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Abstract: Despite advancements in healthcare facilities for diagnosis and treatment, cancer remains
the leading cause of death worldwide. As prevention is always better than cure, efficient strategies
are needed in order to deal with the menace of cancer. The use of phytochemicals as adjuvant
chemotherapeutic agents in heterogeneous human carcinomas like breast, colon, lung, ovary,
and prostate cancers has shown an upward trend during the last decade or so. Flavonoids are
well-known products of plant derivatives that are reportedly documented to be therapeutically
active phytochemicals against many diseases encompassing malignancies, inflammatory disorders
(cardiovascular disease, neurodegenerative disorder), and oxidative stress. The current review focuses
on two key flavonols, fisetin and quercetin, known for their potential pharmacological relevance.
Also, efforts have been made to bring together most of the concrete studies pertaining to the bioactive
potential of fisetin and quercetin, especially in the modulation of a range of cancer signaling pathways.
Further emphasis has also been made to highlight the molecular action of quercetin and fisetin so that
one could explore cancer initiation pathways and progression, which could be helpful in designing
effective treatment strategies.

Keywords: apoptosis; cell cycle arrest; extracellular matrix remodeling; epithelial to mesenchymal
transition; signaling cascades; flavonoids; fisetin; quercetin

1. Introduction

The incidence of malignant diseases and the prevalence of cancer mortality is proliferating at
an amplified rate across the developed and developing countries [1]. New Globocan 2018 cancer
data from 185 countries documented 18.1 million new cancer cases and 9.6 million cancer-related
deaths (GALOBOCAN 2018). Although the improvement of diagnostic tools, advanced treatment
approaches, and cancer awareness programs have resulted in a remarkable drop in cancer mortality in
the United States, cancer prevalence is still growing continuously [1]. This is attributed to smoking
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habits, alcohol consumption, unhealthy food, stress, and no or insufficient exercise amongst people in
the developed and developing world [2]. There are different therapeutic modalities for cancer treatment
available, including surgery, radiation therapy, chemotherapy, immunotherapy, and targeted therapy.
Tamoxifen in estrogen receptor-positive breast tumor, Herceptin in Her 2+ breast cancer, epithelial
growth factor receptor (EGRF) inhibitors (erlotinib, afatinib, osimertinib, and fefitinib) in non-small cell
lung carcinoma (NSCLC), K-ras inhibitors (cetuximab) in colon cancer, B-Raf inhibitors (vemurafenib,
dabrafenib, and encorafenib) in melanoma, and gleevec for ABL-BCL (translocation of c-ABL gene
sequences from chromosome 9 into the BCR gene on chromosome 22) positive leukemia have been
used widely in clinical settings [3]. However, cancer cells can evade death by gaining resistance to
various treatment modalities, which has diluted the expected outcome of these therapies [4–6]. This
has necessitated the discovery of alternative treatment strategies to cure cancer patients. Numerous
in vitro studies in conjunction with ex vivo studies have exemplified the anti-cancer effects of natural
products such as flavonoids [7–10]. Specifically, fisetin and quercetin, two well-studied flavonoids,
have shown remarkable anti-cancer effects in multiple in vitro and in vivo systems. Different events
in cancer initiation and progression such as apoptosis, extracellular matrix remodeling, epithelial
to mesenchymal transition, cancer-associated inflammation, and oxidative stress can be controlled
by fisetin and quercetin [11,12]. In vitro studies showed that fisetin and quercetin could also act
against chemotherapeutic resistance in several cancers [13,14]. Numerous cancer-related molecules
such as anti-apoptotic and pro-apoptotic proteins, cyclin-dependent kinases (CDKs), cyclins, matrix
metalloproteinases (MMPs), and growth factors have been shown to be modulated by fisetin and
quercetin (Figures 1 and 2). Quercetin can also bind to a G protein coupled receptors to activate a G
protein and calcium-dependent pathway which leads to tumor cell death [13–15]. In addition, these
phytochemicals also exhibit synergistic effects where they enhance the anti-tumor activity of many
anti-cancer drug molecules (Table 1). The present review highlights the important anti-cancer roles of
quercetin and fisetin in various in-vitro/ex-vivo studies.
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Figure 2. Figure showing regulation of different cancer associated signaling pathways. Deregulation of
these pathways has been determined in human malignancies. Flavonoids control the deregulation of
these pathways and cancer proliferation.

Table 1. Synergistic effects.

Phytochemical Adjunctive Drug Mechanism Model Reference

Fisetin

Cisplatin Inhibits the MAPK signaling pathway and
downregulates survival proteins A549-CR [12]

Sorafenib Anti-invasive and anti-metastatic A375 and SK-MEL-28 [16]
doxorubicin Potentiates the cytotoxicity of cisplatin H1299 [17]

Sorafenib Downregulates the MAPK and PI3K
pathways B-Raf -mutated melanoma cells [18]

Cisplatin Activates intrinsic and extrinsic apoptosis
pathways NT2/D1 [19]

Geldanamycin Activates intrinsic apoptosis pathways COLO-205 [20]
Paclitaxel Autophagic cell death A549 [21]
Cisplatin Cytotoxic Rat model [22]
Etoposide Cytotoxic Saos-2 [23]

Cyclophosphamide Anti-angiogenic effect Mice xenograft [24]

Sorafenib Activates intrinsic and extrinsic apoptosis
pathways HeLa cells and HeLa xenograft [25]

Luteolin Cytotoxic HG-3 and EHEB [26]

Quercetin

EGCG Suppresses the JAK/STAT cascade CCA cells [27]
Sulforaphane miR-let7-a mediated inhibition of K-ras PDA [28]

Methoxyestradiol Apoptosis and G2/M phase arrest LNCaP and PC-3 cells [29]
Cisplatin and
Oxaliplatin Cytotoxic Ovarian tumor model [30]

Cisplatin Modulates the miR-217–K-ras axis 143B cells [31]

Renistein Modulates expression of androgen
receptors and NQO1 CWR22Rv1 cells [32]

Imperatorin Apoptosis T98G [33]
Resveratrol Modulates metabolic pathways Adipose tissue triacylglycerol [34]

Doxorubucin G2/M cell cycle arrest HT29 cell [35]
Cyclophosphamide Cytotoxic Bladder cancer patients [36]

Cisplastin Cytotoxic SPC212 and SPC111 cell line [37]

MAPK: Mitogen-activated protein kinase, PI3K: Phosphoinositide 3-kinase, JAK: Janus kinase, STAT: Signal
transducer and activator of transcription, NQO1: NAD(P)H Quinone Dehydrogenase 1, EGCG: Epigallocatechin
gallate, A549-CR: lung adenocarcinoma cispltin resistant, SK-MEL-28: Skin-malignant melanoma, H1299: Human
non-small cell lung carcinoma cell line, NT2/D1: Pluripotent human testicular embryonal carcinoma cell line,
COLO-205: Human colorectal adenocarcinoma cell line, Saos-2: Sarcoma osteogenic, HeLa: Human cervical
cancer cells, HG-3/ EHEB: Chronic lymphocytic leukemia, CCA: Cholangiocarcinoma, PDA: Pancreatic ductal
adenocarcinoma, LNCaP/PC-3: Human prostate adenocarcinoma cells, CWR22Rv1: Prostate cancer cell line, T98G:
Human brain glioblastoma, HT-29: Colorectal adenocarcinoma, SPC212/ SPC111: Pleural biphasic mesothelioma.
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2. Chemistry of Fisetin and Quercetin

Structurally, fisetin has two aromatic rings which are linked through a three-carbon oxygenated
heterocyclic ring, and is supplemented with four hydroxyl group substitutions and one oxo group [38,39]
(Figure 3a). It is usually present in different fruits and vegetables such as strawberries, apples, onions,
and cucumbers [40] and in various trees and shrubs belonging to the Fabaceae and Anacardiaceae
families, as well as quebracho colorado and pinophyta species [39]. Fisetin has low aqueous solubility
and bioavailability. The biological activity of fisetin is due to the presence of hydroxyl groups at the 3,
7, 3’, 4’ positions and oxo group at the 4 position with double bond between C2 and C3. Quercetin
belongs to the polyphenolic class and is found in many fruits, red onion, and the roots and leaves of
many vegetables. It also has very poor solubility and oral bioavailability. Quercetin has five hydroxyl
groups on C6-C3-C6 backbone structure, in particular a 3-OH group on the pyrone ring (Figure 3b) [41].
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3. Regulation of Cancer-Related Processes

3.1. Activation of Intrinsic Apoptotic Pathway

Various cytotoxic chemotherapy drugs activate apoptotic processes in tumor cells by up-regulating
and down-regulating the expression of different pro-apoptotic and anti-apoptotic proteins,
respectively [42,43]. Similarly, flavonoids have been demonstrated to activate apoptotic processes in
exorbitant cancer cell lines and animal models. Mechanistically, regulation of the release of cytochrome
c from mitochondria, caspase-3 and caspase-9 mRNA and protein expression, and B-cell lymphoma
2 (Bcl-2) and Bcl-2 associated X (Bax) levels, were found to be regulated in the fisetin-treated cancer
cell line (oral squamous carcinoma) [44]. Further, Li et al. also documented the apoptotic capacity of
fisetin in T24 and EJ human bladder cancer cells, acting through overexpression of Bax, Bcl2 associated
agonist of cell death (Bad), and Bcl-2 antagonist/Killer 1 (Bak) and inhibition of Bcl-2 and B-cell
lymphoma-extra large (Bcl-xL) [45]. In a similar manner, apoptosis was seen in the U266 myeloma
cancer cell line, which was mediated by activation of caspase-3, Bax, Bcl-2-like protein 11 (Bim),
Bad, and inhibition of Bcl-2 and myeloid cell leukemia-1 (Mcl-1L) [46]. This phytochemical was also
shown to exhibit an anti-tumor effect in the NCI-H460 NSCLC cell line through activation of caspase-9
and caspase-3 and inhibition of Bcl-2 and Bcl-xL, with adjacent effects on DNA fragmentation and
depolarization of the mitochondrial membrane [47]. Another study identified that fisetin at 5–80
µM significantly reduced the viability of A431 human epidermoid carcinoma cells by the release
of cytochrome c, reducing the anti-apoptotic protein expression of Bcl-2, Bcl-xL, and Mcl-1 along
with elevation of pro-apoptotic protein expression (Bax, Bak, and Bad) and caspase cleavage and
poly-ADP-ribose polymerase (PARP) protein [48]. The in-vitro and in-vivo administration of fisetin
promoted caspase-8 and cytochrome c expression, possibly by impeding the aberrant activation of
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insulin growth factor receptor 1 and Akt proteins in oxaliplatin/irinotecan-resistant colorectal tumor
cells [49]. In uveal melanoma cells, apoptosis was reported to be induced using fisetin by inhibiting
the expression of Bcl-2 family proteins and increasing Bax levels, cytochrome c release, and activities
of various caspases, whereas it was not cytotoxic to healthy retinal pigment epithelial cells [50].
The in vitro activity of fisetin in the mitochondrial apoptotic pathway has been acknowledged to
be effective in the treatment of oral carcinomas. Fisetin enhanced the expression of pro-apoptotic
proteins Bak and Bax but reduced anti-apoptotic protein expression (Bcl-2 and Bcl-x), while it also
led to activation of caspase-3, caspase-8, caspase-9, and augmented sustained release of cytochrome c
and apoptosis-inducing factor expression in HSC3 [51] and SCC-4 oral carcinoma cells [52]. Further,
Khan et al. found fisetin (10–60 µM) treatment resulted in activation of apoptosis, poly (ADP-ribose)
polymerase (PARP) cleavage, modulation of Bcl-2 family protein expression (Bak, Bad, Bid, Bcl-xL),
inhibition of the phoshoinositide 3-kinase (PI3K)/Akt signaling pathway, and activation of caspase 3,
caspase-9, and-8 enzyme activity in LNCaP prostate cancer cell lines [53]. Similarly, evidence suggests
that quercetin can also activate apoptosis through a mitochondrial pathway involving the activation of
caspase-3 and caspase-9 and by the release of cytochrome c and cleavage of PARP in acute lymphoblastic
leukemia (HPB-ALL and HL-60) and prostate cancer cells (DU-145 and PC-3) [54–56]. Moreover,
a myriad of studies has shown anti-apoptotic (Bcl-xL and Bcl-2) and pro-apoptotic (Bax) protein
modulation by quercetin in human colon, oesophageal adenocarcinoma, and leukemia cells [57–59].
In addition, quercetin treatment also resulted in an attenuated Bcl-xL to Bcl-xS ratio and augmented
translocation of Bax protein to mitochondrial membrane in LNCaP human prostate cancer cells [60].
In vitro studies with human cancer cell lines HaCaT keratinocytes, established the anti-tumorigenic
effect of quercetin through Bax over-expression and release of cytochrome c and translocation of factors
inducting apoptosis into the nucleus [61]. Similar effects of quercetin have also been reported in CLL
and acute myeloid leukemia cell line HL-60; this phytochemical treatment activated the pro-apoptotic
signaling cascade through PARP-1 cleavage and caspase activation, and also initiated autophagy events
by the increased expression of light chain 3-II, decreased expression of p62, and formation of acidic
vesicular organelles [62].

3.2. Activation of the Extrinsic Apoptotic Pathway

Several studies have illustrated the anti-tumor function of plant-derived products via activation
of extrinsic apoptotic pathways [63,64]. Fisetin treatment administered in a time- and dose-dependent
manner led to induction of apoptosis in HeLa cervical cancer by activation of caspases (3 and 8) and
PARP cleavage [65]. Similarly, in human colon cancer cells (HCT-1160), fisetin-mediated apoptosis
was also observed involving DNA condensation, cleavage of PARP, enhanced caspase-8 expression,
Fas ligand, death receptor 5, and tumor necrotic factor-related apoptosis-inducing ligand (TRAIL-R1)
expression [66]. Further, fisetin-promoted apoptotic activation was also seen in DU145, LNCaP, and
PC3 human prostate cancer cells [53,67]. Quercetin (>20µM) induced caspase-dependent extrinsic
apoptosis by upregulating the expression of caspase-3 and caspase-8, and inducing the cleavage of
PARP in a HER2-overexpressing (BT-474) breast cancer cell line [68], consistent with the earlier reports
in another leukemia cell line (CEM, K562 and Nalm6) [69].

3.3. Activation of Cell Cycle Arrest through the G0/G1 Check Point

Multiple in vitro studies have also noticed the cell cycle regulatory function of bioactive compounds
mediated through CDKs and cyclin proteins [70,71]. Recent studies revealed that fisetin binds with
CDK6, which in turn blocks its activity with an inhibitory concentration (IC50) at a concentration
of 0.85 µM [72]. For instance, fisetin is identified as a regulator of cell cycle checkpoints, leading to
cell arrest through CDK inhibition in HL60 cells and astrocyte cells over the G0/G1, S, and G2/M
phases [73,74]. Sabarwal et al. and colleagues analyzed fisetin-induced proliferation inhibition in
adenocarcinoma gastric cell line (AGS) and SNU-1 human gastric carcinoma cells, through a remarkable
attenuation of G1 phase cyclins and CDKs level, while exhibiting elevated levels of p53 and its S15
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phosphorylation [75]. Further, fisetin treatment has also been documented to arrest cell cycle growth in
G0/G1 phase by enhancing the p53 and p21 gene expression, while reducing CDK4, CDK2, cyclin D1,
and cyclin A in bladder cancer cell lines T24 and EJ [45]. In addition, at 10–60 µM fisetin concentration,
prostate cancer cells PC3, LNCaP, and CWR22Ry1 had decreased cellular viability and decreased levels
of D1, D2, and E cyclins and their activating partners CDK2, and CDKs 4/ 6, with consequent induction
of KIP1/p27 and WAF1/p21 [53]. Fisetin (10–60 µM) treatment also shows a notable accumulation of
the tumor cell population in the G1 phase of the cell cycle, accompanied by a concomitant decrease in
the S-phase and G2/M-phase cell population [53].

Similar to fisetin, treatment of vascular smooth muscle cells with quercetin induced G1 cell
cycle arrest through alleviation of D1/Cdk4 and E/Cdk2 and upregulation of p21 [76]. In addition,
quercetin mediated anti-proliferation effects in different human cancer cells including hepatocellular
carcinoma HepG2 cells, ovarian cancer SKOV 3 cells, and malignant mesothelioma (MM) MSTO-211H
and H2452 cells [77] through cell cycle inhibition at G0/G1 to G2/M checkpoint [78]. In colon cancer
cell lines, such as Caco2 [79] and SW480 [80], quercetin has been reported to inhibit cell cycle in a
concentration-dependent (5 to 160 µM) manner. Furthermore, quercetin inhibited the cell cycle in
colon cancer stem cells [81]. Quercetin-induced G0/G1-phase arrest occurred when expression of CDK2
and CDK4 was inhibited in HL-60 myeloid leukemia cells [62].

3.4. Activation of Cell Cycle Arrest through G2/M Check Point

Flavonoids can also block the cell cycle division at the G2/M check point [8]. For example,
treatment of A431 cells with fisetin resulted in G2/M phase arrest [48]. Poor et al. demonstrated that
among 18 tested compounds, diosmetin, fisetin, apigenin, luteolin, and quercetin provoked spectacular
G2/M phase arrest in the hepatocellular carcinoma HepG2 cell line [82].

Similarly, quercetin enhanced the expression of retinoblastoma (Rb) gene in nasopharyngeal
carcinoma cells HK1 and CNE2 and blocked the cell cycle in the G2/M phase [83]. Moreover,
a concentration-dependent anti-tumor effect of quercetin was observed as a result of G2/M phase arrest in
an in vitro study using lung carcinoma cell lines H1299 and A549A [84]. In addition, quercetin-mediated
upregulation of p21, p27, p53, and Chk2 followed by downregulation of CDK1, cyclin B, pRb
phosphorylation, and G2/M phase arrest were also reported in hepatocellular carcinoma [85,86].
Quercetin was also shown to inhibit cell cycle in G2/M phase in breast carcinoma (MCF-7) [87],
leukemia (U937 cells) [88], and esophageal adenocarcinoma cell lines (OE33) [89].

3.5. Regulation of Extracellular Matrix Remodeling

The extracellular matrix (ECM) is an integral part of tissue and plays important functions [90].
Multiple studies described ECM remodeling as a key feature in lung, breast, ovarian, cervical, prostate,
and colon cancer [91]. In a study, fisetin displayed tumor inhibitory effects by blocking MMP-2 and
MMP-9 at mRNA and protein levels in prostate PC-3 cells [92]. Similarly, fisetin can also inhibit MMP-1,
MMP-9, MMP-7, MMP-3, and MMP-14 gene expression linked with ECM remodeling in human
umbilical vascular endothelial cells (HUVECs) and HT-1080 fibrosarcoma cells [93]. An interesting
scientific finding from a recent study manifested that fisetin downregulates expression and reduces
urokinase plasminogen activator (uPA) activity in human cervical adenocarcinoma SiHa and CaSki
cells, responsible for activation of MMPs [94]. Furthermore, fisetin in a concentration-dependent
manner (10–50 µM concentration) significantly inhibited regular serum, growth-enhancing supplement,
and vascular endothelial growth factor (VEGF)-mediated growth in in vivo (mice) and in vitro (A549
and DU145, HUVECs) system, in addition to its effects on MMP-2 and MMP-9 [95].

A drop in MMP-2 and MMP-9 activity was detected in addition to its effects on other several
apoptotic pathways after quercetin treatment in multiple cancer cell lines i.e., human head and neck
squamous cell carcinoma (HNSCC), colon cancer (Caco-2 cells), and breast cancer (MCF-7 cells) [96–98].
Furthermore, anti-metastatic effects of quercetin were also explored and documented in the chicken
chorioallantoic membrane assay using prostate cancer line PC-3 [99]. There also exists strong evidence
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that quercetin inhibits VEGF-related angiogenesis in several tumorigenic cell lines such as SN38 gastric
cancer cells [100], osteosarcoma [101], and retinoblastoma (Rb) [102].

3.6. Regulation of Epithelial to Mesenchymal Transition

Epithelial to mesenchymal transition (EMT) is a key process in cancer invasion or
progression [103–109]. Flavonoids have been shown to regulate the ECM remodeling and hence,
cell invasion. The anti-metastasis effects of fisetin (5–20 µM) were revealed in melanoma cells,
occurring through downregulation of mesenchymal markers (vimentin, N-cadherin, snail, and
fibronectin) and upregulation of epithelial markers (desmoglein and E-cadherin) [110]. In in vitro and
raft cultures, Pal et al. found that fisetin treatment minimized tumor invasion and tumor cell migration
of BRAF V600E mutation-positive melanoma cells and alleviated EMT by decreasing vimentin, Twist1,
N-cadherin, Snail1, ZEB1, Slug, and fibronectin expression, and escalating E-cadherin levels [16]. The
in vitro findings from another study by Li et al. concluded that fisetin could significantly overpower
growth and metastasis in MDA-MB-231 and BT549 triple-negative breast cancer cell lines, thereby
blocking the EMT process induced through the phosphatase and tensin homolog/protein kinase
B/glycogen synthase kinase 3 (PTEN/Akt/GSK-3β) signaling pathway [111].

Similarly, the recent scientific literature has also documented that quercetin prevented transforming
growth factor beta (TGF-β)-induced EMT in PC-3 prostate cancer cells, through inhibition of
TGF-β-induced expression of N-cadherin and vimentin along with increased E-cadherin expression.
Additionally, quercetin significantly decreased the TGF-β-induced expression of Snail, Twist, and
Slug [112]. Quercetin treatment was also illustrated to affect the migration capacity of head and neck
cancer-derived sphere cells through decreased production of N-cadherin, twist, and vimentin [113].
Quercetin was also reported to decrease CT26 and MC38 colorectal carcinoma lung metastasis and also
regulated the expression of EMT markers (E-cadherin, N-cadherin, Snail, and β-catenin) which in turn
inhibited the expression of MMPs [114].

4. Control of Cancer-Associated Signaling Pathways by Fisetin and Quercetin

4.1. Regulation of PI3K/Akt Signaling Pathway

The PI3K/Akt pathway has been correlated with many fundamental processes during cancer
development [115–118]. It plays a significant role in apoptosis, survival, and angiogenesis [119–122].
Therefore, this pathway could be a major target in cancer inhibition. Flavonoids have the potential
to interact with this signaling pathway. Promising effects of fisetin on this pathway have been well
reviewed by George [123]. Fisetin significantly reduced the viability of human osteosarcoma (U-2 OS)
cells in a concentration-dependent manner (20–100 µm) through modulation of PI3K/Akt signaling
cascades [124]. Similarly, fisetin inhibited PI3K expression and phosphorylation of Akt [53]. In a
detailed study using fisetin, the blocking of Akt by exogenous siRNA in prostate cancer cells (LNCaP)
caused an elevated Bad and Bax expression, and decreased expression of Bcl-2 and Bcl-xL, which
suggested that these effects are mediated in part through Akt [53]. Further, in Raji cells (human Burkitt’s
lymphoma cells), fisetin treatment activated the apoptotic process through inhibiting both PI3K and
mammalian target of rapamycin (mTOR) signaling pathways [125]. Pal et al. presented the inhibitory
effect of fisetin treatment on PI3K signaling pathway implicated through Akt phosphorylation of Akt
in nude mice implanted with A375 and SKH-1 melanoma cells and SKH-1 hairless mice [16,126].

Moreover, a sustained inhibition of PI3K, Akt and cross-communication between PI3K and
extracellular signal-regulated kinases (ERKs) was described in quercetin-treated HepG2 hepatocellular
carcinoma cells [127]. An elevation in endocannabinoids receptor (CB1-R) expression following
quercetin treatment has been noted in colon and breast cancer cell lines, which in turn inhibited
survival signaling pathways such as PI3K/Akt/mTOR [128,129]. Cancer stem cells (CSCs) have recently
gained major importance as novel targets in targeted cancer therapy and quercetin research is further



Biomolecules 2019, 9, 174 8 of 22

supported by its inherent capacity to inhibit CSCs through the PI3K/Akt and MAPK/ERK pathways in
prostate CSCs [130] and the PI3K/Akt/mTOR signaling pathways in breast CSCs [131].

4.2. Regulation of the Nuclear Factor Kappa Light Chain Enhancer of Activated B Cells Signaling Pathway

The nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling pathway has
a remarkable role in pathologic conditions such as cancer [132,133]. Suppression of NF-κB pathway in
tumorigenic cells usually leads to tumor regression, which makes the NF-κB pathway a promising
therapeutic target [134,135]. The effects of fisetin on this pathway have been investigated by Sung et al.
in several cancer cell lines including Daudi human Burkitt lymphoma cells, H1299 human lung
adenocarcinoma cells, and A293 human embryonic kidney cells. Fisetin inhibited TNF-induced
IκBα degradation, NF-dependent IκBα phosphorylation and ubiquitination, TNF-induced IκBα
kinase activation, p65 phosphorylation and its nuclear translocation, NF-κB-dependent anti-apoptotic
gene expression (cIAP1/2, survivin, Bcl-2, XIAP, Bcl-xL and TRAF-1), and expression of cyclin D1,
c-Myc, COX-2, MMP-9, VEGF, and intercellular adhesion molecule-1 (ICAM-1), thereby revealing
the numerous effects of fisetin on this pathway [17]. In another study, the treatment of COX-2
overexpressing HT29 human colon cancer cells with fisetin resulted in activation of apoptosis and
inhibition of COX-2 and the Wnt/EGFR/NF-kB pathway [136]. In addition, fisetin treatment reversed
12-O-tetradecanoylphorbol-13-acetate (TPA) mediated cell migration in MCF-7 human breast cancer
cells, which caused NF-κB inactivation and downregulation of MMP-9 expression [137]. Another
study found fisetin mediated downregulation of Syk, Src, and IκBα through inhibition of nuclear
translocation of p65/NF-κB [138].

Youn et. al. confirmed that quercetin inhibited the growth of NSCLC (H460) by suppressing the
NF-κB [139]. Another study, investigated the time dependent inactivation of NF-κB pathway with
NF-κB binding activity which leads to the reduced survival and proliferation of HepG2 cell [140]. In
human cell colon cancer (CACO-2 and SW-620 cell) quercetin also known to block the proliferation via
inhibition of NF-κB pathway [141].

4.3. Regulation of JAK/STAT Signaling Pathway

The effects of Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling
on tumor cell survival, proliferation, and invasion have made this pathway a favorite target for drug
development and cancer therapy [142]. It was found that fisetin mediated apoptosis by regulation of
the JAK/STAT and c-Kit pathways in K562 human chronic myeloid leukemia cells [143].

Additionally, it was suggested that quercetin inhibited the transcriptional activity of STAT3
and reduced the expression of STAT3 targeted genes such MM 2, MMP 9, Mcl-1, and VEGF in
melanoma [144]. Furthermore, treatment with quercetin at 10 µM markedly inhibited JAK2 and
STAT1 phosphorylation, and nuclear translocation of phosphorylated STAT1 in poly (dA:dT)-treated
and interferon gamma-primed keratinocytes [145]. Michaud et al. suggested that quercetin reduced
interleukin-6 (IL-6), stimulated JAK1 and STAT3 activation, and subsequently reduced the recruitment
of cyclin D1 and MMP 2 genes in glioblastoma [146,147]. Mukherjee et al., described that quercetin
also showed anti-tumor effects through downregulating the IL-6/STAT3 signaling pathway in NSCLC
A549 cells [148].

4.4. Regulation of p38MAPK Pathway

Deregulation of p38 MAPK has been associated with advanced stages and short survival in
cancer patients [149]. In human NCI-H460 NSCLC, fisetin regulated production of reactive oxygen
species (ROS) and reduced the activation of p38 MAPK signaling pathway [150]. Similarly, the fistein
treatment in HL-60 human acute promyelocytic leukemia cells caused inhibition of MAPK signaling
and modulated DNA binding signaling pathways [73]. Furthermore, fistein treatment was also
documented to reduce TPA-induced MCF-7 breast cancer cell invasion through inactivation of p38
MAPK signaling [137].
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It was found that quercetin-mediated apoptosis was induced by ROS-dependent ASK1⁄p38
pathway activation [151]. In AGS gastric cancer cells, quercetin inhibited the MAPK cancer
associated pathway and TRPM7 channels thereby acting as potential therapeutic agent for gastric
carcinoma treatment [152]. Quercetin additionally induced apoptosis in breast cancer cells (MCF-7
and MDA-MB-231) through inhibition of p38 MAPK signaling leading to decrease in twist gene
expression [153]. Lim et al. suggested that quercetin inhibited the phosphorylation of Akt, P70S6K,
and S6 proteins, while it increased phosphorylation of P38, c-Jun N-terminal kinase (JNK), ERK1/2,
and P90RSK proteins in JAR and JEG3 choriocarcinoma cell lines [154].

4.5. Regulation of ERK Signaling Pathway

The ERK signaling pathway is another major determinant for diverse cellular processes such
as proliferation, differentiation, and survival [155]. In addition, various in vitro and ex vivo studies
have also determined the anti-tumor effects of flavonoids mediated through ERK1/2 signaling
inhibition. Fisetin is one of the flavonoids that has been found to suppress ERK1/2 signaling
in human gastric (SGC7901), hepatic (HepG2), colorectal (Caco-2), and pancreatic cancer cells
(Suit-2) [156,157]. In human NCI-H460 NSCLC, fisetin induced ROS generation and suppressed
ERK through its phosphorylation [150]. Fisetin has also been documented to decrease the survival in
CCA cholangiocarcinoma cells through modulating ERK phosphorylation, reduction of phospho-p65
and c-myc oncogene expression [158]. Similarly, a combination of N-acetylcysteine treatment and
fisetin inhibited ERK protein phosphorylation in COLO-205 colon carcinoma cells [159]. Another study
also found that fisetin had an anti-tumor effect in human glioma GBM8401 cells, via the regulation of
ERK 1/2 and ADAM9 expression [160]. Further, quercetin caused HL-60 myeloid leukemia cell death
by ERK signaling mediated apoptosis [161]. Quercetin was found to be engaged in inhibiting the ERK
pathway, which subsequently suppressed angiogenesis [162,163]. Furthermore, recent data revealed
that quercetin decreased prostate CSC survival and invasion through regulating MAPK/ERK signaling
pathways [130].

4.6. Regulation of the Akt/mTOR/p70S6K Pathway

A range of studies has described the PI3K/Akt/mTOR pathway’s involvement in the initiation
of angiogenesis. Natural products such as flavonoids may be used to target this cancer-related
pathway [115]. Fisetin reduced Akt phosphorylation, p70S6K, mTOR, and mitf proteins in 451Lu
human melanoma cells, which in turn inhibited angiogenesis [164]. Furthermore, in addition to
melanoma [18], fisetin was found to be effective in leukemia [165] and lymphoma cells through this
pathway. Following treatment with fisetin, the viability of 4T1, MCF-7, and MDA-MB-231 breast cancer
cells was reduced through interfering with the PI3K/Akt/mTOR pathway [166]. Fisetin was found to be
an inhibitor of PI3K/Akt/ mTOR pathways [167] and an inducer of autophagia [168] in prostate cancer
cell lines.

Quercetin was also documented to impede tumor proliferation and angiogenesis by targeting the
VEGF receptor-2 (VEGF-R2) and Akt/mTOR/P70S6K signaling pathway in a mouse prostate cancer
xenograft model [169]. The Akt/AMPK/mTOR pathway was shown to be one of the targets of quercetin
in MDA-MB-231 and MDA-MB-435 breast cancer cells [170]. Furthermore, quercetin also induced
Akt-mTOR mediated autophagy in breast cancer cells where it reduced the migration and metastasis
of cells through MMP-2, MMP-9, and VEGF inhibition [171].

4.7. Regulation of Nrf2 Signaling Pathways

The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor E2-related factor 2 (Nrf2)
pathway is the major signaling cascade for defense and survival against endogenous and exogenous
stress [172,173]. It has been found that fisetin increased the protein level and accumulation Nrf2
and down regulated the protein levels of Keap1 [174]. Fisetin also rapidly enhanced the expression
of both Nrf2 and activating transcription factor 4 (ATF4) along with distinct mechanism leading to
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ATF-dependent gene transcription [175]. Treatment of cancer cells with quercetin caused dissociation
of the Nrf2-Keap1 complex, and translocation of Nrf2 to the nucleus [176,177]. It has been found
that treatment of HepG2 hepatocellular carcinoma cells with quercetin initiated antioxidant response
element (ARE) binding activity and NQO1 expression [177]. Additionally, quercetin also prevented
degradation of Nrf2 and stabilized it by maintaining the Keap1 protein levels without affecting
Keap1-Nrf2 complex [177]. Further, quercetin-mediated overexpression of detoxification enzymes
(phase II) was also demonstrated in human HuTu 80 duodenum adenocarcinoma cells and Caco-2
colorectal adenocarcinoma cells [178]. Recently, the anti-tumorigenic effects of quercetin was reported
to be mediated by increased Nrf2 expression in MSTO-211H and H2452 malignant mesothelioma
cells [179].

5. Regulation of Various Growth Factors

Growth factors are the key mediators for activation of several cancer-related signaling
pathways [180]. Growth factors influence cell transformation and activation of growth-promoting
pathways in tumor cells [181]. Flavonoid compounds are also able to control the expression of
these growth factors. Mechanistically fisetin-induced anti-angiogenesis led to reduced VEGF and
epidermal growth factor receptor (EGFR) expression [76,136]. Several in vivo studies in rats narrated
downregulation of bVEGF and basic fibroblast growth factor which direct tumor growth inhibition,
and alleviation of tumor proliferation, and angiogenesis [19]. Quercetin attenuated tumor proliferation,
invasion, and migration through inhibiting hepatocyte growth factor (HGF)/c-Met signaling in
melanoma cells [182]. Quercetin is also reported to reduce the insulin-like growth factors (IGFs) via
increasing binding protein-3 (IGFBP-3) proteins and led apoptosis in the prostate cancer cell line
PC-3 [183]. The effects of quercetin was promising enough to formulate novel gold nanoparticle
conjugates of quercetin that induced apoptosis [184] and inhibited EMT, angiogenesis, and invasiveness
through EGFR/PI3K/Akt and EGFR/VEGFR-2-mediated pathways respectively [185].

6. Regulation of Pro-Inflammatory Cytokines

Inflammation has been correlated with 20–40% of cancer cases. The blocking of cytokines is
best used as an adjunct therapy together with tumoricidal drugs [186]. Fisetin attenuated aflatoxin
B1 (AFB1)-mediated carcinogenesis by neutralizing elevated levels of IL-1α and TNF-α in rat model
of hepatocellular carcinoma [187]. Other research groups have demonstrated a fisetin-mediated
inhibitory effect against pro-inflammatory cytokines (e.g., TNF-R, IL-6, IL-8, and IL-1β), nitric
oxide, and Th2-type cytokines (basophil-induced) in human mast cells [188,189]. The key allergic
airway inflammation mediators, including Th2-associated cytokines (IL-13, IL-4, and IL-5), thymic
stromal lymphoprotein, eotaxin-1, and transcription factor (GATA-3) in lungs respectively, were
known to have reduced expression after fisetin treatment [190]. Moreover, fisetin is also known
to reduce the level of inflammatory cytokines (IL-6, TNFα, and IL-1βIL-6) and expression of cell
proliferation markers [126]. Fisetin suppressed IL-1β-mediated expression of inducible nitric oxide
synthase, nitric oxide, interleukin-6, tumor necrotic factor-α, prostaglandin E2, cyclooxygenase-2
(iNOS, NO, IL-6, TNF-α, PGE2, and COX-2), and significantly decreased the degradation of Sox-9
and aggrecan, and reduced SIRT1 inactivation. In contrast, quercetin supplementation significantly
decreased the infiltration of inflammatory cells as well as the levels of TNF-α and IL-1β in the
bronchoalveolar lavage fluid and plasma of gerbils exposed to benzo[a]pyrene (BaP) or BaP+β-carotene
in A549 adenocarcinoma alveolar basal epithelial cells [191]. Quercetin inhibited TNF-induced
interferon-γ-inducible protein 10 and macrophage inflammatory protein 2 gene expression in MODE-K
cells [192]. Quercetin attenuated IL-1β-induced expression of ICAM-1 mRNA and protein in a
dose-dependent manner in human A549 adenocarcinoma alveolar basal epithelial cells [193].
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7. Regulation of Heat Shock Proteins

Heat shock proteins (HSPs) such as HSP70, HSP90, and HSP27 stabilize the functions of
overexpressed and mutated cancer genes, and hence, increase the growth and survival of cancers [194].
HSPs are also released from cancer cells and influence malignant properties by receptor-mediated
signaling [195]. Researchers reported that quercetin stimulate apoptosis in prostate cancer and B-CPAP
human papillary thyroid cancer cells resulting from inhibition of casein kinase II or calcium/calmodulin
kinase II, leading to HSP induction and downregulation of HSP70 and HSP90 protein expression [196].
Quercetin found to suppressed the HSP27 and COX-2 and induced G1 phase arrest in U251 glioma
cells [197]. Numerous studies have documented the promising role of HSP90 protein in combating
cancer, as this supreme protein molecule is reported to be involved in cell survival pathways [20,198,199].
Kim et al. presented and discussed the fisetin-mediated inhibition of cellular proliferation by HSP70
and HSP27 regulation, and Bcl-2-associated athanogene 3, which can stabilize Bcl-2 protein family
members, thereby protecting cancer cells from apoptosis in HCT-116 human colon cancer cells [200].
One of the paramount signaling pathway, Notch/AKT/mTOR in tumor aggressiveness, has reported
to be downregulated by quercetin plus shHSP27, leading to significant apoptosis in U937 leukemia
cells [201].

8. Conclusions and Future Perspectives

Fisetin and quercetin are some of the most prevalent plant flavonoids that are reportedly present in
many fruits and vegetables such as apples and onions. The bioactive potential of fisetin and quercetin
has been established, especially in the modulation of a range of cancer signaling pathways. The
anti-cancer, anti-inflammatory, and antioxidant roles exhibited by these flavonols have been reportedly
found to be associated with their ability of apoptotic activation, cell cycle arrest, regulating ECM
remodeling, and inhibiting EMT. Many studies of fisetin and quercetin have been highlighted in
this review for their modulatory potential in different cancer related signaling pathways and growth
factors such as Akt, JNK, p38MAPK, NF-κB, and VEGF cytokines and chemokines, paving the way to
delineate the mechanism of action of these therapeutically active flavonols. Research is in progress to
identify the newer plant based therapeutic agents. Easley availability, safe in use and cheaper cost
increasing the popularity and acceptability of herbal medicine. As per the World Health Organization,
about 60% of the world´s population and about 80% of the population of developing countries rely on
herbal medicine. According to an estimate, herbal industry reached at around US$100 billion in shares,
with an annual growth rate of about 15%. However, there are also several concerns with use of these
phytochemicals as drugs with respect to their pharmacognosy and standardization compared with
conventional drugs. There should be an improvement in the technologies used for the categorization
(such as HPLC/MS, LC/MS, NMR), storage, and quality control of these compounds. For the last two
decades, research has been underway to evaluate the clinical validity of phototherapy. Clinical trials
are required to further prove the clinical efficacy of these phytochemicals.
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