Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review
Abstract
:1. Introduction
Flavonols
Fisetin—General Characteristics
2. Spectrum of Fisetin’s Anticancer Activity
2.1. Activity toward Bladder Cancer Cells
2.2. Activity toward Breast Cancer Cells
2.3. Activity toward Brain Cancer Cells
2.4. Activity toward Cervix Uteri Cancer Cells
2.5. Activity toward Colorectal Cancer Cells
2.6. Activity toward Kidney Cancer Cells
2.7. Activity toward Leukemia Cancer Cells
2.8. Activity toward Liver Cancer Cells
2.9. Activity toward Lung Cancer Cells
2.10. Activity toward Melanoma Cancer Cells
2.11. Activity toward Stomach Cancer Cells
2.12. Activity toward Ovary Cancer Cells
2.13. Activity toward Pancreas Cancer Cells
2.14. Activity toward Prostate Cancer Cells
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cancer (IARC), T.I.A. for R. on Global Cancer Observatory. Available online: https://gco.iarc.fr/ (accessed on 17 April 2022).
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Kunnumakara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a Preventable Disease that Requires Major Lifestyle Changes. Pharm. Res. 2008, 25, 2097–2116. [Google Scholar] [CrossRef] [PubMed]
- Coyle, Y.M. Lifestyle, Genes, and Cancer. In Cancer Epidemiology: Modifiable Factors; Verma, M., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2009; pp. 25–56. ISBN 978-1-60327-492-0. [Google Scholar]
- Xiao, Y.; Liu, Y.; Gao, Z.; Li, X.; Weng, M.; Shi, C.; Wang, C.; Sun, L. Fisetin Inhibits the Proliferation, Migration and Invasion of Pancreatic Cancer by Targeting PI3K/AKT/MTOR Signaling. Aging 2021, 13, 24753–24767. [Google Scholar] [CrossRef] [PubMed]
- Dziedzic, A.; Kubina, R.; Wojtyczka, R.D.; Tanasiewicz, M.; Varoni, E.M.; Iriti, M. Flavonoids Induce Migration Arrest and Apoptosis in Detroit 562 Oropharynx Squamous Cell Carcinoma Cells. Processes 2021, 9, 426. [Google Scholar] [CrossRef]
- Forbes, A.M.; Meier, G.P.; Haendiges, S.; Taylor, L.P. Structure–Activity Relationship Studies of Flavonol Analogues on Pollen Germination. J. Agric. Food Chem. 2014, 62, 2175–2181. [Google Scholar] [CrossRef]
- Kubina, R.; Iriti, M.; Kabała-Dzik, A. Anticancer Potential of Selected Flavonols: Fisetin, Kaempferol, and Quercetin on Head and Neck Cancers. Nutrients 2021, 13, 845. [Google Scholar] [CrossRef]
- Gutiérrez-Venegas, G.; Contreras-Sánchez, A.; Ventura-Arroyo, J.A. Anti-Inflammatory Activity of Fisetin in Human Gingival Fibroblasts Treated with Lipopolysaccharide. J. Asian Nat. Prod. Res. 2014, 16, 1009–1017. [Google Scholar] [CrossRef]
- Grynkiewicz, G.; Demchuk, O.M. New Perspectives for Fisetin. Front. Chem. 2019, 7, 697. [Google Scholar] [CrossRef]
- Imran, M.; Saeed, F.; Gilani, S.A.; Shariati, M.A.; Imran, A.; Afzaal, M.; Atif, M.; Tufail, T.; Anjum, F.M. Fisetin: An Anticancer Perspective. Food Sci. Nutr. 2021, 9, 3–16. [Google Scholar] [CrossRef]
- Rengarajan, T.; Yaacob, N.S. The Flavonoid Fisetin as an Anticancer Agent Targeting the Growth Signaling Pathways. Eur. J. Pharmacol. 2016, 789, 8–16. [Google Scholar] [CrossRef]
- Kashyap, D.; Sharma, A.; Sak, K.; Tuli, H.S.; Buttar, H.S.; Bishayee, A. Fisetin: A Bioactive Phytochemical with Potential for Cancer Prevention and Pharmacotherapy. Life Sci. 2018, 194, 75–87. [Google Scholar] [CrossRef]
- Wang, T.H.; Wang, S.Y.; Wang, X.D.; Jiang, H.Q.; Yang, Y.Q.; Wang, Y.; Cheng, J.L.; Zhang, C.T.; Liang, W.W.; Feng, H.L. Fisetin Exerts Antioxidant and Neuroprotective Effects in Multiple Mutant HSOD1 Models of Amyotrophic Lateral Sclerosis by Activating ERK. Neuroscience 2018, 379, 152–166. [Google Scholar] [CrossRef]
- Di Lorenzo, G.; Scafuri, L.; Costabile, F.; Pepe, L.; Scognamiglio, A.; Crocetto, F.; Guerra, G.; Buonerba, C. Fisetin as an adjuvant treatment in prostate cancer patients receiving androgen-deprivation therapy. Future Sci. OA 2022, 8, FSO784. [Google Scholar] [CrossRef]
- Feng, P.; Shu, S.; Zhao, F. Anti-Osteoporosis Effect of Fisetin against Ovariectomy Induced Osteoporosis in Rats: In Silico, in vitro and in vivo Activity. J. Oleo Sci. 2022, 71, 105–118. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Chen, J.; Hu, J. Protective Effect of Fisetin on the Lipopolysaccharide-Induced Preeclampsia-like Rats. Hypertens. Pregnancy 2022, 41, 23–30. [Google Scholar] [CrossRef]
- Kammerud, S.C.; Metge, B.J.; Elhamamsy, A.R.; Weeks, S.E.; Alsheikh, H.A.; Mattheyses, A.L.; Shevde, L.A.; Samant, R.S. Novel Role of the Dietary Flavonoid Fisetin in Suppressing RRNA Biogenesis. Lab. Investig. 2021, 101, 1439–1448. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, D.-Z.; Wang, Y.-X. Bioflavonoid Fisetin Loaded α-Tocopherol-Poly(Lactic Acid)-Based Polymeric Micelles for Enhanced Anticancer Efficacy in Breast Cancers. Pharm. Res. 2017, 34, 453–461. [Google Scholar] [CrossRef]
- Chamcheu, J.C.; Esnault, S.; Adhami, V.M.; Noll, A.L.; Banang-Mbeumi, S.; Roy, T.; Singh, S.S.; Huang, S.; Kousoulas, K.G.; Mukhtar, H. Fisetin, a 3,7,3′,4′-Tetrahydroxyflavone Inhibits the PI3K/Akt/MTOR and MAPK Pathways and Ameliorates Psoriasis Pathology in 2D and 3D Organotypic Human Inflammatory Skin Models. Cells 2019, 8, 1089. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, H.; Wu, X.; Guo, Y.; Cheng, W.; Qian, F. Fisetin Alleviates Sepsis-Induced Multiple Organ Dysfunction in Mice via Inhibiting P38 MAPK/MK2 Signaling. Acta Pharmacol. Sin. 2020, 41, 1348–1356. [Google Scholar] [CrossRef]
- Zhang, X.-J.; Jia, S.-S. Fisetin Inhibits Laryngeal Carcinoma through Regulation of AKT/NF-ΚB/MTOR and ERK1/2 Signaling Pathways. Biomed. Pharmacother. 2016, 83, 1164–1174. [Google Scholar] [CrossRef]
- Kim, S.G.; Sung, J.Y.; Kim, J.-R.; Choi, H.C. Fisetin-Induced PTEN Expression Reverses Cellular Senescence by Inhibiting the MTORC2-Akt Ser473 Phosphorylation Pathway in Vascular Smooth Muscle Cells. Exp. Gerontol. 2021, 156, 111598. [Google Scholar] [CrossRef] [PubMed]
- Chou, R.-H.; Hsieh, S.-C.; Yu, Y.-L.; Huang, M.-H.; Huang, Y.-C.; Hsieh, Y.-H. Fisetin Inhibits Migration and Invasion of Human Cervical Cancer Cells by Down-Regulating Urokinase Plasminogen Activator Expression through Suppressing the P38 MAPK-Dependent NF-ΚB Signaling Pathway. PLoS ONE 2013, 8, e71983. [Google Scholar] [CrossRef] [Green Version]
- Guallar-Garrido, S.; Julián, E. Bacillus Calmette-Guérin (BCG) Therapy for Bladder Cancer: An Update. ImmunoTargets Ther. 2020, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crocetto, F.; di Zazzo, E.; Buonerba, C.; Aveta, A.; Pandolfo, S.D.; Barone, B.; Trama, F.; Caputo, V.F.; Scafuri, L.; Ferro, M.; et al. Kaempferol, Myricetin and Fisetin in Prostate and Bladder Cancer: A Systematic Review of the Literature. Nutrients 2021, 13, 3750. [Google Scholar] [CrossRef]
- Li, J.; Cheng, Y.; Qu, W.; Sun, Y.; Wang, Z.; Wang, H.; Tian, B. Fisetin, a Dietary Flavonoid, Induces Cell Cycle Arrest and Apoptosis through Activation of P53 and Inhibition of NF-Kappa B Pathways in Bladder Cancer Cells. Basic Clin. Pharmacol. Toxicol. 2011, 108, 84–93. [Google Scholar] [CrossRef]
- Li, J.; Qu, W.; Cheng, Y.; Sun, Y.; Jiang, Y.; Zou, T.; Wang, Z.; Xu, Y.; Zhao, H. The Inhibitory Effect of Intravesical Fisetin against Bladder Cancer by Induction of P53 and Down-Regulation of NF-Kappa B Pathways in a Rat Bladder Carcinogenesis Model. Basic Clin. Pharmacol. Toxicol. 2014, 115, 321–329. [Google Scholar] [CrossRef]
- Liu, J.; Duan, X. PA-MSHA Induces Apoptosis and Suppresses Metastasis by Tumor Associated Macrophages in Bladder Cancer Cells. Cancer Cell Int. 2017, 17, 76. [Google Scholar] [CrossRef] [Green Version]
- Momenimovahed, Z.; Salehiniya, H. Epidemiological Characteristics of and Risk Factors for Breast Cancer in the World. Breast Cancer 2019, 11, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Guo, G.; Zhang, W.; Dang, M.; Yan, M.; Chen, Z. Fisetin Induces Apoptosis in Breast Cancer MDA-MB-453 Cells through Degradation of HER2/Neu and via the PI3K/Akt Pathway. J. Biochem. Mol. Toxicol. 2019, 33, e22268. [Google Scholar] [CrossRef]
- Sun, X.; Ma, X.; Li, Q.; Yang, Y.; Xu, X.; Sun, J.; Yu, M.; Cao, K.; Yang, L.; Yang, G.; et al. Anti-cancer Effects of Fisetin on Mammary Carcinoma Cells via Regulation of the PI3K/Akt/MTOR Pathway: In Vitro and in Vivo Studies. Int. J. Mol. Med. 2018, 42, 811–820. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.-F.; Chen, J.-H.; Chang, C.-N.; Lu, D.-Y.; Chang, P.-C.; Wang, S.-L.; Yeh, W.-L. Fisetin Inhibits Cell Migration via Inducing HO-1 and Reducing MMPs Expression in Breast Cancer Cell Lines. Food Chem. Toxicol. 2018, 120, 528–535. [Google Scholar] [CrossRef]
- Smith, M.L.; Murphy, K.; Doucette, C.D.; Greenshields, A.L.; Hoskin, D.W. The Dietary Flavonoid Fisetin Causes Cell Cycle Arrest, Caspase-Dependent Apoptosis, and Enhanced Cytotoxicity of Chemotherapeutic Drugs in Triple-Negative Breast Cancer Cells. J. Cell. Biochem. 2016, 117, 1913–1925. [Google Scholar] [CrossRef]
- Noh, E.-M.; Park, Y.-J.; Kim, J.-M.; Kim, M.-S.; Kim, H.-R.; Song, H.-K.; Hong, O.-Y.; So, H.-S.; Yang, S.-H.; Kim, J.-S.; et al. Fisetin Regulates TPA-Induced Breast Cell Invasion by Suppressing Matrix Metalloproteinase-9 Activation via the PKC/ROS/MAPK Pathways. Eur. J. Pharmacol. 2015, 764, 79–86. [Google Scholar] [CrossRef]
- Yang, P.-M.; Tseng, H.-H.; Peng, C.-W.; Chen, W.-S.; Chiu, S.-J. Dietary Flavonoid Fisetin Targets Caspase-3-Deficient Human Breast Cancer MCF-7 Cells by Induction of Caspase-7-Associated Apoptosis and Inhibition of Autophagy. Int. J. Oncol. 2012, 40, 469–478. [Google Scholar] [CrossRef] [Green Version]
- Epidemiology of Brain Tumors–ClinicalKey. Available online: https://www.clinicalkey.com/#!/content/playContent/1-s2.0-S0733861916300366?returnurl=https:%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0733861916300366%3Fshowall%3Dtrue&referrer=https:%2F%2Fpubmed.ncbi.nlm.nih.gov%2F (accessed on 9 April 2022).
- Pak, F.; Oztopcu-Vatan, P. Fisetin Effects on Cell Proliferation and Apoptosis in Glioma Cells. Z. Nat. C 2019, 74, 295–302. [Google Scholar] [CrossRef]
- Chen, C.-M.; Hsieh, Y.-H.; Hwang, J.-M.; Jan, H.-J.; Hsieh, S.-C.; Lin, S.-H.; Lai, C.-Y. Fisetin Suppresses ADAM9 Expression and Inhibits Invasion of Glioma Cancer Cells through Increased Phosphorylation of ERK1/2. Tumor Biol. 2015, 36, 3407–3415. [Google Scholar] [CrossRef]
- Hamers, F.F.; Poullié, A.-I.; Arbyn, M. Updated Evidence-Based Recommendations for Cervical Cancer Screening in France. Eur. J. Cancer Prev. 2022, 31, 279–286. [Google Scholar] [CrossRef]
- Lin, M.-T.; Lin, C.-L.; Lin, T.-Y.; Cheng, C.-W.; Yang, S.-F.; Lin, C.-L.; Wu, C.-C.; Hsieh, Y.-H.; Tsai, J.-P. Synergistic Effect of Fisetin Combined with Sorafenib in Human Cervical Cancer HeLa Cells through Activation of Death Receptor-5 Mediated Caspase-8/Caspase-3 and the Mitochondria-Dependent Apoptotic Pathway. Tumor Biol. 2016, 37, 6987–6996. [Google Scholar] [CrossRef]
- Mahmood, N.; Mihalcioiu, C.; Rabbani, S.A. Multifaceted Role of the Urokinase-Type Plasminogen Activator (UPA) and Its Receptor (UPAR): Diagnostic, Prognostic, and Therapeutic Applications. Front. Oncol. 2018, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Duffy, M.J.; McGowan, P.M.; Harbeck, N.; Thomssen, C.; Schmitt, M. UPA and PAI-1 as Biomarkers in Breast Cancer: Validated for Clinical Use in Level-of-Evidence-1 Studies. Breast Cancer Res. 2014, 16, 428. [Google Scholar] [CrossRef] [Green Version]
- Ying, T.-H.; Yang, S.-F.; Tsai, S.-J.; Hsieh, S.-C.; Huang, Y.-C.; Bau, D.-T.; Hsieh, Y.-H. Fisetin Induces Apoptosis in Human Cervical Cancer HeLa Cells through ERK1/2-Mediated Activation of Caspase-8-/Caspase-3-Dependent Pathway. Arch. Toxicol. 2012, 86, 263–273. [Google Scholar] [CrossRef]
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of Colorectal Cancer: Incidence, Mortality, Survival, and Risk Factors. Gastroenterol. Rev. 2019, 14, 89–103. [Google Scholar] [CrossRef]
- Cherri, S.; Libertini, M.; Zaniboni, A. New Drugs for the Treatment of Metastatic Colorectal Cancer. World J. Gastrointest. Oncol. 2021, 13, 1551–1560. [Google Scholar] [CrossRef]
- Khan, N.; Jajeh, F.; Eberhardt, E.L.; Miller, D.D.; Albrecht, D.M.; Van Doorn, R.; Hruby, M.D.; Maresh, M.E.; Clipson, L.; Mukhtar, H.; et al. Fisetin and 5-Fluorouracil: Effective Combination for PIK3CA-Mutant Colorectal Cancer. Int. J. Cancer 2019, 145, 3022–3032. [Google Scholar] [CrossRef]
- Yu, S.-H.; Yang, P.-M.; Peng, C.-W.; Yu, Y.-C.; Chiu, S.-J. Securin Depletion Sensitizes Human Colon Cancer Cells to Fisetin-Induced Apoptosis. Cancer Lett. 2011, 300, 96–104. [Google Scholar] [CrossRef]
- Lim, D.Y.; Park, J.H.Y. Induction of P53 Contributes to Apoptosis of HCT-116 Human Colon Cancer Cells Induced by the Dietary Compound Fisetin. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 296, G1060–G1068. [Google Scholar] [CrossRef]
- Suh, Y.; Afaq, F.; Johnson, J.J.; Mukhtar, H. A Plant Flavonoid Fisetin Induces Apoptosis in Colon Cancer Cells by Inhibition of COX2 and Wnt/EGFR/NF-ΚB-Signaling Pathways. Carcinogenesis 2009, 30, 300–307. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.-S.; Lien, G.-S.; Shen, S.-C.; Yang, L.-Y.; Chen, Y.-C. N-Acetyl-L-Cysteine Enhances Fisetin-Induced Cytotoxicity via Induction of ROS-Independent Apoptosis in Human Colonic Cancer Cells. Mol. Carcinog. 2014, 53, E119–E129. [Google Scholar] [CrossRef]
- Jeng, L.-B.; Kumar Velmurugan, B.; Chen, M.-C.; Hsu, H.-H.; Ho, T.-J.; Day, C.-H.; Lin, Y.-M.; Padma, V.V.; Tu, C.-C.; Huang, C.-Y. Fisetin Mediated Apoptotic Cell Death in Parental and Oxaliplatin/Irinotecan Resistant Colorectal Cancer Cells in Vitro and in Vivo. J. Cell. Physiol. 2018, 233, 7134–7142. [Google Scholar] [CrossRef]
- Wu, M.-S.; Lien, G.-S.; Shen, S.-C.; Yang, L.-Y.; Chen, Y.-C. HSP90 Inhibitors, Geldanamycin and Radicicol, Enhance Fisetin-Induced Cytotoxicity via Induction of Apoptosis in Human Colonic Cancer Cells. Evid. Based Complementary Altern. Med. 2013, 2013, e987612. [Google Scholar] [CrossRef]
- Lu, X.; Jung, J.; Cho, H.J.; Lim, D.Y.; Lee, H.S.; Chun, H.S.; Kwon, D.Y.; Park, J.H. Fisetin Inhibits the Activities of Cyclin-Dependent Kinases Leading to Cell Cycle Arrest in HT-29 Human Colon Cancer Cells. J. Nutr. 2005, 135, 2884–2890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epidemiology of Renal Cell Carcinoma—PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239575/ (accessed on 15 April 2022).
- Thakur, A.; Jain, S.K. Kidney Cancer: Current Progress in Treatment. World J. Oncol. 2011, 2, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.-H.; Tsai, J.-P.; Yang, S.-F.; Chiou, H.-L.; Lin, C.-L.; Hsieh, Y.-H.; Chang, H.-R. Fisetin Suppresses the Proliferation and Metastasis of Renal Cell Carcinoma through Upregulation of MEK/ERK-Targeting CTSS and ADAM9. Cells 2019, 8, 948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, K.-J.; Nam, J.-O.; Kwon, T.K. Fisetin Induces Apoptosis Through P53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells. Molecules 2017, 22, 1285. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Wang, J.; Huang, X.; Wang, H.; Li, F.; Ye, W.; Huang, S.; Pan, J.; Ling, Q.; Wei, W.; et al. Global, Regional, and National Burdens of Leukemia from 1990 to 2017: A Systematic Analysis of the Global Burden of Disease 2017 Study. Aging 2021, 13, 10468–10489. [Google Scholar] [CrossRef]
- Leukemia—Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/leuks.html (accessed on 15 April 2022).
- Ravandi, F. New Treatments and Strategies in Acute Myeloid Leukemia. Clin. Lymphoma Myeloma Leuk. 2011, 11, S60–S64. [Google Scholar] [CrossRef] [Green Version]
- Klimaszewska-Wiśniewska, A.; Grzanka, D.; Czajkowska, P.; Hałas-Wiśniewska, M.; Durślewicz, J.; Antosik, P.; Grzanka, A.; Gagat, M. Cellular and Molecular Alterations Induced by Low-dose Fisetin in Human Chronic Myeloid Leukemia Cells. Int. J. Oncol. 2019, 55, 1261–1274. [Google Scholar] [CrossRef] [Green Version]
- Adan, A.; Baran, Y. Fisetin and Hesperetin Induced Apoptosis and Cell Cycle Arrest in Chronic Myeloid Leukemia Cells Accompanied by Modulation of Cellular Signaling. Tumor Biol. 2016, 37, 5781–5795. [Google Scholar] [CrossRef]
- Tsai, Y.H.; Lin, J.J.; Ma, Y.S.; Peng, S.F.; Huang, A.C.; Huang, Y.P.; Fan, M.J.; Lien, J.C.; Chung, J.G. Fisetin Inhibits Cell Proliferation through the Induction of G0/G1 Phase Arrest and Caspase-3-Mediated Apoptosis in Mouse Leukemia Cells. Am. J. Chin. Med. 2019, 47, 841–863. Available online: https://www.worldscientific.com/doi/10.1142/S0192415X19500447?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed (accessed on 29 January 2022). [CrossRef]
- Adan, A.; Baran, Y. The Pleiotropic Effects of Fisetin and Hesperetin on Human Acute Promyelocytic Leukemia Cells Are Mediated through Apoptosis, Cell Cycle Arrest, and Alterations in Signaling Networks. Tumor Biol. 2015, 36, 8973–8984. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.-R.; Shen, S.-C.; Lin, H.-Y.; Hou, W.-C.; Yang, L.-L.; Chen, Y.-C. Wogonin and Fisetin Induce Apoptosis in Human Promyeloleukemic Cells, Accompanied by a Decrease of Reactive Oxygen Species, and Activation of Caspase 3 and Ca2+-Dependent Endonuclease. Biochem. Pharmacol. 2002, 63, 225–236. [Google Scholar] [CrossRef]
- Ash, D.; Subramanian, M.; Surolia, A.; Shaha, C. Nitric Oxide Is the Key Mediator of Death Induced by Fisetin in Human Acute Monocytic Leukemia Cells. Am. J. Cancer Res. 2015, 5, 481–497. [Google Scholar]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology 2021, 73, 4–13. [Google Scholar] [CrossRef]
- Anwanwan, D.; Singh, S.K.; Singh, S.; Saikam, V.; Singh, R. Challenges in Liver Cancer and Possible Treatment Approaches. Biochim. Biophys. Acta Rev. Cancer 2020, 1873, 188314. [Google Scholar] [CrossRef]
- Liu, X.-F.; Long, H.-J.; Miao, X.-Y.; Liu, G.-L.; Yao, H.-L. Fisetin Inhibits Liver Cancer Growth in a Mouse Model: Relation to Dopamine Receptor. Oncol. Rep. 2017, 38, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Sundarraj, K.; Raghunath, A.; Panneerselvam, L.; Perumal, E. Fisetin Inhibits Autophagy in HepG2 Cells via PI3K/Akt/MTOR and AMPK Pathway. Nutr. Cancer 2021, 73, 2502–2514. [Google Scholar] [CrossRef]
- Sundarraj, K.; Raghunath, A.; Panneerselvam, L.; Perumal, E. Fisetin, a Phytopolyphenol, Targets Apoptotic and Necroptotic Cell Death in HepG2 Cells. BioFactors 2020, 46, 118–135. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Shen, S.-C.; Lee, W.-R.; Lin, H.-Y.; Ko, C.-H.; Shih, C.-M.; Yang, L.-L. Wogonin and Fisetin Induction of Apoptosis through Activation of Caspase 3 Cascade and Alternative Expression of P21 Protein in Hepatocellular Carcinoma Cells SK-HEP-1. Arch. Toxicol. 2002, 76, 351–359. [Google Scholar] [CrossRef]
- de Groot, P.M.; Wu, C.C.; Carter, B.W.; Munden, R.F. The epidemiology of lung cancer. Transl. Lung Cancer Res. 2018, 7, 220–233. [Google Scholar] [CrossRef]
- Zanoaga, O.; Braicu, C.; Jurj, A.; Rusu, A.; Buiga, R.; Berindan-Neagoe, I. Progress in Research on the Role of Flavonoids in Lung Cancer. Int. J. Mol. Sci. 2019, 20, 4291. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Huang, S. Fisetin Inhibits the Growth and Migration in the A549 Human Lung Cancer Cell Line via the ERK1/2 Pathway. Exp. Ther. Med. 2018, 15, 2667–2673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimaszewska-Wiśniewska, A.; Hałas-Wiśniewska, M.; Grzanka, A.; Grzanka, D. Evaluation of Anti-Metastatic Potential of the Combination of Fisetin with Paclitaxel on A549 Non-Small Cell Lung Cancer Cells. Int. J. Mol. Sci. 2018, 19, 661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, K.A.; Piao, M.J.; Hyun, J.W. Fisetin induces apoptosis in human nonsmall lung cancer cells via a mitochondria-mediated pathway. In Vitro Cell. Dev. Biol. Anim. 2014, 51, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.-C.; Shih, Y.-W.; Chao, C.-H.; Lee, X.-Y.; Chiang, T.-A. Involvement of the ERK Signaling Pathway in Fisetin Reduces Invasion and Migration in the Human Lung Cancer Cell Line A549. J. Agric. Food Chem. 2009, 57, 8933–8941. [Google Scholar] [CrossRef] [PubMed]
- Matthews, N.H.; Li, W.-Q.; Qureshi, A.A.; Weinstock, M.A.; Cho, E. Epidemiology of Melanoma. In Cutaneous Melanoma: Etiology and Therapy; Ward, W.H., Farma, J.M., Eds.; Codon Publications: Brisbane, Australia, 2017; ISBN 978-0-9944381-4-0. [Google Scholar]
- Saginala, K.; Barsouk, A.; Aluru, J.S.; Rawla, P.; Barsouk, A. Epidemiology of Melanoma. Med. Sci. 2021, 9, 63. [Google Scholar] [CrossRef]
- de Oliveira Júnior, R.G.; Ferraz, C.A.A.; Silva, M.G.; de Lavor, É.M.; Rolim, L.A.; de Lima, J.T.; Fleury, A.; Picot, L.; de Souza Siqueira Quintans, J.; Quintans Junior, L.J. Flavonoids: Promising natural products for treatment of skin cancer (melanoma). In Natural Products and Cancer Drug Discovery; IntechOpen: Rijeka, Croatia, 2017; ISBN 978-953-51-3314-8. [Google Scholar]
- Wang, K.; Hu, D.-N.; Lin, H.-W.; Yang, W.-E.; Hsieh, Y.-H.; Chien, H.-W.; Yang, S.-F. Fisetin Induces Apoptosis through Mitochondrial Apoptosis Pathway in Human Uveal Melanoma Cells. Environ. Toxicol. 2018, 33, 527–534. [Google Scholar] [CrossRef]
- Syed, D.N.; Lall, R.K.; Chamcheu, J.C.; Haidar, O.; Mukhtar, H. Involvement of ER Stress and Activation of Apoptotic Pathways in Fisetin Induced Cytotoxicity in Human Melanoma. Arch. Biochem. Biophys. 2014, 563, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Syed, D.N.; Afaq, F.; Maddodi, N.; Johnson, J.J.; Sarfaraz, S.; Ahmad, A.; Setaluri, V.; Mukhtar, H. Inhibition of Human Melanoma Cell Growth by Dietary Flavonoid Fisetin Is Associated with Disruption of Wnt/β-Catenin Signaling and Decreased Mitf Levels. J. Investig. Dermatol. 2011, 131, 1291–1299. [Google Scholar] [CrossRef] [Green Version]
- Pal, H.C.; Sharma, S.; Strickland, L.R.; Katiyar, S.K.; Ballestas, M.E.; Athar, M.; Elmets, C.A.; Afaq, F. Fisetin Inhibits Human Melanoma Cell Invasion through Promotion of Mesenchymal to Epithelial Transition and by Targeting MAPK and NFκB Signaling Pathways. PLoS ONE 2014, 9, e86338. [Google Scholar] [CrossRef] [Green Version]
- Shahi Thakuri, P.; Gupta, M.; Singh, S.; Joshi, R.; Glasgow, E.; Lekan, A.; Agarwal, S.; Luker, G.D.; Tavana, H. Phytochemicals Inhibit Migration of Triple Negative Breast Cancer Cells by Targeting Kinase Signaling. BMC Cancer 2020, 20, 4. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Gong, X.; Jiang, R.; Lin, D.; Zhou, T.; Zhang, A.; Li, H.; Zhang, X.; Wan, J.; Kuang, G.; et al. Fisetin Inhibited Growth and Metastasis of Triple-Negative Breast Cancer by Reversing Epithelial-to-Mesenchymal Transition via PTEN/Akt/GSK3β Signal Pathway. Front. Pharmacol. 2018, 9, 772. [Google Scholar] [CrossRef]
- Arif, H.; Sohail, A.; Farhan, M.; Rehman, A.A.; Ahmad, A.; Hadi, S.M. Flavonoids-Induced Redox Cycling of Copper Ions Leads to Generation of Reactive Oxygen Species: A Potential Role in Cancer Chemoprevention. Int. J. Biol. Macromol. 2018, 106, 569–578. [Google Scholar] [CrossRef]
- Afroze, N.; Pramodh, S.; Shafarin, J.; Bajbouj, K.; Hamad, M.; Sundaram, M.K.; Haque, S.; Hussain, A. Fisetin Deters Cell Proliferation, Induces Apoptosis, Alleviates Oxidative Stress and Inflammation in Human Cancer Cells, HeLa. Int. J. Mol. Sci. 2022, 23, 1707. [Google Scholar] [CrossRef]
- Youns, M.; Hegazy, W.A.H. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways. PLoS ONE 2017, 12, e0169335. [Google Scholar] [CrossRef] [Green Version]
- Leu, J.-D.; Wang, B.-S.; Chiu, S.-J.; Chang, C.-Y.; Chen, C.-C.; Chen, F.-D.; Avirmed, S.; Lee, Y.-J. Combining Fisetin and Ionizing Radiation Suppresses the Growth of Mammalian Colorectal Cancers in Xenograft Tumor Models. Oncol. Lett. 2016, 12, 4975–4982. [Google Scholar] [CrossRef] [Green Version]
- Enhancement of P53-Mutant Human Colorectal Cancer Cells Radiosensitivity by Flavonoid Fisetin—ClinicalKey. Available online: https://www.clinicalkey.com/#!/content/playContent/1-s2.0-S0360301610003986?returnurl=https:%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0360301610003986%3Fshowall%3Dtrue&referrer=https:%2F%2Fpubmed.ncbi.nlm.nih.gov%2F (accessed on 5 June 2022).
- Si, Y.; Liu, J.; Shen, H.; Zhang, C.; Wu, Y.; Huang, Y.; Gong, Z.; Xue, J.; Liu, T. Fisetin Decreases TET1 Activity and CCNY/CDK16 Promoter 5hmC Levels to Inhibit the Proliferation and Invasion of Renal Cancer Stem Cell. J. Cell. Mol. Med. 2019, 23, 1095–1105. [Google Scholar] [CrossRef]
- Sak, K.; Kasemaa, K.; Everaus, H. Potentiation of Luteolin Cytotoxicity by Flavonols Fisetin and Quercetin in Human Chronic Lymphocytic Leukemia Cell Lines. Food Funct. 2016, 7, 3815–3824. [Google Scholar] [CrossRef]
- Maurya, B.K.; Trigun, S.K. Fisetin Modulates Antioxidant Enzymes and Inflammatory Factors to Inhibit Aflatoxin-B1 Induced Hepatocellular Carcinoma in Rats. Oxid. Med. Cell. Longev. 2016, 2016, 1972793. [Google Scholar] [CrossRef] [Green Version]
- Tabasum, S.; Singh, R.P. Fisetin Suppresses Migration, Invasion and Stem-Cell-like Phenotype of Human Non-Small Cell Lung Carcinoma Cells via Attenuation of Epithelial to Mesenchymal Transition. Chem. Biol. Interact. 2019, 303, 14–21. [Google Scholar] [CrossRef]
- Klimaszewska-Wisniewska, A.; Halas-Wisniewska, M.; Tadrowski, T.; Gagat, M.; Grzanka, D.; Grzanka, A. Paclitaxel and the Dietary Flavonoid Fisetin: A Synergistic Combination That Induces Mitotic Catastrophe and Autophagic Cell Death in A549 Non-Small Cell Lung Cancer Cells. Cancer Cell Int. 2016, 16, 10. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, W.; Zhang, L.; Zhu, Y.; Zhu, B.; Chen, Z. Fisetin, a Dietary Bioflavonoid, Reverses Acquired Cisplatin-Resistance of Lung Adenocarcinoma Cells through MAPK/Survivin/Caspase Pathway. Am. J. Transl. Res. 2015, 7, 2045–2052. [Google Scholar] [PubMed]
- Ravichandran, N.; Suresh, G.; Ramesh, B.; Manikandan, R.; Choi, Y.W.; Vijaiyan Siva, G. Fisetin Modulates Mitochondrial Enzymes and Apoptotic Signals in Benzo(a)Pyrene-Induced Lung Cancer. Mol. Cell. Biochem. 2014, 390, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, N.; Suresh, G.; Ramesh, B.; Vijaiyan Siva, G. Fisetin, a Novel Flavonol Attenuates Benzo(a)Pyrene-Induced Lung Carcinogenesis in Swiss Albino Mice. Food Chem. Toxicol. 2011, 49, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Sechi, M.; Lall, R.K.; Afolabi, S.O.; Singh, A.; Joshi, D.C.; Chiu, S.-Y.; Mukhtar, H.; Syed, D.N. Fisetin Targets YB-1/RSK Axis Independent of Its Effect on ERK Signaling: Insights from in Vitro and in Vivo Melanoma Models. Sci. Rep. 2018, 8, 15726. [Google Scholar] [CrossRef] [PubMed]
- Pal, H.C.; Diamond, A.C.; Strickland, L.R.; Kappes, J.C.; Katiyar, S.K.; Elmets, C.A.; Athar, M.; Afaq, F. Fisetin, a Dietary Flavonoid, Augments the Anti-Invasive and Anti-Metastatic Potential of Sorafenib in Melanoma. Oncotarget 2015, 7, 1227–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal, H.C.; Baxter, R.D.; Hunt, K.M.; Agarwal, J.; Elmets, C.A.; Athar, M.; Afaq, F. Fisetin, a Phytochemical, Potentiates Sorafenib-Induced Apoptosis and Abrogates Tumor Growth in Athymic Nude Mice Implanted with BRAF-Mutated Melanoma Cells. Oncotarget 2015, 6, 28296–28311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Wang, J.; Zhao, X.-H. Bioactivity of Two Polyphenols Quercetin and Fisetin against Human Gastric Adenocarcinoma AGS Cells as Affected by Two Coexisting Proteins. Molecules 2022, 27, 2877. [Google Scholar] [CrossRef]
- Yan, W.; Chen, S.; Zhao, Y.; Ye, X. Fisetin Inhibits the Proliferation of Gastric Cancer Cells and Induces Apoptosis through Suppression of ERK 1/2 Activation. Oncol. Lett. 2018, 15, 8442–8446. [Google Scholar] [CrossRef]
- Sabarwal, A.; Agarwal, R.; Singh, R.P. Fisetin Inhibits Cellular Proliferation and Induces Mitochondria-Dependent Apoptosis in Human Gastric Cancer Cells. Mol. Carcinog. 2017, 56, 499–514. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, H.; Zhao, Y.; Shan, L.; Lan, S. Fisetin-induced cell death in human ovarian cancer cell lines via zbp1-mediated necroptosis. J. Ovarian Res. 2022, 15, 57. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Baharara, J.; Tehranipour, M. Apoptosis Induction with Combined Use of Cisplatin and Fisetin in Cisplatin-Resistant Ovarian Cancer Cells (A2780). Avicenna J. Med. Biotechnol. 2021, 13, 176–182. [Google Scholar] [CrossRef]
- Huang, C.; Zhou, S.; Zhang, C.; Jin, Y.; Xu, G.; Zhou, L.; Ding, G.; Pang, T.; Jia, S.; Cao, L. ZC3H13-Mediated N6-Methyladenosine Modification of PHF10 Is Impaired by Fisetin Which Inhibits the DNA Damage Response in Pancreatic Cancer. Cancer Lett. 2022, 530, 16–28. [Google Scholar] [CrossRef]
- Ding, G.; Xu, X.; Li, D.; Chen, Y.; Wang, W.; Ping, D.; Jia, S.; Cao, L. Fisetin Inhibits Proliferation of Pancreatic Adenocarcinoma by Inducing DNA Damage via RFXAP/KDM4A-Dependent Histone H3K36 Demethylation. Cell Death Dis. 2020, 11, 893. [Google Scholar] [CrossRef]
- Jia, S.; Xu, X.; Zhou, S.; Chen, Y.; Ding, G.; Cao, L. Fisetin Induces Autophagy in Pancreatic Cancer Cells via Endoplasmic Reticulum Stress- and Mitochondrial Stress-Dependent Pathways. Cell Death Dis. 2019, 10, 142. [Google Scholar] [CrossRef]
- Murtaza, I.; Adhami, V.M.; Hafeez, B.B.; Saleem, M.; Mukhtar, H. Fisetin, a Natural Flavonoid, Targets Chemoresistant Human Pancreatic Cancer AsPC-1 Cells through DR3-Mediated Inhibition of NF-ΚB. Int. J. Cancer 2009, 125, 2465–2473. [Google Scholar] [CrossRef] [Green Version]
- Mukhtar, E.; Adhami, V.M.; Siddiqui, I.A.; Verma, A.K.; Mukhtar, H. Fisetin Enhances Chemotherapeutic Effect of Cabazitaxel against Human Prostate Cancer Cells. Mol. Cancer Ther. 2016, 15, 2863–2874. [Google Scholar] [CrossRef] [Green Version]
- Szliszka, E.; Helewski, K.J.; Mizgala, E.; Krol, W. The Dietary Flavonol Fisetin Enhances the Apoptosis-Inducing Potential of TRAIL in Prostate Cancer Cells. Int. J. Oncol. 2011, 39, 771–779. [Google Scholar] [CrossRef]
- Suh, Y.; Afaq, F.; Khan, N.; Johnson, J.J.; Khusro, F.H.; Mukhtar, H. Fisetin Induces Autophagic Cell Death through Suppression of MTOR Signaling Pathway in Prostate Cancer Cells. Carcinogenesis 2010, 31, 1424–1433. [Google Scholar] [CrossRef] [Green Version]
- Chien, C.-S.; Shen, K.-H.; Huang, J.-S.; Ko, S.-C.; Shih, Y.-W. Antimetastatic Potential of Fisetin Involves Inactivation of the PI3K/Akt and JNK Signaling Pathways with Downregulation of MMP-2/9 Expressions in Prostate Cancer PC-3 Cells. Mol. Cell. Biochem. 2009, 333, 169. [Google Scholar] [CrossRef]
- Rawla, P.; Barsouk, A. Epidemiology of Gastric Cancer: Global Trends, Risk Factors and Prevention. Gastroenterol. Rev. 2019, 14, 26–38. [Google Scholar] [CrossRef]
- Reid, B.M.; Permuth, J.B.; Sellers, T.A. Epidemiology of Ovarian Cancer: A Review. Cancer Biol. Med. 2017, 14, 9–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arend, R.C.; Jackson-Fisher, A.; Jacobs, I.A.; Chou, J.; Monk, B.J. Ovarian cancer: New strategies and emerging targets for the treatment of patients with advanced disease. Cancer Biol. Ther. 2021, 22, 89–105. [Google Scholar] [CrossRef] [PubMed]
- Abd Ghani, M.F.; Othman, R.; Nordin, N. Molecular Docking Study of Naturally Derived Flavonoids with Antiapoptotic BCL-2 and BCL-XL Proteins toward Ovarian Cancer Treatment. J. Pharm. Bioallied Sci. 2020, 12, S676–S680. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P.; Sunkara, T.; Gaduputi, V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J. Oncol. 2019, 10, 10–27. [Google Scholar] [CrossRef]
- Seufferlein, T.; Michalski, C. Future concepts for neoadjuvant and adjuvant treatment of (resectable) pancreatic cancer. Chirurg 2022, 93, 441–445. [Google Scholar] [CrossRef]
- Garmpis, N.; Damaskos, C.; Dimitroulis, D.; Garmpi, A.; Diamantis, E.; Sarantis, P.; Georgakopoulou, V.E.; Patsouras, A.; Prevezanos, D.; Syllaios, A.; et al. Targeting the Endocannabinoid System: From the Need for New Therapies to the Development of a Promising Strategy. What About Pancreatic Cancer? In Vivo 2022, 36, 543–555. [Google Scholar] [CrossRef]
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef] [Green Version]
- Izzo, S.; Naponelli, V.; Bettuzzi, S. Flavonoids as Epigenetic Modulators for Prostate Cancer Prevention. Nutrients 2020, 12, 1010. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Shi, R.; Wang, X.; Shen, H.-M. Luteolin, a Flavonoid with Potentials for Cancer Prevention and Therapy. Curr. Cancer Drug Targets 2008, 8, 634–646. [Google Scholar] [CrossRef]
- Liu, K.; Zhao, F.; Yan, J.; Xia, Z.; Jiang, D.; Ma, P. Hispidulin: A Promising Flavonoid with Diverse Anti-Cancer Properties. Life Sci. 2020, 259, 118395. [Google Scholar] [CrossRef]
- Farooqi, A.A.; Naureen, H.; Zahid, R.; Youssef, L.; Attar, R.; Xu, B. Cancer Chemopreventive Role of Fisetin: Regulation of Cell Signaling Pathways in Different Cancers. Pharmacol. Res. 2021, 172, 105784. [Google Scholar] [CrossRef]
- Lall, R.K.; Adhami, V.M.; Mukhtar, H. Dietary Flavonoid Fisetin for Cancer Prevention and Treatment. Mol. Nutr. Food Res. 2016, 60, 1396–1405. [Google Scholar] [CrossRef]
- Kim, N.; Kang, M.-J.; Lee, S.H.; Son, J.H.; Lee, J.E.; Paik, W.H.; Ryu, J.K.; Kim, Y.-T. Fisetin Enhances the Cytotoxicity of Gemcitabine by Down-Regulating ERK-MYC in MiaPaca-2 Human Pancreatic Cancer Cells. Anticancer Res. 2018, 38, 3527–3533. [Google Scholar] [CrossRef]
- Farooqi, A.A.; Shu, C.-W.; Huang, H.-W.; Wang, H.-R.; Chang, Y.-T.; Fayyaz, S.; Yuan, S.-S.F.; Tang, J.-Y.; Chang, H.-W. TRAIL, Wnt, Sonic Hedgehog, TGFβ, and MiRNA Signalings Are Potential Targets for Oral Cancer Therapy. Int. J. Mol. Sci. 2017, 18, 1523. [Google Scholar] [CrossRef] [Green Version]
- Kashyap, D.; Garg, V.K.; Tuli, H.S.; Yerer, M.B.; Sak, K.; Sharma, A.K.; Kumar, M.; Aggarwal, V.; Sandhu, S.S. Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential. Biomolecules 2019, 9, 174. [Google Scholar] [CrossRef] [Green Version]
Organs | Cell Line/Animals | IC50 [µM] | Mechanism | Ref. |
---|---|---|---|---|
Bladder | Wistar rats | Nd | FIS increases in the number of TUNEL-positive cells FIS regulates the expression of apoptosis-related proteins FIS downregulates NF-κB pathways FIS upregulates the expression of ARF | [28] |
T24 | ≈70 # ≈90 * | FIS inhibits the proliferation of T24 and EJ cells by inducing apoptosis and blocking cell-cycle progression in the G0/G1 phase FIS increases the expression of p53 and p21 proteins FIS decreases the levels of cyclin D1, cyclin A, CDK4 and CDK2 FIS increases the expression of Bax and Bak FIS decreased the levels of Bcl-2 and Bcl-xL FIS triggers mitochondrial apoptotic pathway | [27] | |
EJ | >100 * ≈80 # | |||
J82 | >100 * ≈80 # | |||
Breast | SUM159 MDA-MB-468 | ND | FIS influences MAPK/ERK pathway to impair RNA Pol I activity and rRNA biogenesis FIS localizes to the nucleolus and reduces the number of nucleoli per cell FIS affects RNA polymerase I activity and rRNA biogenesis FIS downregulates MAPK signaling FIS inhibits functional attributes of malignant mammary tumor cells | [18] |
HCC1806, HCC70, HCC1937, BT-549, 20 Hs578T, MDA-MB-231, 157, 468 | ND | FIS inhibits migration of metastatic TNBC cells FIS inhibits migration and matrix invasion of TNBC cells FIS inhibits of metastasis in zebrafish FIS targets different components and substrates of the oncogenic PI3K/AKT pathway and reduces their activities FIS disrupts activities of several protein kinases in MAPK and STAT pathways | [87] | |
MDA-MB-453 | ND | Fisetin induces apoptosis in HER2/neu-overexpressing breast cancer cells Fisetin increases PI3K activity at 10 µM, which gradually declines on treatment with higher concentrations (>25 µM) FIS (10 µM) increases phosphorylation of Akt in MDA-MB-453 cells FIS decreases tyrosine phosphorylation of HER2 FIS decreases the levels of HER2/neu | [31] | |
4T1 JC | ND | FIS inhibits cell migration and colony formation FIS decreases MMPs production and increases HO-1 expression Nrf2 mediates FIS-induced HO-1 expression in breast cancer cells | [33] | |
4T1 | ≈80 * ≈40 # | FIS inhibits breast cancer cell viability FIS inhibits the proliferation, migration and invasiveness of mammary carcinoma cells FIS induces the apoptosis of mammary carcinoma cells FIS regulates the PI3K/Akt/mTOR pathway in 4T1 mammary carcinoma cells FIS inhibits the primary tumor growth of 4T1 cells | [32] | |
MCF-7 | ≈35 * ≈35 # | |||
MDA-MB-231 | >100 * >100 # | |||
MDA-MB-231 | ≈100 * | FIS suppresses the proliferation, migration and invasion FIS reverses EMT in TNBC Cells FIS suppresses PI3K-Akt-GSK-3β signal pathway but upregulated PTEN expression | [88] | |
BT549 | ≈100 * | |||
MDA-MB-231 | ND | FIS causes inhibition of cell growth in MDA-MB-231 breast cancer cells | [89] | |
MDA-MB-468 | >100 * 100 # | FIS inhibits breast cancer cell growth FIS inhibits TNBC cell division and cell-cycle progression FIS causes tnbc cells to undergo apoptosis FIS inhibits histone h3 phosphorylation FIS disrupts the mitochondrial membrane and causes caspase activation in tnbc cells | [34] | |
MDA-MB-231 | >100 * >100 # | |||
MCF-7 | ND | FIS attenuates TPA-induced cell invasion in MCF-7 cells FIS inhibits the activation of the PKCα/ROS/ERK1/2 and p38 MAPK signaling pathways | [35] | |
MCF-7 | ≈40 * | FIS exhibits substantial cytotoxicity in caspase-3-deficient MCF-7 cells FIS does not induce necroptosis in MCF-7 cells FIS induces caspase-dependent cell death in MCF-7 cells FIS induces mitochondrial depolarization and p53-independent cell death in MCF-7 cells FIS inhibits autophagy in MCF-7 cells | [36] | |
MDA-MB-231 | >100 * | |||
Brain | GBM8401 | >100 * | FIS exhibits effective inhibition of cell migration and inhibits the invasion of GBM8401 cells FIS inhibits the expression of ADAM9 protein and mRNA FIS phosphorylates ERK1/2 in a sustained way | [39] |
T98G | 93 * 75 # | FIS upregulates the expression of caspase-3, caspase-9, caspase-8, and bax FIS downregulates the expression of Bcl-2 and survivin | [38] | |
Cervix | HeLa | ND | FIS induces morphological changes and inhibits proliferation FIS changes nuclear morphology FIS leads DNA fragmentation FIS encourages G2/M arrest and modulates cell-cycle regulatory genes FIS activates extrinsic and intrinsic pathways FIS modulates expression of various pro- and anti-apoptotic proteins FIS elevates caspase-3, caspase-8 and caspase-9 activity FIS changes the aberrant MAPK and PI3K/AKT/mTOR in HeLa cells | [90] |
HeLa | 52 * 36 # | FIS induces apoptosis of HeLa cells in a dose- and time-dependent manner FIS triggers the activations of caspases-3 and -8 and the cleavages of poly (ADP-ribose) polymerase FIS induces a sustained activation of the phosphorylation of ERK1/2 FIS significantly reduces tumor growth in mice with HeLa tumor xenografts | [44] | |
Colorectal | SW480, HCT116, HT29 | >100 * >100 * >100 * | FIS reduces the expression of PI3K, phosphorylation of AKT, mTOR, its target proteins, constituents of mTOR signaling FIS increases the phosphorylation of AMPKα. | [47] |
LoVo OR-LoVo CPT11-LoVo | >100 * >100 * ≈50 * | FIS induces apoptosis in LoVo cells, OR-LoVo, and CPT11-LoVo cells FIS induces apoptosis and inhibits survival pathway in parental and chemoresistance colon cancer cells FIS inhibits tumor growth in nude mice | [52] | |
Caco-2 | ≈30 * | FIS inhibits cellular proliferation and viability of colorectal cancer cell line FIS induces apoptosis FIS inhibits PGE2 production | [91] | |
Mouse xenograft models | ND | FIS inhibits tumor growth in a mouse CT-26 xenograft model FIS induces p53 and suppresses securin protein expression | [92] | |
HCT-116 HT-29 | ND | FIS reduces the surviving cell fraction in p53 wild-type HCT116 cells FIS prolongs radiation-induced G2/M arrest and enhanced radiation-induced cell growth arrest in HT-29 cells FIS suppresses radiation-induced phosphorylation of H2AX and phospho-Chk2 (Thr-68) in HT-29 cells FIS enhances radiation-induced caspase-dependent apoptosis in HT-29 cells FIS enhances radiosensitivity of irradiated HT-29 cells via the inhibition of AKT-ERK pathways | [93] | |
HCT116 | ≈540 * ≈140 # ≈130 ^ | FIS induces growth inhibition of HCT116 and HT29 colon cancer cells FIS induces apoptosis of HT29 colon cancer cells FIS inhibits expression of COX2 in HT29 cells FIS inhibits COX2 promoter activity and PGE2 secretion FIS inhibits β-catenin pathway in HT29 cells FIS inhibits expression and translocation of TCF1 and TCF4 in HT29 cells FIS inhibits COX2 expression through downregulation of TCF4 FIS inhibits activation of EGFR in HT29 cells FIS inhibits activation of NF-κB in HT29 cells FIS reduces expression of Wnt target genes and inhibits colony formation | [50] | |
HT-29 | ≈240 * ≈140 # ≈57 ^ | |||
COLO205, HCT-116, HCT-15, HT-29 | ND | FIS with NAC increases the expression of cleaved caspase-3 and PAPR protein FIS with NAC produces greater density of DNA ladders NAC and FIS inhibits on ERK protein phosphorylation | [51] | |
COLO205 | >100 * | FIS inhibits cellular proliferation and viability on human COLO205 colon cancer cells in the presence and absence of the HSP90 inhibitors HSP90 inhibitors enhance FIS-induced cytotoxicity HSP90 inhibitors increase expression of cleaved caspase-3 and the PAPR protein Increased caspase-3 and caspase-9 activities were detected in cancer cells treated with FIS and HSP90 inhibitors | [53] | |
HCT-116 HT-29 | ND | FIS exhibits higher cytotoxicity in securin-null HCT116 cells Knockdown of securin expression in cells enhances FIS-induced cell death p53-deficient human colon cells are resistant to FIS-induced apoptosis and cytotoxicity | [48] | |
HCT-116 HT-29 | ND | FIS induces apoptosis of HCT-116 cells FIS induces depolarization of the mitochondrial membrane in HCT-116 cells FIS alters the levels of Bcl-2 family proteins FIS induces Bax translocation to mitochondria FIS increases cleavage of caspase-8 | [49] | |
HT-29 | ND | FIS inhibits both cell growth and DNA synthesis FIS decreases the activities of cyclin-dependent kinases CDK2 and CDK4 FIS inhibits CDK4 activity | [54] | |
Kidney | 786-O | ≈50 * | FIS decreases RCC cell viability FIS induces cell-cycle arrest in the G2/M phase FIS inhibits migration and invasion FIS inhibited CTSB, CTSS, and ADAM9 FIS upregulates ERK activation | [57] |
CaKi-1 | ≈30 * | |||
ACHN | ≈40 * | |||
A-498 | ≈40 * | |||
Stem cells | ND | FIS inhibits HuRCSC cell division and proliferation, invasion, in vivo tumorigenesis and angiogenesis FIS decreases TET1 expression levels in HuRCSCs | [94] | |
CaKi | ND | FIS induces apoptosis in Caki cells FIS induces sub-G1 population and cleavage of PARP FIS induced apoptosis through upregulation of DR5 expression FIS induces p53 protein expression FIS induces upregulation of CHOP expression and ROS production | [58] | |
Leukemia | K562 | ND | FIS (from 10 to 50 µM) is not highly toxic to the K562 cells FIS did not cause any apparent changes in the viability FIS is not a potent inducer of apoptosis FIS-treated cells exhibits a greater capacity to invade than the untreated ones FIS treatment enhances the nuclear localization of β-catenin | [62] |
WEHI-3 | ND | FIS decreases total viable cells through G0/G1 phase arrest and induced sub-G1 phase FIS induces cell apoptosis by the formation of DNA fragmentation FIS induces intracellular Ca2+ increase FIS decreases the ROS production and the levels of ΔΨm FIS increases the activities of caspase-3, -8, -9 FIS reduces expressions of cdc25a FIS increases expressions p-p53, Chk1, p21 and p27 FIS inhibits Bcl-2 and Bcl-xL and increases Bax and Bak | [64] | |
HG-3, EHEB, | ND | FIS augments the cytotoxic activity of luteolin | [95] | |
K562 | ≈160 # ≈120 ^ | FIS inhibits growth of K562 cells FIS induces apoptosis of K562 cells FIS increases caspase-3 activity FIS arrests cell cycle at both S and G2/M phases | [63] | |
HL60 | ≈80 # ≈45 ^ | FIS triggers apoptosis in HL60 cells FIS induces loss of mitochondrial membrane potential FIS increases caspase-3 activity FIS arrests cell cycle at the G2/M phase | [65] | |
THP-1 | ND | FIS affects survival of acute monocytic leukemia cells FIS-treatment results in increase in NO levels FIS-treatment induces double strand DNA breaks FIS induces NO production downregulates mTOR activity and causes activation of caspases FIS alters Ca2+ levels and activates caspases | [67] | |
K562 | ND | |||
U937 | ND | |||
HL-60 | ND | FIS induces apoptosis of K562 cells FIS causes rapid and transient induction of caspase-3/CPP32 activity FIS does not cause caspase-1 activity FIS decreases procaspase-3 protein | [66] | |
Liver | HepG2 | ≈80 * | FIS performs as DR2 agonist to suppress liver cancer cells proliferation, migration and invasion FIS activates caspase-3 signaling to induce apoptosis FIS downregulates VEGFR1, p-ERK1/2, p38 and pJNK | [70] |
HCC-LM3 | ≈40 * | |||
SMMC-7721 | >100 * | |||
Charles foster rats | ND | FIS normalizes the enhanced expression of TNFα and IL1α | [96] | |
HepG2 | ND | FIS inhibits autophagy by the activation of PI3K/Akt/mTOR and modulation of AMPK signaling pathways. FIS inhibits autophagic flux in HepG2 cells. FIS inhibits autophagy through AMPK regulation FIS exposure does not show any significant ATP level changes | [71] | |
HepG2 | ND | FIS decreases cell viability and proliferation of HepG2 cells FIS induces cell-cycle arrest in the G2/M phase FIS induces both apoptosis and necroptosis in HepG2 cells FIS induces ROS production FIS causes a marked increase in the expression of TNFα and IKκB FIS causes a marked decrease in NF-κB, pNF-κB and pIKκB expression FIS reduces the expression of Bcl2, and elevates levels of Bax, caspase-3, and PARP | [72] | |
SK-HEP-1 | ND | FIS shows dose-dependent cytotoxic effects on SK-HEP-1 cells, accompanied by DNA fragmentation FIS induces cellular swelling and the appearance of apoptotic bodies FIS induces of apoptosis in SK-HEP-1 cells FIS activates Caspase-3 signaling to induce apoptosis | [73] | |
Lung | H1299 A549 | ND | FIS decreases the expression of signaling proteins (β-catenin, NF-κB, EGFR, STAT-3) FIS decreases the ability of H1299 cells to form colonies and potentiates the cytotoxic effects of tyrosine kinase inhibitor-erlotinib | [97] |
A549 | ND | FIS inhibits A549 cell proliferation FIS causes cell-cycle arrest in A549 cells FIS induces apoptosis of A549 cells FIS suppresses cell adhesion, invasion and migration FIS inhibits the activation of the ERK signaling pathway via MEK1/2 | [76] | |
NCI-H460 | ND | FIS increases the ER stress signaling FIS increases the level of mitochondrial ROS FIS induces mitochondrial Ca2+ overloading and ER stress FIS induced ER stress-mediated cell death via activation of the MAPK pathway | [78] | |
A549 | ND | FIS acts synergistically with paclitaxel to decrease the viability of A549 cells FIS synergized with PTX or ATO in A549 cells as well as that the synergistic effect of FIS and PTX was cell line-specific FIS induces autophagy in A549 cells | [98] | |
A549 | ND | FIS inhibits the adhesion, invasion, and migration in A549 cells FIS inhibits the expressions of MMP-2 and u-PA FIS inhibits the phosphorylation of ERK FIS inhibits the protein expressions of MMP-2 and u-PA FIS inhibits the DNA binding activities of NF-κB, c-Fos, and c-Jun | [79] | |
A549 | ND | FIS enhances chemotherapeutic effect of Cisplatin FIS reverses Cisplatin-resistance of cells through MAPK/Survivin/Caspase pathways | [99] | |
Swiss albino mice | ND | FIS is a very successful drug in combating the mitochondrial dysfunction in an experimental model of lung carcinogenesis | [100] | |
Swiss albino mice | ND | FIS significantly reduces the degree of histological lesions FIS restores the levels of lipid peroxidation (LPO), enzymic and nonenzymic antioxidants | [101] | |
Melanoma | WM35 | ND | FIS inhibits YB-1 in mutant BRAF melanoma cells FIS binds to RSK and suppresses its kinase activity FIS induces modulation of YB-1/RSK signaling FIS suppresses YB-1/RSK signaling independent of its effect on ERK FIS reduces MDR1 levels | [102] |
A375 | ND | |||
M17 | ≈60 * | FIS decreases cells viability FIS induces apoptosis through the intrinsic pathway FIS damages MTP in uveal melanoma cells FIS increases the release of cytochrome c in cytosol FIS increases caspase-9 and -3 activities | [83] | |
SP6.5 | ≈85 * | |||
A375 | ND | FIS reduces human melanoma cell invasion by inhibiting EMT FIS inhibits cell proliferation and tumor growth by downregulating the PI3K pathway | [103] | |
A375, RPMI-7951 | ND | FIS treatment inhibits PI3K signaling pathway in melanoma cells FIS enhances sorafenib-mediated cleavage of caspase-3 and PARP FIS modulates expression of Bcl2 family proteins in BRAF-mutated melanoma cells FIS with sorafenib effectively down-regulates MAPK and PI3K signaling pathways FIS potentiates the sorafenib-mediated tumor growth inhibition in athymic nude mice | [104] | |
A375, RPMI-7951, Hs294T | ND | FIS reduces invasion of melanoma cells FIS inhibits invasion of melanoma cells in three-dimensional human skin equivalents FIS inhibits melanoma cell invasion by targeting MEK1/2 and NFκB FIS inhibits phoshorylation of MEK1/2 and ERK1/2 FIS inhibits nuclear translocation of NFκB | [86] | |
Mel 928 | ND | FIS decreases the viability of 451Lu cells FIS induces G1-phase arrest in 451Lu cells FIS downregulates of Wnt protein and its coreceptors FIS decreases nuclear β-catenin levels FIS interferes with the functional cooperation between TCF-2 and β-catenin | [85] | |
WM35 | ND | |||
451Lu | 80 * ≈37 # ≈18 ^ | |||
Stomach | AGS | ≈45 * ≈13 # | FIS decreases the viability FIS induces apoptosis | [105] |
SGC7901 | ND | FIS inhibits proliferation of gastric cancer cell and induces apoptosis FIS increases the proportion of cells at G2/M phase with simultaneous reduction in cells at S phase FIS increases caspase-7 activities FIS reduces the expression of Bcl2, Bcl-x and Bid FIS reduces of the activation of ERK 1/2 | [106] | |
AGS | ND | FIS inhibits cell proliferation, growth and viability FIS induces a G1 phase arrest in gastric cancer cells FIS increases the level of cyclin-dependent kinase inhibitor (CDKI) Cip1/p21 FIS induces apoptosis and mitochondrial membrane depolarization FIS causes upregulation of total p53 and its activation by phosphorylation at S15 position FIS increases the phosphorylation of gamma-H2A.X S139 in both the cell lines | [107] | |
SNU-1 | ND | |||
Ovary | A2780 | ND | FIS reduces cell growth in both OC cell lines FIS induces apoptosis and necroptosis FIS-induced cell necroptosis involves the RIP3/MLKL pathway. | [108] |
VOCAR-3 | ND | |||
A2780 | ND | FIS and CIS effectively inhibit proliferation of A2780 cells FIS induces nuclear fragmentation of A2780 cells | [109] | |
Pancreas | PANC-1 | ND | FIS promotes DSBs and inhibits HR repair in pancreatic cancer cells FIS regulates PHF10 expression via m6A RNA modification | [110] |
PANC-1 | ND | FIS dampens the proliferation of pancreatic cancer by downregulating Ki67 expression FIS triggers apoptosis of human pancreatic cancer cells FIS reduces the ability of infiltration and migration FIS dampens the expression of EMT-linked proteins FIS dampens the PI3K/AKT/mTOR axis FIS dampens pancreatic tumor growth of cell xenografts in nude mice | [5] | |
BxPC-3 | ≈120 * ≈75 # | FIS inhibits the viability of human pancreatic cancer cells FIS induces S phase and DNA damage in pancreatic cancer cells FIS inhibits cell proliferation and induces DNA damage FIS upregulates of expression of RFXAP and other DNA-damage response genes FIS induces DNA damage via RFXAP/KDM4A-dependent histone H3K36 demethylation | [111] | |
MiaPACA-2 | ND | |||
PANC-1 | ≈400 * ≈200 # | |||
HPC-Y5 | ND | |||
PANC-1 | ≈350 * ≈300 # | FIS inhibits the viability of human pancreatic cancer cells FIS induces apoptosis and autophagy FIS stimulates the AMPK pathway FIS induces ER stress | [112] | |
BxPC-3 | ND | |||
AsPC-1 | >100 * ≈40 # | FIS induces apoptosis FIS inhibits invasion of chemoresistant PaC AsPC-1 cells through suppression of DR3 mediated NF-κB activation | [113] | |
Prostate | PrEC | ND | FIS and cabazitaxel significantly suppresses colony formation FIS increases cleavage of PARP FIS increases the level of Bax FIS decreases the level of Mcl-1 | [114] |
22Rν1 | ND | |||
C4-2 | ND | |||
LNCaP, PC3 DU145 | ND | FIS sensitizes the TRAIL-resistant androgen-dependent LNCaP cancer cells FIS augments TRAIL-mediated cytotoxicity and apoptosis in prostate cancer LNCaP cells FIS increases the expression of TRAIL-R1 FIS decreases the activity of NF-κB | [115] | |
PC3, DU145 LNCaP | ND | FIS induces growth inhibition of PC3 cells FIS decreases the activity of mTOR kinase FIS inhibits phosphorylation of mTOR FIS inhibits expression of the mTORC1 and mTORC2 constituents FIS inhibits formation of mTORC1/2 FIS inhibits activation of Akt FIS activates mTOR inhibitor tuberous sclerosis complex 2 | [116] | |
PC-3 | ND | FIS inhibits the adhesion, invasion, and migration in PC-3 cells FIS inhibits the expressions of MMP-2 and MMP-9 FIS inhibits the phosphorylation of JNK and Akt in PC-3 cells FIS inhibits the DNA binding activities of NF-κB, c-Fos and c-Jun | [117] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubina, R.; Krzykawski, K.; Kabała-Dzik, A.; Wojtyczka, R.D.; Chodurek, E.; Dziedzic, A. Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review. Nutrients 2022, 14, 2604. https://doi.org/10.3390/nu14132604
Kubina R, Krzykawski K, Kabała-Dzik A, Wojtyczka RD, Chodurek E, Dziedzic A. Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review. Nutrients. 2022; 14(13):2604. https://doi.org/10.3390/nu14132604
Chicago/Turabian StyleKubina, Robert, Kamil Krzykawski, Agata Kabała-Dzik, Robert D. Wojtyczka, Ewa Chodurek, and Arkadiusz Dziedzic. 2022. "Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review" Nutrients 14, no. 13: 2604. https://doi.org/10.3390/nu14132604
APA StyleKubina, R., Krzykawski, K., Kabała-Dzik, A., Wojtyczka, R. D., Chodurek, E., & Dziedzic, A. (2022). Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review. Nutrients, 14(13), 2604. https://doi.org/10.3390/nu14132604