patsch, J.M.; Burghardt, A.J.; Yap, S.P.; Baum, T.; Schwartz, A.V.; Joseph, G.B.; Link, T.M. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J. Bone Miner. Res. 2013, 28, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.M.; Giangregorio, L.M.; Atkinson, S.A.; Beattie, K.A.; Inglis, D.; Loannidis, G.; Punthakee, Z.; Adachi, J.D.; Papaioannou, A. Association of larger holes in the trabecular bone at the distal radius in postmenopausal women with type 2 diabetes mellitus compared to controls. Arthritis Care Res. (Hoboken) 2012, 64, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Farr, J.N.; Drake, M.T.; Amin, S.; Melton, L.J., III; McCready, L.K.; Khosla, S. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J. Bone Miner. Res. 2014, 29, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Wongdee, K.; Charoenphandhu, N. Osteoporosis in diabetes mellitus: Possible cellular and molecular mechanisms. World J. Diabetes 2011, 2, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Marumo, K. Collagen cross-links as a determinant of bone quality: A possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos. Int. 2010, 21, 195–214. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, J.F.; Morton, J.F. Food Sources of Added Sweeteners in the Diets of Americans. J. Am. Diet. Assoc. 2000, 100, 43–51. [Google Scholar] [CrossRef]
- McGartland, C.; Robson, P.J.; Murray, L.; Cran, G.; Savage, M.J.; Watkins, D.; Rooney, M.; Boreham, C. Carbonated soft drink consumption and bone mineral density in adolescence: The Northern Ireland Young Hearts project. J. Bone Miner. Res. 2003, 18, 1563–1569. [Google Scholar] [CrossRef] [PubMed]
- Ivaturi, R.; Kies, C. Mineral balances in humans as affected by fructose, high fructose corn syrup and sucrose. Plant Foods Hum. Nutr. 1992, 42, 143–151. [Google Scholar] [CrossRef] [PubMed]
Strain | Age (Weeks) | Gender | Fat Amount in Diet | Fat Types in Diet | Feeding Time (Weeks) | Effect on Bone | References |
---|---|---|---|---|---|---|---|
Negative | |||||||
C57BL/6J mice | 5 | Male | 60% kcal | Lard/Soybean Oil | 12 | Femur trabecular. BV/TV↓; Tb.N↓; Conn.D↓; Tb.Sp↑; stiffness↓; max force↓; P1NP↓; TRAP5b↑ | [1] |
Wistar rat | 3 | Male | 40% kcal | Beef Tallow | 8 | Total skeleton BMC↓; BMC/W↓; spine BMD↓; the BV%↓; t-AP↑; b-AP↑ | [2] |
C57BL/6J mice | 6 | Male | 60% kcal | Lard/Soybean Oil | 12, 16, 20 | Femur and tibia BVF↓; BMC↓; Tb.N↓; Tb.Sp↑; femur yield load↓; post-yield ↓ | [3] |
Wistar Rat | 5 | Male | 38.5% kcal | Vegetable Oil | 10 | BMC↓; BMD↓; SA↓ | [4] |
C57BL/6J mice | 32 | Female | 44% kcal | Lard/Soybean Oil/Coconut Oil (SFA) | 8 | Total body and femur BMD↓; total body BMC↓; cortical BMD↓, cortical porosity↑ | [5] |
C57BL/6 mice | 16 | Ovariectomized Female | 45% kcal | Lard/Soybean Oil | 11 | Proximal tibia trabecular BV/TV↓; Tb.N↓; Tb.Th↓; Conn.D↓; SMI↑; Tb.Sp; TRAP↑ | [6] |
C57BL/6 mice | 12 | Male | 45% kcal | Lard/Soybean Oil | 11 | Trabecular total BMD↑; tibia trabecular BV/TV↑; Tb.Th↑; Tb,N↑;Tb.Sp↓; PMoI↑; Imax/Cmax↑; MAR↓; BFR↓; BALP↓;TRAP5b↑ | [7] |
C57BL/6 mice | 9 | Female | 39.5% kcal | Lard/Maize Oil | 10 | Tibia mass↓; tibia length↓; Ct.Th↓; cross-sectional area↓; maximal load↓; flexural rigidity↓; TRAP↑ | [8] |
BALB/cByJ mice | 7 | Male | 45% kcal | Lard/Soybean Oil | 15 | Distal femur cortical BV/TV↓; Ct.Th↓; tissue mineral density↓; trabecular BV/TV↓; Tb.N↓;SMI↓; Tb.Sp↑ | [9] |
C57BL/6J mice | 5 | Male | 60% kcal | Lard/Soybean Oil | 3, 6, 12 | Femoral trabecular BV/TV↓; Tb.N↓; Tb.Th↓; Tb.Sp↑ | [10] |
Positive | |||||||
C57BL/6J mice | 4 | Male | 45% kcal | Lard/DAG; Lard/Soybean Oil; | 20 | BMD↑; femoral cortical thickness↑; cross-sectional area↑; Tb.Th in vertebrae↑ | [11] |
Wistar rat | 8–10 | Male | 24% kcal | Groundnut/coconut | 36 | BMD↑; BMC↑; Tibia trabecular BV/TV↑; Tb.N↑; Tb.Sp↓; Tb.Pf↓; T-ALP↑ | [12] |
C57BL/6J mice | 32 | Female | 46% kcal | Lard/Soybean Oil/Olive Oil (MUFA) | 8 | Femur trabecular BV/TV↑; Tb.Th↑; SMI↓ | [5] |
Neutral | |||||||
7BL/6J mice | 3 | Male | 60% kcal | Lard/Soybean Oil | 12 | Femur trabecular BV/TV; Tb.Th; Tb.Sp; cortical bone parameters; BFR MAR not different | [13] |
Strain | Age (weeks) | Gender | Feeding Time (Weeks) | Feeding Dose | Effect on Bone | References |
---|---|---|---|---|---|---|
Positive | ||||||
Sprague-Dawley rat | 8–9 | Male | 12 | 40% Fructose | Femur trabecular BV/TV↑; Tb.Th↑; BS/BV↓; maximum flexure load↑ | [14] |
Sprague-Dawley rat | 8 | Male | 12 | 40% Fructose | Distal femur Ct.Th↑; Ct.Ar↑; vTMD↑; femoral diaphysis Ct.Th↑; Ct.Ar↑; vTMD↑ | [15] |
Sprague-Dawley rat | 5 | Female | 8 | 13% Fructose | Whole femur and tibia BMC↑; BMD↑ a | [16] |
Negative | ||||||
Sprague-Dawley rat | Adult | Male | 4 | 10% Fructose | Osteocyte density↓; metaphyseal relative trabecular bone area↓; TRAP area/trabecular bone area↓; ALP activity↓; Type 1 collagen production↓ | [17] |
Sprague-Dawley rat | 5 | Female | 8 | 13% Glucose | Femur weight↓; whole femur, tibia BMC↓ b; whole femur, tibia BMD↓ c | [16] |
Positive | ||||||
Wistar rat | 28 | Male | 16 | 22% Sucrose | Whole BMD↑; positive uncoupling index; osteoid surface on tibia↑; cortical porosity↓ | [20] |
Wistar rat | 4, 24 | Male | 19, 27 | 22% Sucrose | Trabecular BV/TV↑ | [21] |
Negative | ||||||
Wistar rat | 3 | Male, Female | 5 | 43% Sucrose | The weights of tibias and femurs↓; the final width of the tibias↓; densities of tibias and femurs↓; the breaking strength of the tibias and femurs↓ | [22] |
C57BL/6 | 9 | Female | 10 | 47% Sucrose | Tibial mass↓; tibial length↓; Ct.Th↓; cross-sectional area↓; maximal load↓; energy to failure↓; flexural rigidity↓ | [8] |
Fischer 344 rat | 4 | Female | 96 | 39.5% Sucrose | Trabecular core ↑; cortical shell↓ in the femoral neck; cross-sectional area↓ in the sixth lumbar vertebra; loads↓, energies↓, stiffnesses↓ in the femoral neck and sixth lumbar vertebra | [23] |
Sprague-Dawley rat | 8 | Female | 10–12 | 39.5% Sucrose | Cross-sectional area↓, height↓, volume↓ in the sixth lumbar vertebra; loads↓, energy↓, stiffness↓ in the sixth lumbar vertebra | [24] |
Study, Location | Subjects Information | Dietary Pattern | Method Measurement | Results | References |
---|---|---|---|---|---|
A cross-sectional study in China | 1319 college freshmen from four universities (aged 18.1 ± 1.2 years) | Western food; animal protein; calcium food; Chinese traditional patterns | Ultrasound bone densitometer by measuring speed of sound | Chinese traditional dietary pattern positive correlation with BMD | [29] |
A cross-sectional study in urban and rural of China | 1590 students from two primary schools and two junior high schools (aged 11–17 years) | Westernization structure; meat diet structure; Western and Chinese structure | Ultrasound bone densitometer by measuring speed of sound | Chinese and Western dietary pattern was negative associated with the low bone mineral quality risk | [30] |
A matched case-control study in China | 581 cases including 396 cases of femoral neck fractures and 185 cases of intertrochanteric fractures; 581 eligible age, and gender-matched controls from either communities or hospitals (aged 50–80 years) | Healthy dietary pattern; prudent dietary pattern; traditional dietary pattern; high-fat dietary pattern | X-ray | High-fat dietary pattern was associated with high incidence of hip fractures; healthy and prudent dietary patterns could be associated with low incidence of such fractures | [31] |
A cross-sectional study in immigrants from southern China to Denmark | 73 women (aged 35 ± 8 years) and 69 men (aged 40 ± 12 years) who immigrated to Denmark from 2 months to 36 years | Dual energy X-ray absorptiometry | Chinese women who had immigrated to Denmark more than 12 years ago had similar BMD to Danish women; those who had immigrated less than 12 years ago had a lower BMD | [32] | |
North West Adelaide Health Study in Australia | 1182 adults (545 males, 45.9%) (aged 50 years and above) | Prudent pattern; Western pattern | Prodigy and DPX+ dual energy X-ray absorptiometry | The Western pattern was associated with a higher prevalence of low BMD | [33] |
A prospective cohort study and health professionals’ follow-up study in the US | 1891 cases of hip fractures in women and 596 in men | Prudent pattern; Western pattern | Self-reporting of fractures and medical record review | Both the prudent and the Western dietary patterns were not associated with the risk of hip fractures in postmenopausal women or men over 50 years of age | [34] |
A retrospective cohort study based on the Canadian Multicentre Osteoporosis Study | 5188 enrolled in the study cohort, 3539 were women and 1649 were men | Nutrient-dense pattern; Energy-dense pattern | Hologic densitometers; GE/Lunar densitometers | The energy-dense pattern was not associated with fractures; however, the nutrient-dense pattern was negative associated with low-trauma fracture risk | [35] |
A cohort and follow-up study | 1464 postmenopausal Korean women | Korean traditional dietary pattern; dairy dietary pattern; Western dietary pattern | Quantitative ultrasound measurement by measuring the speed of sound | The Korean traditional dietary pattern and Western dietary pattern were associated with a high risk of osteoporosis incidence; the dairy dietary pattern decreased the risk of osteoporosis | [36] |
Japanese Multicentered Environmental Toxicant Study (JMETS)-based study of farmwomen | 291 premenopausal farmwomen (aged 40–55 years) | Healthy dietary pattern; Western dietary pattern | Dual energy X-ray absorptiometry | The Western dietary pattern was negatively associated with BMD, however, the healthy dietary pattern was positively associated with BMD | [37] |
A cross-sectional study in a Scottish population | 3236 Scottish women (aged 50–59 years) | Healthy foods; processed foods; snack foods; bread and butter; fish and chips | Dual-energy X-ray absorptiometry | Processed foods and snack foods were associated with a lower BMD; however, the healthy pattern was associated with a high BMD | [38] |
A study in the Twin and Sister Bone Research Program at Royal Melbourne Hospital in Australia | 527 women (aged 18–65 years) | Five dietary patterns | Dual-energy X-ray absorptiometry | The energy-dense dietary pattern was negatively associated with BMD; however, the nutrition-dense dietary pattern was positively associated with BMD | [39] |
A cohort study in Canadian adults | 754 women and 318 men | Prudent diet; Western diet | B-ALP; CTX; 25OHD | The Western diet was inversely associated with bone metabolism | [40] |
A cross-sectional study in Brazilian women | 156 postmenopausal and osteoporotic Brazilian women (aged over 45 years) | Healthy diets; red meat and refined cereals; low-fat dairy; sweet foods, coffee and tea; Western diet | Dual-energy X-ray absorptiometry | The sweet foods, coffee and tea pattern was inversely related to BMD | [41] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, L.; Yu, X. Fat, Sugar, and Bone Health: A Complex Relationship. Nutrients 2017, 9, 506. https://doi.org/10.3390/nu9050506
Tian L, Yu X. Fat, Sugar, and Bone Health: A Complex Relationship. Nutrients. 2017; 9(5):506. https://doi.org/10.3390/nu9050506
Chicago/Turabian StyleTian, Li, and Xijie Yu. 2017. "Fat, Sugar, and Bone Health: A Complex Relationship" Nutrients 9, no. 5: 506. https://doi.org/10.3390/nu9050506
APA StyleTian, L., & Yu, X. (2017). Fat, Sugar, and Bone Health: A Complex Relationship. Nutrients, 9(5), 506. https://doi.org/10.3390/nu9050506