Arthrospira Enhances Seroclearance in Patients with Chronic Hepatitis B Receiving Nucleos(t)ide Analogue through Modulation of TNF-α/IFN-γ Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Liver Stiffness and Steatosis Measurement
2.3. ELISA Analysis
2.4. Mice
2.5. Mice Treatment and Serum Antibody Measurement
2.6. In vitro Stimulation for Innate Response and Adaptive Response
2.7. Phagocytosis Assays for Innate Immunity
2.8. Measurement of NK Cell Cytotoxic Activity for Innate Immunity
2.9. Statistical Analysis
3. Results
3.1. Baseline Data in the Randomized Double-Blind Clinical Trial
3.2. Arthrospira Reduces Serum qHBsAg and qHBcrAg Levels in CHB Patients receiving NA Treatment
3.3. Arthrospira Enhances the Serum IFN-γ Level but Reduces Serum TNF-α in CHB Patients
3.4. Arthrospira Reduces Hepatic Inflammation, Fibrosis, and Steatosis in CHB Patients receiving NA Treatment
3.5. Arthrospira Has the Potential to Trigger B Cell Activation
3.6. Arthrospira Has the Potential to Trigger Non-Specific Immune Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, J.; Liu, Z.; Gu, F. Epidemiology and Prevention of Hepatitis B Virus Infection. Int. J. Med. Sci. 2005, 2, 50–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, L.S.Y.; Covert, E.; Wilson, E.; Kottilil, S. Chronic Hepatitis B Infection: A Review. J. AMA 2018, 319, 1802–1813. [Google Scholar] [CrossRef] [PubMed]
- Seto, W.-K.; Lo, Y.-R.; Pawlotsky, J.-M.; Yuen, M.-F. Chronic hepatitis B virus infection. Lancet 2018, 392, 2313–2324. [Google Scholar] [CrossRef]
- Dusheiko, G.; Wang, B. Hepatitis B Surface Antigen Loss: Too Little, Too Late and the Challenge for the Future. Gastroenterology 2019, 156, 548–551. [Google Scholar] [CrossRef] [Green Version]
- Sarin, S.K.; Kumar, M.; Lau, G.K.; Abbas, Z.; Chan, H.L.Y.; Chen, C.J.; Chen, D.S.; Chen, H.L.; Chen, P.J.; Chien, R.N.; et al. Asian-Pacific clinical practice guidelines on the management of hepatitis B: A 2015 update. Hepatol. Int. 2016, 10, 1–98. [Google Scholar] [CrossRef]
- Terrault, N.A.; Bzowej, N.H.; Chang, K.-M.; Hwang, J.P.; Jonas, M.M.; Murad, M.H. AASLD guidelines for treatment of chronic hepatitis B. Hepatology 2016, 63, 261–283. [Google Scholar] [CrossRef]
- Seto, W.-K.; Hui, A.J.; Wong, V.W.-S.; Wong, G.L.-H.; Liu, K.S.-H.; Lai, C.-L.; Yuen, M.-F.; Chan, H.L.-Y. Treatment cessation of entecavir in Asian patients with hepatitis B e antigen negative chronic hepatitis B: A multicentre prospective study. Gut 2015, 64, 667. [Google Scholar] [CrossRef]
- Kim, B.H.; Lee, Y.-J.; Kim, W.; Yoon, J.-H.; Jung, E.U.; Park, S.J.; Kim, Y.J.; Lee, H.-S. Efficacy of thymosin α-1 plus peginterferon α-2a combination therapy compared with peginterferon α-2a monotherapy in HBeAg-positive chronic hepatitis B: A prospective, multicenter, randomized, open-label study. Scand. J. Gastroenterol. 2012, 47, 1048–1055. [Google Scholar] [CrossRef]
- Lau, G.K.K.; Piratvisuth, T.; Luo, K.X.; Marcellin, P.; Thongsawat, S.; Cooksley, G.; Gane, E.; Fried, M.W.; Chow, W.C.; Paik, S.W.; et al. Peginterferon Alfa-2a, Lamivudine, and the Combination for HBeAg-Positive Chronic Hepatitis B. N. Engl. J. Med. 2005, 352, 2682–2695. [Google Scholar] [CrossRef] [Green Version]
- Craxi, A.; Cooksley, W.G. Pegylated interferons for chronic hepatitis B. Antiviral Res. 2003, 60, 87–89. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of chronic hepatitis B virus infection. J. Hepatol. 2012, 57, 167–185. [Google Scholar] [CrossRef] [Green Version]
- Kay, R.A.; Barton, L.L. Microalgae as food and supplement. Crit. Rev. Food Sci. Nutr. 1991, 30, 555–573. [Google Scholar] [CrossRef]
- Lafarga, T.; Fernández-Sevilla, J.M.; González-López, C.; Acién-Fernández, F.G. Spirulina for the food and functional food industries. Food Res. Int. 2020, 137, 109356. [Google Scholar] [CrossRef]
- Choi, W.Y.; Kang, D.H.; Lee, H.Y. Enhancement of Immune Activation Activities of Spirulina maxima Grown in Deep-Sea Water. Int. J. Mol. Sci. 2013, 14, 12205–12221. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, R.; Saidpour, A.; Mottaghi, A. The effects of Spirulina supplementation on metabolic syndrome components, its liver manifestation and related inflammatory markers: A systematic review. Complement Ther. Med. 2019, 42, 137–144. [Google Scholar] [CrossRef]
- Hirahashi, T.; Matsumoto, M.; Hazeki, K.; Saeki, Y.; Ui, M.; Seya, T. Activation of the human innate immune system by Spirulina: Augmentation of interferon production and NK cytotoxicity by oral administration of hot water extract of Spirulina platensis. Int. Immunopharmacol. 2002, 2, 423–434. [Google Scholar] [CrossRef]
- Yakoot, M.; Salem, A. Spirulina platensis versus silymarin in the treatment of chronic hepatitis C virus infection. A pilot randomized, comparative clinical trial. BMC Gastroenterol. 2012, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.X.; Park, Y.-K.; Bae, M.; Lee, J.-Y. The Potential Role of an Endotoxin Tolerance-Like Mechanism for the Anti-Inflammatory Effect of Spirulina platensis Organic Extract in Macrophages. J. Med. Food 2017, 20, 201–210. [Google Scholar] [CrossRef]
- Pattarayan, D.; Rajarajan, D.; Sivanantham, A.; Palanichamy, R.; Rajasekaran, S. C-phycocyanin suppresses transforming growth factor-β1-induced epithelial mesenchymal transition in human epithelial cells. Pharmacol. Rep. 2017, 69, 426–431. [Google Scholar] [CrossRef]
- An, E.; Park, H.; Lee, A.C. Inhibition of fibrotic contraction by C-phycocyanin through modulation of connective tissue growth factor and α-smooth muscle actin expression. Tissue Eng. Regen. Med. 2016, 13, 388–395. [Google Scholar] [CrossRef]
- Giannelli, G.; Koudelkova, P.; Dituri, F.; Mikulits, W. Role of epithelial to mesenchymal transition in hepatocellular carcinoma. J. Hepatol. 2016, 65, 798–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferdoushi, S.; Paul, D.; Ghosh, C.K.; Sultana, T.; Joarder, A.I.; Islam, M.S.; Islam, M.S.; Mahmuduzzaman, M.; Rahman, Q.; Ahmed, A.N. Correlation of Connective Tissue Growth Factor (CTGF/CCN2) with Hepatic Fibrosis in Chronic Hepatitis B. Mymensingh Med. J. 2015, 24, 558–563. [Google Scholar] [PubMed]
- Akpolat, N.; Yahsi, S.; Godekmerdan, A.; Yalniz, M.; Demirbag, K. The value of alpha-SMA in the evaluation of hepatic fibrosis severity in hepatitis B infection and cirrhosis development: A histopathological and immunohistochemical study. Histopathology 2005, 47, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Shih, P.H.; Shiue, S.J.; Chen, C.N.; Cheng, S.W.; Lin, H.Y.; Wu, L.W.; Wu, M.S. Fucoidan and Fucoxanthin Attenuate Hepatic Steatosis and Inflammation of NAFLD through Modulation of Leptin/Adiponectin Axis. Mar. Drugs 2021, 19, 148. [Google Scholar] [CrossRef]
- Zenovia, S.; Stanciu, C.; Sfarti, C.; Singeap, A.M.; Cojocariu, C.; Girleanu, I.; Dimache, M.; Chiriac, S.; Muzica, C.M.; Nastasa, R.; et al. Vibration-Controlled Transient Elastography and Controlled Attenuation Parameter for the Diagnosis of Liver Steatosis and Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Diagnostics 2021, 11, 787. [Google Scholar] [CrossRef]
- Wang, J.-H.; Hu, T.-H.; Chen, C.-H.; Hung, C.-H.; Yen, Y.-H.; Chang, K.-C.; Lu, S.-N. Liver stiffness measurement at complete virological response in hepatoma prediction for HBV-related cirrhosis patient with potent antiviral agent. Kaohsiung J. Med. Sci. 2019, 35, 708–714. [Google Scholar] [CrossRef]
- Park, K.-H.; Park, H.; Kim, M.; Kim, Y.; Han, K.; Oh, E.-J. Evaluation of NK Cell Function by Flowcytometric Measurement and Impedance Based Assay Using Real-Time Cell Electronic Sensing System. BioMed Res. Int. 2013, 2013, 210726. [Google Scholar] [CrossRef] [Green Version]
- Kandarian, F.; Sunga, G.M.; Arango-Saenz, D.; Rossetti, M. A Flow Cytometry-Based Cytotoxicity Assay for the Assessment of Human NK Cell Activity. J. Vis. Exp. 2017, 126, e56191. [Google Scholar] [CrossRef]
- Tseng, T.C.; Liu, C.J.; Su, T.H.; Wang, C.C.; Chen, C.L.; Chen, P.J.; Chen, D.S.; Kao, J.H. Serum Hepatitis B Surface Antigen Levels Predict Surface Antigen Loss in Hepatitis B e Antigen Seroconverters. Gastroenterology 2011, 141, 517–525.e512. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.A.; Seo, Y.S.; Park, S.W.; Park, S.J.; Kim, T.H.; Suh, S.J.; Jung, Y.K.; Kim, J.H.; An, H.; Yim, H.J.; et al. Hepatitis B surface antigen titer is a good indicator of durable viral response after entecavir off-treatment for chronic hepatitis B. Clin. Mol. Hepatol. 2016, 22, 382–389. [Google Scholar] [CrossRef] [Green Version]
- Jeng, W.J.; Chang, M.L.; Liaw, Y.F. Off-therapy precipitous HBsAg decline predicts HBsAg loss after finite entecavir therapy in HBeAg-negative patients. J. Viral Hepat. 2019, 26, 1019–1026. [Google Scholar] [CrossRef]
- Wang, H.; Luo, H.; Wan, X.; Fu, X.; Mao, Q.; Xiang, X.; Zhou, Y.; He, W.; Zhang, J.; Guo, Y.; et al. TNF-α/IFN-γ profile of HBV-specific CD4 T cells is associated with liver damage and viral clearance in chronic HBV infection. J. Hepatol. 2020, 72, 45–56. [Google Scholar] [CrossRef]
- Zhao, L.; Jin, Y.; Yang, C.; Li, C. HBV-specific CD8 T cells present higher TNF-α expression but lower cytotoxicity in hepatocellular carcinoma. Clin. Exp. Immunol. 2020, 201, 289–296. [Google Scholar] [CrossRef]
- Xie, Y. Hepatitis B Virus-Associated Hepatocellular Carcinoma. In Infectious Agents Associated Cancers: Epidemiology and Molecular Biology; Cai, Q., Yuan, Z., Lan, K., Eds.; Springer: Singapore, 2017; pp. 11–21. [Google Scholar]
- Xia, C.; Liu, Y.; Chen, Z.; Zheng, M. Involvement of Interleukin 6 in Hepatitis B Viral Infection. Cell. Physiol. Biochem. 2015, 37, 677–686. [Google Scholar] [CrossRef]
- Lee, H.W.; Ahn, S.H. Prediction models of hepatocellular carcinoma development in chronic hepatitis B patients. World J. Gastroenterol. 2016, 22, 8314–8321. [Google Scholar] [CrossRef]
- Liaw, Y.-F. Clinical utility of HBV surface antigen quantification in HBV e antigen-negative chronic HBV infection. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 631–641. [Google Scholar] [CrossRef]
- Wursthorn, K.; Jung, M.; Riva, A.; Goodman, Z.D.; Lopez, P.; Bao, W.; Manns, M.P.; Wedemeyer, H.; Naoumov, N.V. Kinetics of hepatitis B surface antigen decline during 3 years of telbivudine treatment in hepatitis B e antigen-positive patients. Hepatology 2010, 52, 1611–1620. [Google Scholar] [CrossRef]
- Wiegand, J.; Wedemeyer, H.; Finger, A.; Heidrich, B.; Rosenau, J.; Michel, G.; Bock, C.T.; Manns, M.P.; Tillmann, H.L. A decline in hepatitis B virus surface antigen (hbsag) predicts clearance, but does not correlate with quantitative hbeag or HBV DNA levels. Antivir. Ther. 2008, 13, 547–554. [Google Scholar] [CrossRef]
- Levrero, M.; Pollicino, T.; Petersen, J.; Belloni, L.; Raimondo, G.; Dandri, M. Control of cccDNA function in hepatitis B virus infection. J. Hepatol. 2009, 51, 581–592. [Google Scholar] [CrossRef] [Green Version]
- Terrault, N.A.; Lok, A.S.F.; McMahon, B.J.; Chang, K.M.; Hwang, J.P.; Jonas, M.M.; Brown, R.S., Jr.; Bzowej, N.H.; Wong, J.B. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology 2018, 67, 1560–1599. [Google Scholar] [CrossRef]
- Chien, R.N.; Liaw, Y.F. Current Trend in Antiviral Therapy for Chronic Hepatitis B. Viruses 2022, 14, 434. [Google Scholar] [CrossRef]
- Chang, C.J.; Yang, Y.H.; Liang, Y.C.; Chiu, C.J.; Chu, K.H.; Chou, H.N.; Chiang, B.L. A novel phycobiliprotein alleviates allergic airway inflammation by modulating immune responses. Am. J. Respir. Crit. Care Med. 2011, 183, 15–25. [Google Scholar] [CrossRef]
- Konerman, M.A.; Lok, A.S. Interferon Treatment for Hepatitis B. Clin. Liver Dis. 2016, 20, 645–665. [Google Scholar] [CrossRef]
- Tacke, F. Hepatitis B und D: Aktuelle und zukünftige Therapien. Dtsch. Med. Wochenschr. 2019, 144, 528–534. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, E.; Gao, S.; Xiong, Y.; Lu, M. Toward a Functional Cure for Hepatitis B: The Rationale and Challenges for Therapeutic Targeting of the B Cell Immune Response. Front. Immunol. 2019, 10, 2308. [Google Scholar] [CrossRef]
- Al-Batshan, H.A.; Al-Mufarrej, S.I.; Al-Homaidan, A.A.; Qureshi, M.A. Enhancement of chicken macrophage phagocytic function and nitrite production by dietary Spirulina platensis. Immunopharmacol. Immunotoxicol. 2001, 23, 281–289. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chang, G.K.; Kuo, S.M.; Huang, S.Y.; Hu, I.C.; Lo, Y.L.; Shih, S.R. Well-tolerated Spirulina extract inhibits influenza virus replication and reduces virus-induced mortality. Sci. Rep. 2016, 6, 24253. [Google Scholar] [CrossRef] [Green Version]
- Shin, E.-C.; Sung, P.S.; Park, S.-H. Immune responses and immunopathology in acute and chronic viral hepatitis. Nat. Rev. Immunol. 2016, 16, 509–523. [Google Scholar] [CrossRef]
Variables | Control (n = 20) | Low Dose (n = 20) | Standard Dose (n = 20) | p Value |
---|---|---|---|---|
Age (years) | 49.5 ± 2.7 | 49.8 ± 2.3 | 53.8 ± 2.4 | 0.153 |
Male | 15 (75%) | 13 (65%) | 15 (75%) | 0.72 |
Female | 5 (25%) | 7 (35%) | 5 (25%) | |
BMI (kg/m2) a | 25.7 ± 5.1 | 26.3 ± 3.9 | 25.0 ± 3.8 | 0.646 |
AST(IU/L) b | 27 ± 3.3 | 28 ± 3.2 | 26 ± 3.1 | 0.839 |
ALT (IU/L) c | 28 ± 2.9 | 30 ± 4.1 | 31 ± 5.4 | 0.911 |
Cr (mg/dL) d | 0.8 ± 0.2 | 0.8 ± 0.2 | 0.9 ± 0.2 | 0.073 |
UA (mg/dL) e | 6.0 ± 1.6 | 5.6 ± 1.3 | 5.9 ± 1.4 | 0.667 |
B12 (pg/mL) | 404.4 ± 61.7 | 436.8 ± 49.4 | 476.7 ± 43.7 | 0.181 |
qHBsAg log10 (IU/mL) f | 2.66 ± 0.13 | 2.82 ± 0.10 | 2.81 ± 0.15 | 0.618 |
Fibrosis (kPa) | 7.7 ± 0.9 | 8.2 ± 0.9 | 8.1 ± 0.7 | 0.887 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiue, S.-J.; Cheng, C.-L.; Shiue, H.-S.; Chen, C.-N.; Cheng, S.-W.; Wu, L.-W.; Jargalsaikhan, G.; Chan, T.-S.; Lin, H.-Y.; Wu, M.-S. Arthrospira Enhances Seroclearance in Patients with Chronic Hepatitis B Receiving Nucleos(t)ide Analogue through Modulation of TNF-α/IFN-γ Profile. Nutrients 2022, 14, 2790. https://doi.org/10.3390/nu14142790
Shiue S-J, Cheng C-L, Shiue H-S, Chen C-N, Cheng S-W, Wu L-W, Jargalsaikhan G, Chan T-S, Lin H-Y, Wu M-S. Arthrospira Enhances Seroclearance in Patients with Chronic Hepatitis B Receiving Nucleos(t)ide Analogue through Modulation of TNF-α/IFN-γ Profile. Nutrients. 2022; 14(14):2790. https://doi.org/10.3390/nu14142790
Chicago/Turabian StyleShiue, Sheng-Jie, Chao-Ling Cheng, Han-Shiang Shiue, Chun-Nan Chen, Sheng-Wei Cheng, Li-Wei Wu, Ganbolor Jargalsaikhan, Tze-Sian Chan, Hsin-Yi Lin, and Ming-Shun Wu. 2022. "Arthrospira Enhances Seroclearance in Patients with Chronic Hepatitis B Receiving Nucleos(t)ide Analogue through Modulation of TNF-α/IFN-γ Profile" Nutrients 14, no. 14: 2790. https://doi.org/10.3390/nu14142790
APA StyleShiue, S. -J., Cheng, C. -L., Shiue, H. -S., Chen, C. -N., Cheng, S. -W., Wu, L. -W., Jargalsaikhan, G., Chan, T. -S., Lin, H. -Y., & Wu, M. -S. (2022). Arthrospira Enhances Seroclearance in Patients with Chronic Hepatitis B Receiving Nucleos(t)ide Analogue through Modulation of TNF-α/IFN-γ Profile. Nutrients, 14(14), 2790. https://doi.org/10.3390/nu14142790