Dietary Supplementation for Para-Athletes: A Systematic Review
Abstract
:1. Introduction
Background
2. Methods
3. Results and Discussion
3.1. Risk of Bias
3.2. Caffeine
3.3. Creatine
3.4. Fish Oil
3.5. Nitrates
3.6. Vitamin D
3.7. Buffers
3.8. Protein and Amino Acids
3.9. Future Recommendations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bailey, R.L.; Gahche, J.J.; Lentino, C.V.; Dwyer, J.T.; Engel, J.S.; Thomas, P.R.; Betz, J.M.; Sempos, C.T.; Picciano, M.F. Dietary Supplement Use in the United States, 2003–2006. J. Nutr. 2010, 141, 261–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knapik, J.J.; Steelman, R.A.; Hoedebecke, S.S.; Austin, K.G.; Farina, E.K.; Lieberman, H.R. Preva-lence of dietary supplement use by athletes: Systematic review and meta-analysis. Sports Med. 2016, 46, 103–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 104–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madden, R.F.; Shearer, J.; Parnell, J.A. Evaluation of dietary intakes and supplement use in paralym-pic athletes. Nutrients 2017, 9, 1266. [Google Scholar] [CrossRef] [Green Version]
- Graham-Paulson, T.S.; Paulson, T.A.W.; Perret, C.; Tolfrey, K.; Cordery, P.; Goosey-Tolfrey, V.L. Spinal Cord Injury Level Influences Acute Plasma Caffeine Responses. Med. Sci. Sports Exerc. 2017, 49, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Perret, C.; Flueck, J.L. Supplementation and Performance in Spinal Cord-Injured Elite Athletes: A Sys-tematic Review. Ger. J. Sports Med. Dtsch. Z. Sportmed. 2016, 67, 209–213. [Google Scholar] [CrossRef]
- Madden, R.F.; Shearer, J.; Legg, D.; Parnell, J.A. Evaluation of Dietary Supplement Use in Wheelchair Rugby Athletes. Nutrients 2018, 10, 1958. [Google Scholar] [CrossRef] [Green Version]
- Scaramella, J.; Kirihennedige, N.; Broad, E. Key nutritional strategies to optimize performance in pa-ra-athletes. Phys. Med. Rehabil. Clin. 2018, 29, 283–298. [Google Scholar] [CrossRef]
- Gold, J.R.; Gold, M.M. Access for all: The rise of the Paralympic Games. J. R. Soc. Promot. Health 2007, 127, 133–141. [Google Scholar] [CrossRef]
- Beckman, E.M.; Tweedy, S.M. Towards evidence-based classification in Paralympic athletics: Evalu-ating the validity of activity limitation tests for use in classification of Paralympic running events. Br. J. Sports Med. 2009, 43, 1067–1072. [Google Scholar] [CrossRef]
- Tweedy, S.M.; Vanlandewijck, Y.C. International Paralympic Committee position stand--background and scientific principles of classification in Paralympic sport. Br. J. Sports Med. 2009, 45, 259–269. [Google Scholar] [CrossRef]
- Tweedy, S.; Bourke, J. IPC Athletics Classification Project for Physical Impairments: Final Report—Stage 1; IPC Athletics: Bonn, Germany, 2009; p. 104. [Google Scholar]
- Liljedahl, J.B.; Bjerkefors, A.; Arndt, A.; Nooijen, C.F.J. Para-cycling race performance in different sport classes. Disabil. Rehabilitation 2020, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care in-terventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [Green Version]
- International Paralympic Committee. Explanatory Guide to Paralympic Classification: Paralympic Summer Sports. 2020. Available online: https://www.paralympic.org/sites/default/files/2020-10/2020_06%20Explanatory%20Guide%20to%20Classification_Summer%20Sports.pdf (accessed on 7 May 2021).
- International Paralympic Committee. Explanatory Guide to Paralympic Classification: Paralympic Winter Sports. 2020. Available online: https://www.paralympic.org/sites/default/files/2020-10/2020_10%20Explanatory%20Guide%20to%20Classification_Winter%20Sports.pdf (accessed on 7 May 2021).
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.; Savovic, J.; Sterne, J.A.C.; Page, M.; Hróbjartsson, A.; Boutron, A. A Revised Tool to Assess Risk of Bias in Randomized Trials (RoB 2.0). 2020. Available online: https://drive.google.com/file/d/18Ek-uW8HYQsUja8Lakp1yOhoFk0EMfPO/view (accessed on 18 March 2021).
- Amorim, S.; Teixeira, V.H.; Corredeira, R.; Cunha, M.; Maia, B.; Margalho, P.; Pires, J. Creatine or vitamin D supplementation in individuals with a spinal cord injury undergoing resistance training: A double-blinded, randomized pilot trial. J. Spinal Cord Med. 2018, 41, 471–478. [Google Scholar] [CrossRef]
- Flueck, J.L.; Gallo, A.; Moelijker, N.; Bogdanov, N.; Bogdanova, A.; Perret, C. Influence of Equimolar Doses of Beetroot Juice and Sodium Nitrate on Time Trial Performance in Handcycling. Nutrients 2019, 11, 1642. [Google Scholar] [CrossRef] [Green Version]
- Flueck, J.L.; Schlaepfer, M.W.; Perret, C. Effect of 12-Week Vitamin D Supplementation on 25[OH]D Status and Performance in Athletes with a Spinal Cord Injury. Nutrients 2016, 8, 586. [Google Scholar] [CrossRef] [Green Version]
- Flueck, J.L.; Lienert, M.; Schaufelberger, F.; Krebs, J.; Perret, C. Ergogenic Effects of Caffeine Consumption in a 3-min All-Out Arm Crank Test in Paraplegic and Tetraplegic Compared With Able-Bodied Individuals. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 584–593. [Google Scholar] [CrossRef]
- Flueck, J.L.; Mettler, S.; Perret, C. Influence of caffeine and sodium citrate ingestion on 1500-m exercise performance in elite wheelchair athletes: A pilot study. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 296–304. [Google Scholar] [CrossRef]
- Graham-Paulson, T.S.; Perret, C.; Watson, P.; Goosey-Tolfrey, V.L. Improvement of sprint performance in wheelchair sportsmen with caffeine supplementation. Int. J. Sports Physiol. Perform. 2016, 11, 214–220. [Google Scholar] [CrossRef]
- Klimesova, I.; Machova, I.; Jakubec, A.; Corkle, J. Effect of caffeine on maximal oxygen uptake in wheelchair rugby players: A randomized, placebo-controlled, double-blind study. Acta Gymnica 2017, 47, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Perret, C.; Mueller, G.; Knecht, H. Influence of creatine supplementation on 800 m wheelchair performance: A pilot study. Spinal Cord 2006, 44, 275–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, M.C.; Lochmuller, H.; Reilich, P.; Klopstock, T.; Huber, R.; Hartard, M.; Hennig, M.; Pongratz, D.; Muller-Felber, W. Creatine monohydrate in muscular dystrophies: A double-blind, placebo-controlled clinical study. Neurology 2000, 54, 1848–1850. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, P.L.; Mahoney, E.T.; Cohn, K.A.; Sheradsky, L.F.; Green, B.A. Oral creatine supplementation enhances upper extremity work capacity in persons with cervical-level spinal cord injury. Arch. Phys. Med. Rehabil. 2002, 83, 19–23. [Google Scholar] [CrossRef]
- Tarnopolsky, M.; Martin, J. Creatine monohydrate increases strength in patients with neuromuscular disease. Neurology 1999, 52, 854. [Google Scholar] [CrossRef]
- Marques, C.G.; Santos, V.C.; Levada-Pires, A.C.; Jacintho, T.M.; Gorjão, R.; Pithon-Curi, T.C.; Cury-Boaventura, M.F. Effects of DHA-rich fish oil supplementation on the lipid profile, markers of muscle damage, and neutrophil function in wheelchair basketball athletes before and after acute exercise. Appl. Physiol. Nutr. Metab. 2015, 40, 596–604. [Google Scholar] [CrossRef]
- Theis, N.; Brown, M.A.; Wood, P.; Waldron, M. Leucine Supplementation Increases Muscle Strength and Volume, Reduces Inflammation, and Affects Wellbeing in Adults and Adolescents with Cerebral Palsy. J. Nutr. 2021, 151, 59–64. [Google Scholar] [CrossRef]
- Graham-Paulson, T.; Perret, C.; Goosey-Tolfrey, V. Case Study: Dose Response of Caffeine on 20-km Handcycling Time Trial Performance in a Paratriathlete. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 274–278. [Google Scholar] [CrossRef] [Green Version]
- Pritchett, K.; Pritchett, R.C.; Stark, L.; Broad, E.; Lacroix, M. Effect of Vitamin D Supplementation on 25(OH)D Status in Elite Athletes With Spinal Cord Injury. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 18–23. [Google Scholar] [CrossRef]
- Del Coso, J.; Muñoz, G.; Muñoz-Guerra, J. Prevalence of caffeine use in elite athletes following its re-moval from the World Anti-Doping Agency list of banned substances. Appl. Physiol. Nutr. Metabol. 2011, 36, 555–561. [Google Scholar] [CrossRef] [Green Version]
- Ganio, M.S.; Klau, J.F. Casa, D.J.; Armstrong, L.E.; Maresh, C.M. Effect of caffeine on sport-specific endurance perfor-mance: A systematic review. J. Strength Cond. Res. 2009, 23, 315–324. [Google Scholar] [CrossRef]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1–37. [Google Scholar] [CrossRef]
- Szigeti, K.; Lupski, J.R. Charcot–Marie–Tooth disease. Eur. J. Hum. Genet. 2009, 17, 703–710. [Google Scholar] [CrossRef] [Green Version]
- Grealy, M.A.; Johnson, D.A.; Rushton, S.K. Improving cognitive function after brain injury: The use of exercise and virtual reality. Arch. Phys. Med. Rehabil. 1999, 80, 661–667. [Google Scholar] [CrossRef]
- Foskett, A.; Ali, A.; Gant, N. Caffeine enhances cognitive function and skill performance during simulated soccer activity. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 410–423. [Google Scholar] [CrossRef]
- Graham-Paulson, T.; Perret, C.; Goosey-Tolfrey, V. Improvements in Cycling but Not Handcycling 10 km Time Trial Performance in Habitual Caffeine Users. Nutrients 2016, 8, 393. [Google Scholar] [CrossRef] [Green Version]
- Cooper, R.; Naclerio, F.; Allgrove, J.; Jimenez, A. Creatine supplementation with specific view to exercise/sports performance: An update. J. Int. Soc. Sports Nutr. 2012, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017, 14, 1–18. [Google Scholar] [CrossRef]
- Candow, D.G.; Forbes, S.C.; Chilibeck, P.D.; Cornish, S.M.; Antonio, J.; Kreider, R. Effectiveness of Creatine Supplementation on Aging Muscle and Bone: Focus on Falls Prevention and Inflammation. J. Clin. Med. 2019, 8, 488. [Google Scholar] [CrossRef] [Green Version]
- Tarnopolsky, M.A. Potential benefits of creatine monohydrate supplementation in the elderly. Curr. Opin. Clin. Nutr. Metab. Care 2000, 3, 497–502. [Google Scholar] [CrossRef]
- Ainsley Dean, P.J.; Arikan, G.; Opitz, B.; Sterr, A. Potential for use of creatine supplementation following mild traumatic brain injury. Concussion 2017, 2, CNC34. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.; Xie, Y.; Ordaz, J.D.; Huh, A.J.; Huang, N.; Wu, W.; Xu, X.M. Restoring Cellular Energet-ics Promotes Axonal Regeneration and Functional Recovery after Spinal Cord Injury. Cell Metabol. 2020, 31, 623–641. [Google Scholar] [CrossRef]
- Australian Sports Commission. AIS Sports Supplements Evidence Map. Available online: https://www.ais.gov.au/nutrition/supplements (accessed on 20 July 2020).
- Mickleborough, T.D.; Lindley, M.R.; Montgomery, G.S. Effect of fish oil-derived omega-3 polyun-saturated fatty acid supplementation on exercise-induced bronchoconstriction and immune function in athletes. Physician Sports Med. 2008, 36, 11–17. [Google Scholar] [CrossRef]
- Curtis, L.; Epstein, P. Nutritional treatment for acute and chronic traumatic brain injury patients. J. Neurosurg. Sci. 2014, 58, 151–160. [Google Scholar] [PubMed]
- Figueroa, J.D.; Cordero, K.; Llán, M.S.; De Leon, M. Dietary omega-3 polyunsaturated fatty acids improve the neurolipidome and restore the DHA status while promoting functional recovery after experimental spinal cord injury. J. Neurotrauma 2013, 30, 853–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farooqui, A.A.; Ong, W.-Y.; Horrocks, L.A.; Chen, P.; Farooqui, T. Comparison of biochemical effects of statins and fish oil in brain: The battle of the titans. Brain Res. Rev. 2007, 56, 443–471. [Google Scholar] [CrossRef] [PubMed]
- McMahon, N.F.; Leveritt, M.D.; Pavey, T.G. The effect of dietary nitrate supplementation on endur-ance exercise performance in healthy adults: A systematic review and meta-analysis. Sports Med. 2017, 47, 735–756. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, R.; Maté-Muñoz, J.L.; Cuenca, E.; García-Fernández, P.; Mata-Ordoñez, F.; Estevan, M.D.C.L.; Veiga-Herreros, P.; da Silva, S.F.; Garnacho-Castaño, M.V. Effects of beetroot juice supplementation on intermittent high-intensity exercise efforts. J. Int. Soc. Sports Nutr. 2018, 15, 2. [Google Scholar] [CrossRef] [Green Version]
- Peeling, P.; Binnie, M.J.; Goods, P.S.; Sim, M.; Burke, L.M. Evidence-based supplements for the enhancement of athletic performance. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Bailey, S.J.; Varnham, R.L.; DiMenna, F.J.; Breese, B.C.; Wylie, L.; Jones, A.M. Inorganic nitrate supplementation improves muscle oxygenation, O2 uptake kinetics, and exercise tolerance at high but not low pedal rates. J. Appl. Physiol. 2015, 118, 1396–1405. [Google Scholar] [CrossRef]
- Ørtenblad, N.; Nielsen, J.; Boushel, R.; Söderlund, K.; Saltin, B.; Holmberg, H.-C. The Muscle Fiber Profiles, Mitochondrial Content, and Enzyme Activities of the Exceptionally Well-Trained Arm and Leg Muscles of Elite Cross-Country Skiers. Front. Physiol. 2018, 9, 1031. [Google Scholar] [CrossRef]
- Encinas, J.M.; Manganas, L.; Enikolopov, G. Nitric oxide and multiple sclerosis. Curr. Neurol. Neurosci. Rep. 2005, 5, 232–238. [Google Scholar] [CrossRef]
- Guix, F.; Uribesalgo, I.; Coma, M.; Muñoz, F. The physiology and pathophysiology of nitric oxide in the brain. Prog. Neurobiol. 2005, 76, 126–152. [Google Scholar] [CrossRef]
- Antoniak, A.E.; Greig, C.A. The effect of combined resistance exercise training and vitamin D3 sup-plementation on musculoskeletal health and function in older adults: A systematic review and meta-analysis. BMJ Open 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Larson-Meyer, D.E.; Willis, K.S. Vitamin D and Athletes. Curr. Sports Med. Rep. 2010, 9, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Owens, D.J.; Allison, R.; Close, G.L. Vitamin D and the athlete: Current perspectives and new challenges. Sports Med. 2018, 48, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Bartoszewska, M.; Kamboj, M.; Patel, D.R. Vitamin D, Muscle Function, and Exercise Performance. Pediatr. Clin. N. Am. 2010, 57, 849–861. [Google Scholar] [CrossRef]
- Moran, D.S.; McClung, J.P.; Kohen, T.; Lieberman, H.R. Vitamin D and Physical Performance. Sports Med. 2013, 43, 601–611. [Google Scholar] [CrossRef]
- Dahlquist, D.T.; Dieter, B.P.; Koehle, M.S. Plausible ergogenic effects of vitamin D on athletic performance and recovery. J. Int. Soc. Sports Nutr. 2015, 12, 33. [Google Scholar] [CrossRef] [Green Version]
- Flint, J.H.; Wade, A.M.; Stocker, D.J.; Pasquina, P.F.; Howard, R.S.; Potter, B.K. Bone mineral density loss after combat-related lower extremity amputation. J. Orthop. Trauma 2014, 28, 238–244. [Google Scholar] [CrossRef]
- King, W.; Levin, R.; Schmidt, R.; Oestreich, A.; Heubi, J.E. Prevalence of reduced bone mass in children and adults with spastic quadriplegia. Dev. Med. Child Neurol. 2003, 45, 12–16. [Google Scholar] [CrossRef]
- Correale, J.; Ysrraelit, M.C.; Gaitán, M.I. Immunomodulatory effects of Vitamin D in multiple sclerosis. Brain 2009, 132, 1146–1160. [Google Scholar] [CrossRef]
- Schnieders, J.; Willemsen, D.; de Boer, H. Factors contributing to chronic fatigue after traumatic brain injury. J. Head Trauma Rehabil. 2012, 27, 404–412. [Google Scholar] [CrossRef]
- Parry-Billings, M.; MacLaren, D.P.M. The effect of sodium bicarbonate and sodium citrate ingestion on anaerobic power during intermittent exercise. Graefe’s Arch. Clin. Exp. Ophthalmol. 1986, 55, 524–529. [Google Scholar] [CrossRef]
- Painelli, V.D.S.; Junior, A.H.L. Thirty years of investigation on the ergogenic effects of sodium citrate: Is it time for a fresh start? Br. J. Sports Med. 2016, 52, 942–943. [Google Scholar] [CrossRef]
- Heibel, A.B.; Perim, P.H.; Oliveira, L.F.; McNaughton, L.R.; Saunders, B. Time to optimize supple-mentation: Modifying factors influencing the individual responses to extracellular buffering agents. Front. Nutr. 2018, 5, 35. [Google Scholar] [CrossRef]
- Carr, A.J.; Slater, G.J.; Gore, C.J.; Dawson, B.; Burke, L.M. Effect of Sodium Bicarbonate on [HCO3−], pH, and Gastrointestinal Symptoms. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Leicht, C.; Perret, C. Comparison of Blood Lactate Elimination in Individuals With Paraplegia and Able-Bodied Individuals During Active Recovery From Exhaustive Exercise. J. Spinal Cord Med. 2008, 31, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Stangier, C.; Abel, T.; Zeller, S.; Quittmann, O.J.; Perret, C.; Strüder, H.K. Comparison of Different Blood Lactate Threshold Concepts for Constant Load Performance Prediction in Spinal Cord Injured Hand-cyclists. Front. Physiol. 2019, 10, 1054. [Google Scholar] [CrossRef]
- Lindinger, M.I. Origins of [H+] Changes in Exercising Skeletal Muscle. Can. J. Appl. Physiol. 1995, 20, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Bennegard, G.-M.; Karlsson, A.-K. Higher glucose uptake in paralysed spastic leg. Spinal Cord 2007, 46, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, G.; Pasquali, L.; Manca, M.L.; Del Corona, A.; Tessa, A.; Patrono, C.; Santorelli, F.M. The relationship between anaerobic lactate threshold and plasma catecholamines during incremental exercise in he-reditary spastic paraplegia. Funct. Neurol. 2003, 18, 83–88. [Google Scholar]
- Phillips, S.M.; van Loon, L.J. Dietary protein for athletes: From requirements to optimum adaptation. J. Sports Sci. 2011, 29, S29–S38. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, R.R. Branched-chain amino acids and muscle protein synthesis in humans: Myth or reality? J. Int. Soc. Sports Nutr. 2017, 14, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hector, A.J.; Philips, S.M. Protein recommendations for weight loss in elite athletes: A focus on body composition and performance. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Crowe, M.J.; Weatherson, J.N.; Bowden, B.F. Effects of dietary leucine supplementation on exercise performance. Graefe’s Arch. Clin. Exp. Ophthalmol. 2005, 97, 664–672. [Google Scholar] [CrossRef]
- Kawamata, T.; Katayama, Y.; Hovda, D.A.; Yoshino, A.; Becker, D.P. Administration of Excitatory Amino Acid Antagonists via Microdialysis Attenuates the Increase in Glucose Utilization Seen following Concussive Brain Injury. Br. J. Pharmacol. 1992, 12, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Paterno, R.; Metheny, H.; Cohen, A.S. Memory Deficit in an Object Location Task after Mild Traumatic Brain Injury Is Associated with Impaired Early Object Exploration and Both Are Restored by Branched Chain Amino Acid Dietary Therapy. J. Neurotrauma 2018, 35, 2117–2124. [Google Scholar] [CrossRef]
- Anker–van der Wel, I.; Smorenburg, A.R.; de Roos, N.M.; Verschuren, O. Dose, timing, and source of protein intake of young people with spastic cerebral palsy. Disabil. Rehabil. 2019, 42, 2192–2197. [Google Scholar] [CrossRef]
- Banfi, S.; D’Antona, G.; Ruocco, C.; Meregalli, M.; Belicchi, M.; Bella, P.; Erratico, S.; Donato, E.; Rossi, F.; Bifari, F.; et al. Supplementation with a selective amino acid formula ameliorates muscular dystrophy in mdx mice. Sci. Rep. 2018, 8, 14659. [Google Scholar] [CrossRef] [Green Version]
- Johansson, B.; Berglund, P.; Rönnbäck, L. Mental fatigue and impaired information processing after mild and moderate traumatic brain injury. Brain Inj. 2009, 23, 1027–1040. [Google Scholar] [CrossRef] [PubMed]
- Blomstrand, E. Amino acids and central fatigue. Amino Acids 2001, 20, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Croxford, J.L. Therapeutic Potential of Cannabinoids in CNS Disease. CNS Drugs 2003, 17, 179–202. [Google Scholar] [CrossRef] [PubMed]
- Mücke, M.; Phillips, T.; Radbruch, L.; Petzke, F.; Häuser, W. Cannabis-based medicines for chronic neuropathic pain in adults. Cochrane Database Syst. Rev. 2018, 3, CD012182. [Google Scholar] [CrossRef]
- World Anti-Doping Agency. Prohibited List January 2020. 2020. Available online: https://www.wada-ama.org/sites/default/files/wada_2020_english_prohibited_list_0.pdf (accessed on 7 May 2021).
- Pacher, P.; Bátkai, S.; Kunos, G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev. 2006, 58, 389–462. [Google Scholar] [CrossRef] [Green Version]
- Keating, G.M. Delta-9-tetrahydrocannabinol/cannabidiol oromucosal spray (Sativex®): A review in multiple sclerosis-related spasticity. Drugs 2017, 77, 563–574. [Google Scholar] [CrossRef]
Reference | Study Design | Population (n) | Supplement | Dosing Strategy | Outcome Measures | Results |
---|---|---|---|---|---|---|
Flueck et al. 2019 | DB, RCT, crossover | AB (14) and paracyclists with SCI (8) | -Beetroot juice -Sodium nitrate | -6 mmol nitrate 3 h before TT | -PO -10 km TT -HR -BP -Blood lactate -RPE -PO: VO2 ratio | -Nitrate levels were higher in beetroot compared to placebo. SCI population showed greater performance than AB. Nitrite levels were higher in AB than SCI group. AB group saw improved PO:VO2 ratio in some km |
Flueck et al. 2014 | DB, RCT, crossover | -Elite wheelchair racing athletes (9) | -Caffeine -Sodium citrate -Sodium citrate +caffeine | -Caffeine: 6 mg/kg -Sodium Citrate: 0.5 g/kg -Caffeine + sodium citrate (as above) 90–120 min before exercise tests | -1500 m TT -HRmax -HRaverage -Blood lactate -Blood ph -Blood bicarbonate | -Blood ph was higher at rest after sodium citrate and sodium citrate +caffeine conditions -Blood bicarbonate was higher after the TT in the sodium citrate and sodium citrate +caffeine conditions -Maximal lactate concentrations were higher in caffeine and caffeine +sodium citrate conditions |
Graham-Paulson et al. 2016 | DB, RCT, crossover | Wheelchair rugby players (12) | -Caffeine | -4 mg/kg 70 min before exercise tests | -Subjective feeling measures -3 × 20 m sprint -4 × 4 min maximal push -RPE | -Caffeine improved 20 m sprint and improved the first 4-min push effort, but not the others. The caffeine condition also showed decreased RPE scores |
Graham-Paulson et al. 2018 | Case Study; single blind, randomized, placebo controlled, repeated measures | SCI (1) | -Caffeine | -2 mg/kg -4 mg/kg -6 mg/kg 45 min before exercise tests | -20 km TT -Blood glucose -Blood lactate -HR -RPE | -TT performance: 6 mg/kg > 2 mg/kg > 4 mg/kg > placebo -Blood lactate was highest in the 6 mg/kg trial -Average HR was highest under 6 mg/kg, then 2 mg/kg, then 4 mg/kg |
Klimešová et al. 2017 | DB, RCT, crossover | Wheelchair rugby players (7) | -Caffeine | -3 mg/kg 60 min before exercise | -VO2peak -RPE -POmax | -Caffeine did not improve any of the outcomes measured |
Flueck et al. 2015 | DB, RCT, crossover | AB (17), paraplegics (10), tetraplegics (7) | -Caffeine | 6 mg/kg 60 min before exercise tests | -PO -Fatigue Index -Plasma catecholamines -Plasma caffeine -Lactate | -Paraplegic group showed higher 30 s and 1 min PO in the caffeine condition compared to placebo -Tetraplegics had significantly greater plasma caffeine concentration 1 h after supplementation compared to AB and significantly more lactate after exercise in the caffeine condition compared to placebo |
Amorim et al. 2018 | DB, RCT | Adults with SCI (14) | -Creatine -Vit D | -Creatine: 3 g/day for 8 weeks -Vit D: 25,000 IU Vit D every 2 weeks for 8 weeks | -anthropometrics -arm muscle area -grip strength -seated medicine ball throw -Muscular strength (1 RM) -wheelchair slalom test -Plasma Vit D | -Creatine increased Arm muscle area -Positive correlation between Vit D status and Pec Deck 1 RM |
Perret et al. 2006 | DB, RCT, crossover | Wheelchair athletes (6) | -Creatine | -4 × 5 g/day for 6 days | -800 m TT -HR -RPE -Blood lactate | -Creatine had no impact on the outcomes measures |
Walter et al. 2000 | DB, RCT, crossover | Patients with muscular dystrophy (36) | -Creatine | -10 g/day for adults, 5 g/day for children for 8 weeks | -Muscular strength | -Creatine increased strength |
Jacobs et al. 2002 | DB, RCT, crossover | SCI (16) | -Creatine (chronic) | -5 g 4x/day for 7 days | -VO2 -HR -RPE -PO | -Creatine group reached significantly greater values of VO2, VCO2, tidal volume, and PO |
Tarnopolsky et al. 1999 | Single-blind, placebo controlled | Neurological conditions (102 over 2 studies) | -Creatine (chronic) | -10 g/day for 5 days, followed by 5 g per for 5 to 7 days | -ankle dorsiflexion strength -ankle dorsiflexion fatigue -knee extension strength -grip strength | -Creatine group saw improvements in ankle dorsiflexion strength and fatigue, grip strength, and knee extension strength compared to the placebo |
Marques et al. 2016 | Cross-sectional | Wheelchair basketball players with SCI (8) | -Fish oil | -3 g fish oil (1500 mg DHA, 300 mg EPA) per day for 30 days | -Muscle damage -Inflammation | -Fish oil reduced markers of muscle damage, inflammatory disturbances, and neutrophil death induced by acute exercise |
Flueck et al. 2016 | DB | Wheelchair athletes (20) | -Vit D | -6000 IU daily for 12 weeks | -elbow flexion torque Blood lactate -HRmax -RPE -POmax -POaverage -fatigue index -plasma Vit D -plasma calcium -upper extremity function | -Supplementation increased plasma Vit D and increased torque in non-dominant arm at 0 and 180°/s. There was also a positive correlation between 60°/s torque and Vit D status in non-dominant arm |
Pritchett et al. 2019 | Single-arm | Spinal cord impairment- SCI, spina bifida, cauda equina (34) | -Vit D | -15,000–50,000 IU per week for 12–16 weeks | -3 × 20 m sprint -grip strength | -Supplementation increased serum Vit D levels -Vit D did not improve any of the performance measures |
Theis et al. 2020 | DB, RCT | Adolescents and young adults with cerebral palsy (21) | -Leucine | -192 mg/kg for 10 weeks | -elbow Flexor Strength -muscle volume -CRP -wellbeing -resting energy expenditure -body composition | -Muscle strength, volume, and CRP increased in leucine group compared to control -Measures of wellbeing (stress, muscle soreness, mood, and general wellbeing) improved in leucine group compared to control |
Study | Risk of Bias Domain | ||||||
---|---|---|---|---|---|---|---|
Randomization Process | Period or Carry-Over Effect | Deviation from Intended Intervention | Missing Outcome Data | Measurement of Outcome | Selection of Reported Results | Overall Risk of Bias | |
Beetroot Juice | |||||||
Flueck et al. 2019 | Low | Low | Low | Low | Low | Low | Low |
Caffeine | |||||||
Flueck et al. 2014 | Low | Low | Low | Low | Low | Some concerns | Some concerns |
Graham-Paulson et al. 2016 | Low | Low | Low | Low | Low | Some concerns | Some concerns |
Flueck et al. 2015 | Low | Low | Low | Low | Low | Some concerns | Some concerns |
Klimešová et al. 2017 | Low | Low | Low | Low | Low | Some concerns | Some concerns |
Creatine | |||||||
* Amorim et al. 2018 | Low | N/A | Low | Low | Low | Low | Low |
Perret et al. 2006 | Low | Low | Low | Low | Low | Some concerns | Some concerns |
Walter et al. 2000 | Low | Low | Low | Low | Low | Some concerns | Some concerns |
Jacobs et al. 2002 | Low | Low | Low | Low | Low | Some concerns | Some concerns |
Tarnopolsky et al. 1999 | Low | N/A | N/A | Low | Low | Some concerns | Some concerns |
Fish Oil | |||||||
Marques et al. 2016 | High | Low | Low | Low | Low | Some concerns | High |
Vitamin D | |||||||
Flueck et al. 2016 | High | N/A | Low | Low | Low | Low | High |
Pritchett et al. 2019 | High | Low | Low | Low | Low | Some concerns | Some concerns |
Protein and Amino Acids | |||||||
Theis et al. 2020 | Low | N/A | Low | Low | Low | Low | Low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaw, K.A.; Zello, G.A.; Bandy, B.; Ko, J.; Bertrand, L.; Chilibeck, P.D. Dietary Supplementation for Para-Athletes: A Systematic Review. Nutrients 2021, 13, 2016. https://doi.org/10.3390/nu13062016
Shaw KA, Zello GA, Bandy B, Ko J, Bertrand L, Chilibeck PD. Dietary Supplementation for Para-Athletes: A Systematic Review. Nutrients. 2021; 13(6):2016. https://doi.org/10.3390/nu13062016
Chicago/Turabian StyleShaw, Keely A., Gordon A. Zello, Brian Bandy, Jongbum Ko, Leandy Bertrand, and Philip D. Chilibeck. 2021. "Dietary Supplementation for Para-Athletes: A Systematic Review" Nutrients 13, no. 6: 2016. https://doi.org/10.3390/nu13062016