Deep Dive Into the Effects of Food Processing on Limiting Starch Digestibility and Lowering the Glycemic Response
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Products
2.2. Nutritional Composition and Starch Digestibility
2.3. Micro-Imaging
2.3.1. X-ray Diffraction
2.3.2. Micro-X-ray-Tomography
2.3.3. Low-Voltage Scanning Electron Microscopy
2.4. Human Subjects and the In Vivo Study
2.5. Statistical Analysis
3. Results
3.1. Macronutrient Content
3.2. Starch Fraction Analyses
3.3. Micro-Imaging
3.3.1. X-ray Diffraction
3.3.2. Micro-Tomography
3.3.3. Electronic Microscopy
3.4. Glycemic and Insulinemic Responses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gibney, M.J.; Forde, C.G.; Mullally, D.; Gibney, E.R. Ultra-processed foods in human health: A Critical appraisal. Am. J. Clin. Nutr. 2017, 106, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-processed diets cause excess calorie intake and weight gain: An inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 2019, 30, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Gibney, M.J. Ultra-processed foods: Definitions and policy issues. Curr. Dev. Nutr. 2019, 3, nzy077. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.; Ryoo, N.; Hahn, T.; Walia, H.; Nakamura, Y. Starch biosynthesis in cereal endosperm. Plant Physiol. Biochem. 2010, 48, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Copeland, L.; Blazek, J.; Salman, H.; Tang, M.C. Form and functionality of starch. Food Hydrocoll. 2009, 23, 1527–1534. [Google Scholar] [CrossRef]
- Bergthaller, W.; Hollmann, J. Starch. In Comprehensive Glycoscience-Volume 2: Polysaccharide Functional Properties; Kamerling, J.P., Ed.; Elsevier: Utrecht, The Netherlands, 2014; Volume 2, pp. 579–612. [Google Scholar]
- Hoover, R.; Senanayake, S.P.J.N. Composition and physicochemical properties of oat starches. Food Res. Int. 1996, 29, 15–26. [Google Scholar] [CrossRef]
- Singh, N.; Singh, J.; Kaur, L.; Singh Sodhi, N.; Singh Gill, B. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003, 81, 219–231. [Google Scholar] [CrossRef]
- Punia, S. Barley starch: Structure, properties and in vitro digestibility-A review. Int. J. Biol. Macromol. 2020, 155, 868–875. [Google Scholar] [CrossRef]
- Lehmann, U.; Robin, F. Slowly digestible starch–its structure and health implications: A review. Trends Food Sci. Tech. 2007, 18, 346–355. [Google Scholar] [CrossRef]
- Delcour, J.A.; Bruneel, C.; Derde, L.J.; Gomand, S.V.; Pareyt, B.; Putseys, J.A.; Wilderjans, E.; Lamberts, L. Fate of starch in food processing: From raw materials to final food products. Annu. Rev. Food Sci. Technol. 2010, 1, 87–111. [Google Scholar] [CrossRef]
- Stamataki, N.S.; Yanni, A.E.; Karathanos, V.T. Bread making technology influences postprandial glucose response: A review of the clinical evidence. Br. J. Nutr. 2017, 117, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Kong, L. Starch-Guest inclusion complexes: Formation, structure, and enzymatic digestion. Crit. Rev. Food Sci. Nutr. 2020, 60, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Monro, J. Wholeness and primary and secondary food structure effects on in vitro digestion patterns determine nutritionally distinct carbohydrate fractions in cereal foods. Food Chem. 2012, 135, 1968–1974. [Google Scholar] [CrossRef] [PubMed]
- Lovegrove, A.; Edwards, C.H.; de Noni, I.; Patel, H.; El, S.N.; Grassby, T.; Zielke, C.; Ulmius, M.; Nilsson, L.; Butterworth, P.J.; et al. Role of polysaccharides in food, digestion, and health. Crit. Rev. Food Sci. Nutr. 2017, 57, 237–253. [Google Scholar] [CrossRef] [PubMed]
- Englyst, K.; Goux, A.; Meynier, A.; Quigley, M.; Englyst, H.; Brack, O.; Vinoy, S. Inter-Laboratory validation of the starch digestibility method for determination of rapidly digestible and slowly digestible starch. Food Chem. 2018, 245, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Englyst, H.N.; Veenstra, J.; Hudson, G.J. Measurement of rapidly available glucose (RAG) in plant foods: A Potential in vitro predictor of the Glycaemic response. Br. J. Nutr. 1996, 75, 327–337. [Google Scholar] [CrossRef]
- Bornhorst, G.M.; Paul Singh, R. Gastric digestion in vivo and in vitro: How the structural aspects of food influence the digestion process. Annu. Rev. Food Sci. Technol. 2014, 5, 111–132. [Google Scholar] [CrossRef]
- Vallons, K.J.R.; Ryan, L.A.M.; Arendt, E.K. Pressure-induced gelatinization of starch in excess water. Crit. Rev. Food Sci. Nutr. 2014, 54, 399–409. [Google Scholar] [CrossRef]
- Bornet, F. Technological treatments of cereals. Repercussions on the physiological properties of starch. Carbohydr. Polym. 1993, 21, 195–203. [Google Scholar] [CrossRef]
- Englyst, K.N.; Vinoy, S.; Englyst, H.N.; Lang, V. Glycaemic index of cereal products explained by their content of rapidly and slowly available glucose. Br. J. Nutr. 2003, 89, 329–340. [Google Scholar] [CrossRef]
- Vinoy, S.; Laville, M.; Feskens, E.J.M. Slow-release carbohydrates: Growing evidence on metabolic responses and public health interest. Summary of the Symposium Held at the 12th European Nutrition Conference (FENS 2015). Food Nutr. Res. 2016, 60, 31662. [Google Scholar] [CrossRef]
- Meynier, A.; Goux, A.; Atkinson, F.; Brack, O.; Vinoy, S. Postprandial glycaemic response: How is it influenced by characteristics of cereal products? Br. J. Nutr. 2015, 113, 1931–1939. [Google Scholar] [CrossRef] [PubMed]
- Babin, P.; Della Valle, G.; Dendievel, R.; Lourdin, D.; Salvo, L. X-ray tomography study of the cellular structure of extruded starches and its relations with expansion phenomenon and foam mechanical properties. Carbohydr. Polym. 2007, 68, 329–340. [Google Scholar] [CrossRef]
- Rewthong, O.; Soponronnarit, S.; Taechapairoj, C.; Tungtrakul, P.; Prachayawarakorn, S. Effects of Cooking, drying and pretreatment methods on texture and starch digestibility of instant rice. J. Food Eng. 2011, 103, 258–264. [Google Scholar] [CrossRef]
- Dharmaraj, U.; Parameswara, P.; Somashekar, R.; Malleshi, N.G. Effect of processing on the microstructure of finger millet by X-ray diffraction and scanning electron microscopy. J. Food Sci. Technol. 2014, 51, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Srichuwong, S.; Isono, N.; Mishima, T.; Hisamatsu, M. Structure of lintnerized starch is related to X-ray diffraction pattern and susceptibility to acid and enzyme hydrolysis of starch granules. Int. J. Biol. Macromol. 2005, 37, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Ma, F.; Kong, F.; Gao, Q.; Yu, S. Physicochemical properties and digestibility of hydrothermally treated waxy rice starch. Food Chem. 2015, 172, 92–98. [Google Scholar] [CrossRef]
- Blaak, E.E.; Antoine, J.; Benton, D.; Björck, I.; Bozzetto, L.; Brouns, F.; Diamant, M.; Dye, L.; Hulshof, T.; Holst, J.J.; et al. Impact of postprandial Glycaemia on health and prevention of disease. Obes. Rev. 2012, 13, 923–984. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G. Long-term effects of low glycemic index/load vs. high glycemic index/load diets on parameters of obesity and obesity-associated risks: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 699–706. [Google Scholar] [CrossRef]
- Björck, I.; Elmståhl, H.L. The Glycaemic index: Importance of dietary fibre and other food properties. Proc. Nutr. Soc. 2003, 62, 201–206. [Google Scholar] [CrossRef]
- Chanson-Rolle, A.; Meynier, A.; Aubin, F.; Lappi, J.; Poutanen, K.; Vinoy, S.; Braesco, V. Systematic review and meta-analysis of human studies to support a quantitative recommendation for whole grain intake in relation to type 2 diabetes. PLoS ONE 2015, 10, e0131377. [Google Scholar]
- Weickert, M.O.; Pfeiffer, A.F.H. Impact of dietary fiber consumption on insulin resistance and the prevention of type 2 diabetes. J. Nutr. 2018, 148, 7–12. [Google Scholar] [PubMed]
- Hall, K.D. A review of the carbohydrate-insulin model of obesity. Eur. J. Clin. Nutr. 2017, 71, 323–326. [Google Scholar] [PubMed]
- Kroemer, G.; López-Otín, C.; Madeo, F.; de Cabo, R. Carbotoxicity-noxious effects of carbohydrates. Cell 2018, 175, 605–614. [Google Scholar] [PubMed]
- Pfeiffer, A.F.H.; Keyhani-Nejad, F. High glycemic index metabolic damage-a pivotal role of GIP and GLP-1. Trends Endocrinol. Metab. 2018, 29, 289–299. [Google Scholar] [PubMed]
- Nazare, J.; de Rougemont, A.; Normand, S.; Sauvinet, V.; Sothier, M.; Vinoy, S.; Désage, M.; Laville, M. Effect of Postprandial modulation of glucose availability: Short- and long-term analysis. Br. J. Nutr. 2010, 103, 1461–1470. [Google Scholar]
- Vinoy, S.; Normand, S.; Meynier, A.; Sothier, M.; Louche-Pelissier, C.; Peyrat, J.; Maitrepierre, C.; Nazare, J.; Brand-Miller, J.; Laville, M.; et al. Cereal processing influences postprandial glucose metabolism as well as the GI effect. J. Am. Coll. Nutr. 2013, 32, 79–91. [Google Scholar]
- Péronnet, F.; Meynier, A.; Sauvinet, V.; Normand, S.; Bourdon, E.; Mignault, D.; St-Pierre, D.H.; Laville, M.; Rabasa-Lhoret, R.; Vinoy, S.; et al. Plasma glucose kinetics and response of insulin and GIP following a cereal breakfast in female subjects: Effect of starch digestibility. Eur. J. Clin. Nutr. 2015, 69, 740–745. [Google Scholar]
- Gourineni, V.; Stewart, M.L.; Skorge, R.; Sekula, B.C. Slowly digestible carbohydrate for balanced energy: In vitro and in vivo evidence. Nutrients 2017, 9, 1230. [Google Scholar]
- Gallant, D.J.; Bouchet, B.; Baldwin, P.M. Microscopy of starch: Evidence of a new level of granule organization. Carbohydr. Polym. 1997, 32, 177–191. [Google Scholar]
- Zobel, H.F.; Young, S.N.; Rocca, L.A. Starch gelatinization: An X-ray diffraction study. Cereal Chem. 1988, 65, 443–446. [Google Scholar]
- International Standards Organisation. ISO 26642:2010: Food Products–Determination of the Glycaemic Index (GI) and Recommendation for Food Classification, 1st ed.; ISO: Geneva, Switzerland, 2010. [Google Scholar]
- Wolever, T.M.; Jenkins, D.J.; Jenkins, A.L.; Josse, R.G. The glycemic index: Methodology and clinical implications. Am. J. Clin. Nutr. 1991, 54, 846–854. [Google Scholar] [PubMed]
- Garcia, M.C.; Pereira-da-Silva, M.A.; Taboga, S.; Franco, C.M.L. Structural characterization of complexes prepared with glycerol monoestearate and maize starches with different amylose contents. Carbohydr. Polym. 2016, 148, 371–379. [Google Scholar]
- Guo, Z.; Jia, X.; Miao, S.; Chen, B.; Lu, X.; Zheng, B. Structural and thermal properties of amylose–fatty acid complexes prepared via high hydrostatic pressure. Food Chem. 2018, 264, 172–179. [Google Scholar] [PubMed]
- Della Valle, G.; Buleon, A.; Carreau, P.J.; Lavoie, P.; Vergnes, B. Relationship between structure and viscoelastic behavior of plasticized starch. J. Rheol. 1998, 42, 507–525. [Google Scholar]
- Le-Bail, P.; Hesso, N.; Le-Bail, A. Starch in baked products. In Starch in Food, 2nd ed.; Sjöö, M., Nilsson, L., Eds.; Woodhead Publishing: Duxford, UK, 2018; pp. 595–632. [Google Scholar]
- Chen, J.; Tian, J.; Deng, Z.; Zhang, Y.; Feng, S.; Yan, Z.; Zhang, X.; Yuan, H. Effects of papain hydrolysis on the pasting properties of wheat flour. J. Integr. Agric. 2012, 11, 1948–1957. [Google Scholar]
- Castro, L.M.G.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M. Impact of high pressure on starch properties: A review. Food Hydrocoll. 2020, 106, 105877. [Google Scholar]
- Scazzina, F.; Siebenhandl-Ehn, S.; Pellegrini, N. The effect of dietary fibre on reducing the glycaemic index of bread. Br. J. Nutr. 2013, 109, 1163–1174. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Kendall, C.W.C.; Augustin, L.S.A.; Vuksan, V. High-complex carbohydrate or lente carbohydrate foods? Am. J. Med. 2002, 113, 30S–37S. [Google Scholar]
- Barazzoni, R.; Deutz, N.E.P.; Biolo, G.; Bischoff, S.; Boirie, Y.; Cederholm, T.; Cuerda, C.; Delzenne, N.; Leon Sanz, M.; Ljungqvist, O.; et al. Carbohydrates and insulin resistance in clinical nutrition: Recommendations from the ESPEN expert group. Clin. Nutr. 2017, 36, 355–363. [Google Scholar]
- Wu, W.; Qiu, J.; Wang, A.; Li, Z. Impact of whole cereals and processing on type 2 diabetes mellitus: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1447–1474. [Google Scholar] [CrossRef] [PubMed]
- Ceriello, A.; Colagiuri, S.; Gerich, J.; Tuomilehto, J. Guideline for management of postmeal glucose. Nutr. Metab. Cardiovasc. Dis. 2008, 18, S17–S33. [Google Scholar] [CrossRef]
- Parada, J.; Santos, J.L. Interactions between starch, lipids, and proteins in foods: Microstructure control for glycemic response modulation. Crit. Rev. Food Sci. 2016, 56, 2362–2369. [Google Scholar] [CrossRef] [PubMed]
- Hoover, R.; Hughes, T.; Chung, H.J.; Liu, Q. Composition, molecular structure, properties, and modification of pulse starches: A review. Food Res. Int. 2010, 43, 399–413. [Google Scholar] [CrossRef]
- Vinoy, S.; Meynier, A.; Goux, A.; Jourdan-Salloum, N.; Normand, S.; Rabasa-Lhoret, R.; Brack, O.; Nazare, J.; Péronnet, F.; Laville, M.; et al. The effect of a breakfast rich in slowly digestible starch on glucose metabolism: A statistical meta-analysis of randomized controlled trials. Nutrients 2017, 9, 318. [Google Scholar] [CrossRef] [PubMed]
- Godet, M.C.; Buléon, A.; Tran, V.; Colonna, P. Structural Features of fatty acid-amylose complexes. Carbohydr. Polym. 1993, 21, 91–95. [Google Scholar] [CrossRef]
- Cheetham, N.W.; Tao, L. Solid state NMR studies on the structural and conformational properties of natural maize starches. Carbohydr. Polym. 1998, 36, 285–292. [Google Scholar] [CrossRef]
- Wang, S.; Copeland, L. Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: A review. Food Funct. 2013, 4, 1564–1580. [Google Scholar] [CrossRef]
Technology | Ingredients | Mixing and Forming Steps | Cooking |
---|---|---|---|
Rotary-molded | With Bran (RB): Wheat flour 55%, wheat bran 6% | All of the ingredients were combined, and the resulting dough was passed through a rotary molder to form individual 15-g raw biscuits. | Convection tunnel oven for 9 min (150–190 °C). |
Without Bran (RnB): Wheat flour 61%, wheat bran 0% | |||
Common ingredients: Sugar 18%, rapeseed oil 12%, water 7%, salt 0.3% | |||
Soft-baked | With Bran (SB): Wheat flour 39%, wheat bran 4% | All of the ingredients were combined, and then 34 g of the resulting batter was piped into individual molds using a pastry bag. | Static convection oven for 15 min at 170 °C. |
Without Bran (SnB): Wheat flour 43%, wheat bran 0% | |||
Common ingredients: Sugar 17%, rapeseed oil 9%, water 12%, whole eggs 12%, glycerin 6%, salt 0.2% | |||
Extrusion | With Bran (EB): Wheat flour 59%, wheat bran 7% | The flour and sugar were added to the extruder (BC45) (along with the bran for the wholegrain version). A filling made from sugar and fat was pumped into the formed product as it exited the extruder. The resulting products were shaped into bite-size portions using a crimper. | Static oven at 180 °C for 1.5 min to dry the products. |
Without Bran (EnB): Wheat flour 66%, wheat bran 0% | |||
Common ingredients: Sugar 20%, rapeseed oil 14%, salt 0.3% | |||
Rusk (Bread Substitute) (Rk) | Wheat flour 44%, sugar 19%, rapeseed oil 9%, water 21%, salt 0.3%, yeast 6% | All of the ingredients were combined, and the dough was kneaded for 15 min using a mechanical kneader. Because of its consistency, 400-g portions of dough were transferred to individual molds. The dough was then left to proof for 15 min. | Static convection oven for 40 min (150 to 200 °C). Once out of the oven, the loaves were allowed to cool overnight in a fridge set at 8 °C. They were then sliced and toasted at 160 °C for 13 min to obtain the final rusk products. |
Nutritional Composition of Products | Reference Food Glucose | Rotary- Molded Biscuit with Bran RB | Rotary- Molded Biscuit without Bran RnB | Soft-Baked Cake with Bran SB | Soft-Baked Cake without Bran SnB | Rusk Rk | Extruded Product with Bran EB | Extruded Product without Bran EnB |
---|---|---|---|---|---|---|---|---|
Portion size (g) | 51-g glucose solution | 69 | 66 | 93 | 89 | 69 | 75 | 72 |
Moisture (g) | - | 0.5 | 0.9 | 16.4 | 12.5 | 1.1 | 4.4 | 4.4 |
Protein (g) | 0.0 | 4.6 | 4.2 | 6.1 | 5.2 | 5.7 | 4.8 | 4.4 |
Fat (g) | 0.0 | 9.6 | 10.9 | 11.7 | 12.0 | 10.0 | 10.9 | 10.1 |
Sugar (g) | 50.0 | 15.2 | 15.9 | 19.7 | 17.0 | 16.5 | 15.4 | 13.9 |
Available Starch (g) | 0.0 | 31.7 | 29.7 | 28.8 | 28.4 | 30.7 | 30.9 | 33.3 |
Available carbohydrate (g) | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 |
Fiber (g) | 0.0 | 4.0 | 1.4 | 4.2 | 1.9 | 1.9 | 4.1 | 1.8 |
Calculated energy (kJ) | 800 | 1265 | 1286 | 1369 | 1348 | 1283 | 1319 | 1261 |
Starch Fractions in Products | Rotary-Molded Biscuit with Bran RB | Rotary-Molded Biscuit without Bran RnB | Soft-Baked Cakes with Bran SB | Soft-Baked Cakes without Bran SnB | Rusk Rk | Extruded Product with Bran EB | Extruded Product without Bran EnB |
---|---|---|---|---|---|---|---|
SDS (g/100 g) | 23.9 | 27.5 | 1.5 | 1.5 | 1.1 | 0.1 | 0.1 |
RDS (g/100 g) | 26.7 | 24.1 | 32.4 | 35.7 | 47.4 | 46.0 | 53.1 |
RS (g/100 g) | 0.5 | 0.4 | 0.3 | 0.4 | 0.6 | 0.4 | 0.7 |
Blood Glucose and Insulin Parameters | Reference Food Glucose | Rotary-Molded Biscuit with Bran RB | Rotary-Molded Biscuit without Bran RnB | Soft-Baked Cakes with Bran SB | Soft-Baked Cakes without Bran SnB | Rusk Rk | Extruded Product with Bran EB | Extruded Product without Bran EnB |
---|---|---|---|---|---|---|---|---|
Glucose parameters | ||||||||
Baseline blood glucose level (mmol/l) | 5.1 ± 0.1 | 5.1 ± 0.1 | 5.1 ± 0.1 | 5.1 ± 0.1 | 5.0 ± 0.1 | 5.0 ± 0.1 | 5.1 ± 0.1 | 5.1 ± 0.1 |
Cmax(g) (mmol/l)) | 7.5 ± 0.2 a | 6.0 ± 0.1 cd | 5.8 ± 0.1 d | 6.2 ± 0.2 b | 6.1 ± 0.2 ab | 6.5 ± 0.2 ab | 6.4 ± 0.2 b | 6.2 ± 0.2 bc |
iAUC(g) (mmol × min/l) | 186 ± 13 a | 91 ± 16 cd | 79 ± 8 d | 117 ± 8 bc | 142 ± 13 ab | 113 ± 14 ab | 124 ± 14 bc | 114 ± 12 bcd |
GI (%) | 100 ± 0 | 47 ± 5 d | 43 ± 3 d | 66 ± 4 abc | 77 ± 4 a | 63 ± 6 bc | 66 ± 5 abc | 61 ± 4 bc |
Insulin parameters | ||||||||
Baseline insulin level (pmol/l) | 33.7 ± 1.7 | 35.5 ± 2.3 | 37.3 ± 2.1 | 37.4 ± 2.8 | 35.6 ± 2.5 | 36.8 ± 2.1 | 36.2 ± 2.2 | 35.5 ± 1.5 |
Cmax(ins) (pmol/l) | 383 ± 25 a | 240 ± 24 cd | 231 ± 21 d | 312 ± 28 abcd | 338 ± 37 ab | 325 ± 30 abc | 326 ± 34 ab | 299 ± 24 bcd |
iAUC(ins) (pmol × min/l) | 2525 ± 197 a | 1438 ± 183 cd | 1350 ± 122 d | 2055 ± 214 abcd | 2252 ± 228 ab | 2177 ± 277 abc | 2073 ± 260 ab | 1593 ± 111 bcd |
II (%) | 100 ± 0 | 56 ± 4 d | 54 ± 4 d | 76 ± 4 abc | 85 ± 6 bc | 79 ± 4 bc | 80 ± 6 bc | 65 ± 4 ad |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cesbron-Lavau, G.; Goux, A.; Atkinson, F.; Meynier, A.; Vinoy, S. Deep Dive Into the Effects of Food Processing on Limiting Starch Digestibility and Lowering the Glycemic Response. Nutrients 2021, 13, 381. https://doi.org/10.3390/nu13020381
Cesbron-Lavau G, Goux A, Atkinson F, Meynier A, Vinoy S. Deep Dive Into the Effects of Food Processing on Limiting Starch Digestibility and Lowering the Glycemic Response. Nutrients. 2021; 13(2):381. https://doi.org/10.3390/nu13020381
Chicago/Turabian StyleCesbron-Lavau, Gautier, Aurélie Goux, Fiona Atkinson, Alexandra Meynier, and Sophie Vinoy. 2021. "Deep Dive Into the Effects of Food Processing on Limiting Starch Digestibility and Lowering the Glycemic Response" Nutrients 13, no. 2: 381. https://doi.org/10.3390/nu13020381
APA StyleCesbron-Lavau, G., Goux, A., Atkinson, F., Meynier, A., & Vinoy, S. (2021). Deep Dive Into the Effects of Food Processing on Limiting Starch Digestibility and Lowering the Glycemic Response. Nutrients, 13(2), 381. https://doi.org/10.3390/nu13020381