Association between Dietary Fat Intake and Hyperuricemia in Men with Chronic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Demographic Data and Medical History
2.3. Assessment of Kidney Function and Hyperuricemia
2.4. Evaluation of Nutrient Intake
2.5. Other Variables
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Comparison between the Two Uric Acid Groups
3.3. Analysis of Covariance
3.4. Association between Uric Acid Level and Fat Intake after Stratification into Two eGFR Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, K.C.; Lin, H.Y.; Chou, P. Community based epidemiological study on hyperuricemia and gout in Kin-Hu, Kinmen. J. Rheumatol. 2000, 27, 1045–1050. [Google Scholar] [PubMed]
- Zhu, Y.; Pandya, B.J.; Choi, H.K. Prevalence of gout and hyperuricemia in the US general population: The National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011, 63, 3136–3141. [Google Scholar] [CrossRef]
- Mikuls, T.R.; Farrar, J.T.; Bilker, W.B.; Fernandes, S.; Schumacher, H.R.; Saag, K.G. Gout epidemiology: Results from the UK General Practice Research Database, 1990–1999. Ann. Rheum. Dis. 2005, 64, 267. [Google Scholar] [CrossRef] [PubMed]
- Keenan, R.T. The biology of urate. Semin. Arthritis Rheum. 2020, 50, S2–S10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, L.; Zhang, Y.; Zeng, C. Recent advances in fructose intake and risk of hyperuricemia. Biomed. Pharmacother. 2020, 131, 110795. [Google Scholar] [CrossRef]
- Nakamura, K.; Sakurai, M.; Miura, K.; Morikawa, Y.; Yoshita, K.; Ishizaki, M.; Kido, T.; Naruse, Y.; Suwazono, Y.; Nakagawa, H. Alcohol intake and the risk of hyperuricaemia: A 6-year prospective study in Japanese men. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 989–996. [Google Scholar] [CrossRef]
- Makinouchi, T.; Sakata, K.; Oishi, M.; Tanaka, K.; Nogawa, K.; Watanabe, M.; Suwazono, Y. Benchmark dose of alcohol consumption for development of hyperuricemia in Japanese male workers: An 8-year cohort study. Alcohol 2016, 56, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.K.; Atkinson, K.; Karlson, E.W.; Willett, W.; Curhan, G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N. Engl. J. Med. 2004, 350, 1093–1103. [Google Scholar] [CrossRef] [Green Version]
- Khanna, D.; Fitzgerald, J.D.; Khanna, P.P.; Bae, S.; Singh, M.K.; Neogi, T.; Pillinger, M.H.; Merill, J.; Lee, S.; Prakash, S.; et al. 2012 American college of rheumatology guidelines for management of gout part I: Systematic non-pharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res. 2012, 64, 1431. [Google Scholar] [CrossRef] [Green Version]
- Hisatome, I.; Ichida, K.; Mineo, I.; Ohtahara, A.; Ogino, K.; Kuwabara, M.; Ishizaka, N.; Uchida, S.; Kurajoh, M.; Kohagura, K.; et al. Japanese Society of Gout and Uric & Nucleic Acids 2019 guidelines for management of hyperuricemia and gout 3rd edition. Gout Uric Nucleic Acids 2020, 44, sp-1. [Google Scholar] [CrossRef]
- Juraschek, S.P.; Gelber, A.C.; Choi, H.K.; Appel, L.J.; Miller, E.R. Effects of the Dietary Approaches To Stop Hypertension (DASH) diet and sodium Intake on serum uric acid. Arthritis Rheumatol. 2016, 68, 3002. [Google Scholar] [CrossRef] [Green Version]
- Chrysohoou, C.; Skoumas, J.; Pitsavos, C.; Masoura, C.; Siasos, G.; Galiatsatos, N.; Psaltopoulou, T.; Mylonakis, C.; Margazas, A.; Kyvelou, S.; et al. Long-term adherence to the Mediterranean diet reduces the prevalence of hyperuricaemia in elderly individuals, without known cardiovascular disease: The Ikaria study. Maturitas 2011, 70, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Alkerwi, A.; Vernier, C.; Crichton, G.E.; Sauvageot, N.; Shivappa, N.; Hébert, J.R. Cross-comparison of diet quality indices for predicting chronic disease risk: Findings from the Observation of Cardiovascular Risk Factors in Luxembourg (ORISCAV-LUX) study. Br. J. Nutr. 2015, 113, 259. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Li, K.; Asimi, S.; Chen, Q.; Li, D. Effect of vitamin B-12 and n-3 polyunsaturated fatty acids on plasma homocysteine, ferritin, C-reaction protein, and other cardiovascular risk factors: A randomized controlled trial. Asia Pac. J. Clin. Nutr. 2015, 24, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Stea, T.H.; Stølevik, S.B.; Berntsen, S.; Ezzathkah Bastani, N.; Paulsen, G.; Lohne Seiler, H.; Hetlelid, K.J.; Blomhoff, R.; Mansoor, M.A. Effect of omega-3 and vitamins E + C supplements on the concentration of serum B-vitamins and plasma redox aminothiol antioxidant status in elderly men after strength training for three months. Ann. Nutr. Metab. 2016, 68, 145–155. [Google Scholar] [CrossRef]
- Dessein, P.H.; Shipton, E.A.; Stanwix, A.E.; Joffe, B.I.; Ramokgadi, J. Beneficial effects of weight loss associated with moderate calorie/carbohydrate restriction, and increased proportional intake of protein and unsaturated fat on serum urate and lipoprotein levels in gout: A pilot study. Ann. Rheum. Dis. 2000, 59, 539. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Yu, K.; Li, C. Dietary factors and risk of gout and hyperuricemia: A meta-analysis and systematic review. Asia Pac. J. Clin. Nutr. 2018, 27, 1344–1356. [Google Scholar] [CrossRef]
- Kitaoka, M.; Mitoma, J.; Asakura, H.; Anyenda, O.E.; Nguyen, T.T.T.; Hamagishi, T.; Hori, D.; Suzuki, F.; Shibata, A.; Horii, M.; et al. The relationship between hypertension and health-related quality of life: Adjusted by chronic pain, chronic diseases, and life habits in the general middle-aged population in Japan. Environ. Health Prev. Med. 2016, 21, 193. [Google Scholar] [CrossRef]
- Tsujiguchi, H.; Nguyen, T.T.T.; Goto, D.; Miyagi, S.; Kambayashi, Y.; Hara, A.; Yamada, Y.; Nakamura, H.; Shimizu, Y.; Hori, D.; et al. Relationship between the intake of n-3 polyunsaturated fatty acids and depressive symptoms in elderly Japanese people: Differences according to sex and weight status. Nutrients 2019, 11, 775. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, H.; Tsujiguchi, H.; Kambayashi, Y.; Hara, A.; Miyagi, S.; Yamada, Y.; Nguyen, T.T.T.; Shimizu, Y.; Hori, D.; Nakamura, H. Relationship between saturated fatty acid intake and hypertension and oxidative stress. Nutrition 2019, 61, 8–15. [Google Scholar] [CrossRef]
- Sasaki, S.; Yanagibori, R.; Amano, K. Self-administered diet history questionnaire developed for health education: A relative validation of the test-version by comparison with 3-day diet record in women. J. Epidemiol. 1998, 8, 203–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A.; et al. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Levin, A.S.; Bilous, R.W.; Coresh, J. Chapter 1: Definition and classification of CKD. Kidney Int. Suppl. 2013, 3, 19–62. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Honda, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Both comprehensive and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in Japanese adults. J. Epidemiol. 2012, 22, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Comparison of relative validity of food group intakes estimated by comprehensive and brief-type self-administered diet history questionnaires against 16 d dietary records in Japanese adults. Public Health Nutr. 2011, 14, 1200–1211. [Google Scholar] [CrossRef]
- Choi, J.W.J.; Ford, E.S.; Gao, X.; Choi, H.K. Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: The Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2008, 59, 109–116. [Google Scholar] [CrossRef]
- David B Mount Asymptomatic Hyperuricemia. Available online: https://www.uptodate.com/contents/asymptomatic-hyperuricemia (accessed on 16 March 2022).
- Juraschek, S.P.; White, K.; Tang, O.; Yeh, H.C.; Cooper, L.A.; Miller, E.R. Effects of a Dietary Approach to Stop Hypertension (DASH) diet intervention on serum uric acid in African Americans With hypertension. Arthritis Care Res. 2018, 70, 1509–1516. [Google Scholar] [CrossRef] [Green Version]
- Chatzipavlou, M.; Magiorkinis, G.; Koutsogeorgopoulou, L.; Kassimos, D. Mediterranean diet intervention for patients with hyperuricemia: A pilot study. Rheumatol. Int. 2014, 34, 759–762. [Google Scholar] [CrossRef]
- Gao, Y.; Cui, L.F.; Sun, Y.Y.; Yang, W.H.; Wang, J.R.; Wu, S.L.; Gao, X. Adherence to the dietary approaches to stop hypertension diet and hyperuricemia: A cross-sectional study. Arthritis Care Res. 2021, 73, 603–611. [Google Scholar] [CrossRef]
- Julibert, A.; del Mar Bibiloni, M.; Tur, J.A. Dietary fat intake and metabolic syndrome in adults: A systematic review. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 887–905. [Google Scholar] [CrossRef]
- Yubero-Serrano, E.M.; Delgado-Lista, J.; Tierney, A.C.; Perez-Martinez, P.; Garcia-Rios, A.; Alcala-Diaz, J.F.; Castaño, J.P.; Tinahones, F.J.; Drevon, C.A.; Defoort, C.; et al. Insulin resistance determines a differential response to changes in dietary fat modification on metabolic syndrome risk factors: The LIPGENE study. Am. J. Clin. Nutr. 2015, 102, 1509–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leyva, F.; Wingrove, C.S.; Godsland, I.F.; Stevenson, J.C. The glycolytic pathway to coronary heart disease: A hypothesis. Metabolism 1998, 47, 657–662. [Google Scholar] [CrossRef]
- Facchini, F.; Ida Chen, Y.D.; Hollenbeck, C.B.; Reaven, G.M. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA 1991, 266, 3008–3011. [Google Scholar] [CrossRef] [PubMed]
- Kalafati, I.-P.; Borsa, D.; Dimitriou, M.; Revenas, K.; Kokkinos, A.; Dedoussis, G.V. Dietary patterns and non-alcoholic fatty liver disease in a Greek case-control study. Nutrition 2019, 61, 105–110. [Google Scholar] [CrossRef]
- Spoto, B.; Pisano, A.; Zoccali, C. Insulin resistance in chronic kidney disease: A systematic review. Am. J. Physiol. Renal Physiol. 2016, 311, F1087–F1108. [Google Scholar] [CrossRef] [Green Version]
Total (N = 361) | Normal Kidney Function (n = 291) | Reduced Kidney Function (n = 70) | p-Value a | ||||
---|---|---|---|---|---|---|---|
Mean/n | SD/% | Mean/n | SD/% | Mean/n | SD/% | ||
Age, years | 60.73 | 9.96 | 59.45 | 9.65 | 66.04 | 9.53 | <0.001 |
No occupation, n | 89 | 24.65 | 65 | 22.34 | 24 | 34.29 | 0.058 |
Living alone, n | 18 | 4.99 | 12 | 4.12 | 7 | 10.00 | 0.104 |
Education b, n | 2.10 | 1.03 | 2.14 | 1.02 | 1.94 | 1.03 | 0.152 |
Exercise c, n | 3.94 | 1.42 | 3.98 | 1.42 | 3.79 | 1.39 | 0.336 |
Current smoker, n | 123 | 34.07 | 108 | 37.11 | 15 | 21.43 | 0.010 |
Alcohol intake, % energy | 4.66 | 4.61 | 4.95 | 4.76 | 3.47 | 3.68 | 0.005 |
BMI, kg/m2 | 23.49 | 2.74 | 23.34 | 2.69 | 24.14 | 2.89 | 0.029 |
Diabetes treatment, n | 29 | 8.03 | 23 | 7.90 | 6 | 8.57 | 0.854 |
Hypertension treatment, n | 108 | 29.92 | 79 | 27.15 | 30 | 42.86 | 0.015 |
Uric acid, mg/dL | 5.86 | 1.38 | 5.76 | 1.35 | 6.28 | 1.40 | 0.004 |
eGFR, mL/min/1.73 m2 | 70.75 | 14.83 | 75.65 | 11.06 | 50.41 | 10.60 | 0.000 |
Total fat, % energy | 21.50 | 5.60 | 21.35 | 5.50 | 22.11 | 5.97 | 0.310 |
Animal fat, % energy | 10.11 | 3.85 | 9.97 | 3.82 | 10.72 | 3.93 | 0.143 |
Vegetable fat, % energy | 11.39 | 3.39 | 11.39 | 3.34 | 11.39 | 3.61 | 0.989 |
SFA, % energy | 5.54 | 1.70 | 5.43 | 1.63 | 5.99 | 1.89 | 0.013 |
MUFA, % energy | 7.60 | 2.19 | 7.56 | 2.16 | 7.76 | 2.31 | 0.502 |
PUFA, % energy | 5.45 | 1.40 | 5.48 | 1.39 | 5.34 | 1.46 | 0.464 |
n-3 PUFA, % energy | 1.20 | 0.43 | 1.20 | 0.43 | 1.20 | 0.44 | 0.904 |
n-6 PUFA, % energy | 4.23 | 1.12 | 4.26 | 1.11 | 4.11 | 1.74 | 0.333 |
Normal Uric Acid (n = 288) | High Uric Acid (n = 73) | p-Value a | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean/n | SD/% | 95%CI | Mean/n | SD/% | 95%CI | ||||
Lower | Upper | Lower | Upper | ||||||
Age, years | 61.34 | 10.08 | 60.18 | 62.50 | 58.32 | 9.14 | 56.22 | 60.41 | 0.020 |
No occupation, n | 72 | 25.00 | 20.31 | 30.38 | 16 | 21.92 | 12.36 | 31.47 | 0.545 |
Living alone, n | 12 | 4.17 | 1.85 | 6.48 | 6 | 8.22 | 1.87 | 14.56 | 0.243 |
Education b, n | 2.11 | 1.01 | 1.99 | 2.23 | 2.07 | 1.08 | 1.82 | 2.33 | 0.809 |
Exercise | 3.94 | 1.42 | 3.78 | 4.11 | 3.94 | 1.41 | 3.61 | 4.27 | 0.998 |
Current smoker, n | 92 | 31.94 | 26.13 | 36.99 | 31 | 42.47 | 31.18 | 54.53 | 0.089 |
Alcohol intake, % energy | 4.34 | 4.42 | 3.83 | 4.85 | 5.92 | 5.10 | 4.75 | 7.09 | 0.009 |
BMI, kg/m2 | 23.35 | 2.76 | 23.03 | 23.67 | 24.06 | 2.60 | 23.46 | 24.66 | 0.048 |
Diabetes treatment, n | 29 | 10.07 | 0.07 | 0.14 | 0.00 | 0.00 | 0.00 | 0.00 | <0.001 |
Hypertension treatment, n | 86 | 29.86 | 24.24 | 34.79 | 23 | 31.51 | 20.78 | 42.24 | 0.741 |
Uric acid, mg/dL | 5.41 | 1.04 | 5.29 | 5.53 | 7.64 | 1.07 | 7.40 | 7.89 | <0.001 |
eGFR, mL/min/1.73 m2 | 71.90 | 13.69 | 70.32 | 73.48 | 66.22 | 18.08 | 62.07 | 70.37 | 0.014 |
Total fat, % energy | 21.75 | 5.54 | 21.11 | 22.39 | 20.54 | 5.76 | 19.22 | 21.86 | 0.099 |
Animal fat, % energy | 10.16 | 3.95 | 9.70 | 10.61 | 9.94 | 3.47 | 9.15 | 10.74 | 0.669 |
Vegetable fat, % energy | 11.59 | 3.35 | 11.20 | 11.98 | 10.60 | 3.45 | 9.80 | 11.39 | 0.025 |
SFA, % energy | 5.60 | 1.70 | 5.41 | 5.80 | 5.26 | 1.67 | 4.88 | 5.64 | 0.123 |
MUFA, % energy | 7.67 | 2.15 | 7.42 | 7.92 | 7.33 | 2.32 | 6.80 | 7.86 | 0.236 |
PUFA, % energy | 5.52 | 1.39 | 5.36 | 5.68 | 5.18 | 1.40 | 4.86 | 5.51 | 0.071 |
n-3 PUFA, % energy | 1.21 | 0.43 | 1.16 | 1.26 | 1.14 | 0.41 | 1.04 | 1.23 | 0.166 |
n-6 PUFA, % energy | 4.28 | 1.12 | 4.15 | 4.41 | 4.03 | 1.12 | 3.77 | 4.29 | 0.086 |
Normal Uric Acid (n = 288) | High Uric Acid (n = 73) | p-Value a | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | 95% CI | Mean | 95% CI | P1 | P2 | P3 | ||||
Lower | Upper | Lower | Upper | |||||||
Total fat, % energy | NKF | 21.38 | 20.72 | 22.04 | 21.46 | 19.95 | 22.98 | 0.017 | 0.438 | 0.011 |
RKF | 22.78 | 21.26 | 24.29 | 18.76 | 16.45 | 21.07 | ||||
Animal fat, % energy | NKF | 10.00 | 9.52 | 10.49 | 10.24 | 9.13 | 11.35 | 0.183 | 0.627 | 0.081 |
RKF | 10.74 | 9.63 | 11.85 | 8.90 | 7.21 | 10.60 | ||||
Vegetable fat, % energy | NKF | 11.37 | 10.97 | 11.77 | 11.23 | 10.31 | 12.14 | 0.020 | 0.489 | 0.039 |
RKF | 12.04 | 11.12 | 12.96 | 9.86 | 8.46 | 11.26 | ||||
SFA, % energy | NKF | 5.46 | 5.27 | 5.66 | 5.47 | 5.02 | 5.92 | 0.031 | 0.781 | 0.026 |
RKF | 6.07 | 5.62 | 6.51 | 5.01 | 4.32 | 5.69 | ||||
MUFA, % energy | NKF | 7.52 | 7.26 | 7.79 | 7.62 | 7.01 | 8.23 | 0.033 | 0.584 | 0.014 |
RKF | 8.14 | 7.53 | 8.74 | 6.64 | 5.71 | 7.56 | ||||
PUFA, % energy | NKF | 5.47 | 5.30 | 5.65 | 5.46 | 5.07 | 5.86 | 0.021 | 0.056 | 0.022 |
RKF | 5.54 | 5.14 | 5.93 | 4.55 | 3.95 | 5.16 | ||||
n-3 PUFA, % energy | NKF | 1.21 | 1.16 | 1.27 | 1.22 | 1.09 | 1.34 | 0.125 | 0.062 | 0.097 |
RKF | 1.19 | 1.07 | 1.32 | 0.98 | 0.79 | 1.17 | ||||
n-6 PUFA, % energy | NKF | 4.24 | 4.10 | 4.38 | 4.22 | 3.91 | 4.53 | 0.021 | 0.098 | 0.026 |
RKF | 4.33 | 4.01 | 4.64 | 3.56 | 3.08 | 4.04 |
Odds Ratio | 95% CI | p-Value a | |||
---|---|---|---|---|---|
Lower | Upper | ||||
Normal kidney function (n = 291) | Total fat | 1.00 | 0.93 | 1.07 | 0.910 |
Animal fat | 1.01 | 0.92 | 1.11 | 0.792 | |
Vegetable fat | 0.97 | 0.87 | 1.09 | 0.616 | |
SFA | 0.99 | 0.78 | 1.26 | 0.943 | |
MUFA | 1.01 | 0.85 | 1.19 | 0.939 | |
PUFA | 0.98 | 0.75 | 1.26 | 0.850 | |
n-3 PUFA | 1.02 | 0.45 | 2.36 | 0.954 | |
n-6 PUFA | 0.96 | 0.69 | 1.33 | 0.789 | |
Reduced kidney function (n = 70) | Total fat | 0.83 | 0.70 | 0.99 | 0.033 |
Animal fat | 0.83 | 0.67 | 1.04 | 0.107 | |
Vegetable fat | 0.80 | 0.63 | 1.02 | 0.070 | |
SFA | 0.54 | 0.31 | 0.96 | 0.035 | |
MUFA | 0.56 | 0.33 | 0.94 | 0.030 | |
PUFA | 0.45 | 0.22 | 0.94 | 0.033 | |
n-3 PUFA | 0.15 | 0.02 | 1.33 | 0.089 | |
n-6 PUFA | 0.39 | 0.16 | 0.96 | 0.041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oku, F.; Hara, A.; Tsujiguchi, H.; Suzuki, K.; Pham, K.-O.; Suzuki, F.; Miyagi, S.; Nakamura, M.; Takazawa, C.; Sato, K.; et al. Association between Dietary Fat Intake and Hyperuricemia in Men with Chronic Kidney Disease. Nutrients 2022, 14, 2637. https://doi.org/10.3390/nu14132637
Oku F, Hara A, Tsujiguchi H, Suzuki K, Pham K-O, Suzuki F, Miyagi S, Nakamura M, Takazawa C, Sato K, et al. Association between Dietary Fat Intake and Hyperuricemia in Men with Chronic Kidney Disease. Nutrients. 2022; 14(13):2637. https://doi.org/10.3390/nu14132637
Chicago/Turabian StyleOku, Fumika, Akinori Hara, Hiromasa Tsujiguchi, Keita Suzuki, Kim-Oanh Pham, Fumihiko Suzuki, Sakae Miyagi, Masaharu Nakamura, Chie Takazawa, Kuniko Sato, and et al. 2022. "Association between Dietary Fat Intake and Hyperuricemia in Men with Chronic Kidney Disease" Nutrients 14, no. 13: 2637. https://doi.org/10.3390/nu14132637
APA StyleOku, F., Hara, A., Tsujiguchi, H., Suzuki, K., Pham, K. -O., Suzuki, F., Miyagi, S., Nakamura, M., Takazawa, C., Sato, K., Yanagisawa, T., Kannon, T., Tajima, A., & Nakamura, H. (2022). Association between Dietary Fat Intake and Hyperuricemia in Men with Chronic Kidney Disease. Nutrients, 14(13), 2637. https://doi.org/10.3390/nu14132637