Effects of Vitamin D in Post-Exercise Muscle Recovery. A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Searching Strategies
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Potential Bias Risk
2.5. Statistical Analysis
3. Results
3.1. Article Search
3.2. Vitamin D Administration Protocols
3.3. Effect of Vitamin D Supplementation on Circulating Creatine Kinase Levels
3.4. Effect of Vitamin D Supplementation on Circulating Lactate Dehydrogenase Levels
3.5. Effect of Vitamin D Supplementation on Circulating Myoglobin Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Baeke, F.; Takiishi, T.; Korf, H.; Gysemans, C.; Mathieu, C. Vitamin D: Modulator of the immune system. Curr. Opin. Pharmacol. 2010, 10, 482–496. [Google Scholar] [CrossRef] [PubMed]
- Hewison, M. Vitamin D and innate and adaptive immunity. In Vitamins & Hormones; Litwack, G., Ed.; Elsevier: Barcelona, Spain, 2011; Volume 86, pp. 23–62. [Google Scholar]
- Xu, H.; Soruri, A.; Gieseler, R.K.; Peters, J.H. 1,25-Dihydroxyvitamin D3 exerts opposing effects to IL-4 on MHC class-II antigen expression, accessory activity, and phagocytosis of human monocytes. Scand. J. Immunol. 1993, 38, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Larsen-Meyer, D.E.; Willis, K.S. Vitamin D and athletes. Curr. Sports Med. Rep. 2010, 9, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Willis, K.S.; Smith, D.T.; Broughton, K.S.; Larson-Meyer, D.E. Vitamin D status and biomarkers of inflammation in runners. J. Sports Med. 2012, 3, 35–42. [Google Scholar]
- Campbell, P.M.F.; Allain, T.J. Muscle strength and vitamin D in older people. Gerontology 2006, 52, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Ceglia, L. Vitamin D and skeletal muscle tissue and function. Mol. Asp. Med. 2008, 29, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Ceglia, L.; Harris, S.S. Vitamin D and its role in skeletal muscle. Calcif. Tissue Int. 2013, 92, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Irani, P.F. Electromyography in nutritional osteomalacic myopathy. J. Neurol. Neurosurg. Psychiatry 1976, 10, 686–693. [Google Scholar] [CrossRef] [Green Version]
- Barker, T.; Henriksen, V.T.; Martins, T.B.; Hill, H.R.; Kjeldsberg, C.R.; Schneider, E.D.; Dixon, B.M.; Weaver, L.K. Higher serum 25-hydroxyvitamin D concentrations associate with a faster recovery of skeletal mscle strength after muscular injury. Nutrients 2013, 5, 1253–1275. [Google Scholar] [CrossRef] [Green Version]
- Stratos, I.; Li, Z.; Herlyn, P.; Rotter, R.; Behrendt, A.K.; Mittlmeier, T.; Vollmar, B. Vitamin D increases cellular turnover and functionally restores the skeletal muscle after crush injury in rats. Am. J. Pathol. 2013, 182, 895–904. [Google Scholar] [CrossRef]
- Paulsen, G.; Mikkelsen, U.R.; Raastad, T.; Peake, J.M. Leucocytes, cytokines and satellite cells: What role do they play in muscle damage and regeneration following eccentric exercise? Exerc. Immunol. Rev. 2012, 18, 42–97. [Google Scholar] [PubMed]
- Khan, F.Y. Rhabdomyolysis: A review of the literature. Neth. J. Med. 2009, 67, 272–283. [Google Scholar]
- Brancaccio, P.; Maffulli, N.; Limongelli, F.M. Creatine kinase monitoring in sport medicine. Br. Med. Bull. 2007, 81–82, 209–230. [Google Scholar] [CrossRef] [PubMed]
- Bessa, A.; Oliveira, V.N.; De Agostini, G.G.; Oliveira, R.J.; Oliveira, A.C.; White, G.; Wells, G.; Teixeira, D.N.; Espindola, F.S. Exercise intensity and recovery: Biomarkers of injury, inflammation and oxidative stress. J. Strength Cond. Res. 2013, 30, 311–319. [Google Scholar] [CrossRef]
- Brancaccio, P.; Maffulli, N.; Buonauro, R.; Limongelli, F.M. Serum enzyme monitoring in sports medicine. Clin. Sports Med. 2008, 27, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Clarkson, P.M. Plasma creatine kinase activity and glutathione after eccentric exercise. Med. Sci. Sports Exerc. 2003, 35, 930–936. [Google Scholar] [CrossRef]
- Banfi, G.; Colombini, A.; Lombardi, G.; Lubkowska, A. Metabolic markers in Sports Medicine. Adv. Clin. Chem. 2012, 56, 1–54. [Google Scholar]
- Baird, M.F.; Graham, S.M.; Baker, J.S.; Bickerstaff, G.F. Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J. Nutr. Metab. 2012, 2012, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Vincent, H.K.; Vincent, K.R. The effect of training status on the serum creatine kinase response, soreness and muscle function following resistance exercise. Int. J. Sports Med. 1997, 18, 431–437. [Google Scholar] [CrossRef]
- Horská, A.; Fishbein, K.W.; Fleg, J.L.; Spencer, R.G. The relationship between creatine kinase kinetics and exercise intensity in human forearm is unchanged by age. Am. J. Physiol. Endocrinol. Metab. 2000, 279, 333–339. [Google Scholar] [CrossRef]
- Hackney, A.C.; Walz, E.A. Hormonal adaptation and the stress of exercise training: The role of glucocorticoids. Trends Sport Sci. 2013, 20, 165–171. [Google Scholar]
- Martinez, A.C.; Seco-Calvo, J.; Tur-Mari, J.A.; Abecia-Inchaurregui, L.C.; Orella, E.E.; Pons-Biescas, A. Testosterone and cortisol changes in professional basketball players through a season competition. J. Strength Cond. Res. 2010, 24, 1102–1108. [Google Scholar] [CrossRef]
- Cordova, A.; Martin, J.F.; Reyes, E.; Alvarez-Mon, M. Protection against muscle damage in competitive sports players: The effect of the mmunomodulator AM3. J. Sports Sci. 2004, 22, 827–833. [Google Scholar] [CrossRef]
- Cordova, A.; Mielgo-Ayuso, J.; Fernandez-Lazaro, C.I.; Caballero-García, A.; Roche, E.; Fernández-Lázaro, D. Effect of iron supplementation on the modulation of iron metabolism, muscle damage biomarkers and cortisol in professional cyclists. Nutrients 2019, 11, 500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaudart, C.; Buckinx, F.; Rabenda, V.; Gillain, S.; Cavalier, E.; Slomian, J.; Bruyere, O. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: A systematic review and meta-analysis of randomized controlled trials. J. Clin. Endocrinol. Metab. 2014, 99, 4336–4345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salminen, M.; Saaristo, P.; Salonoja, M.; Vaapio, S.; Vahlberg, T.; Lamberg-Allardt, C.; Kivela, S.L. Vitamin D status and physical function in older Finnish people: A one-year follow-up study. Arch. Gerontol. Geriatr. 2015, 61, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Park, H.; Cho, S.; Lee, M. Vitamin D3 supplementation modulates inflammatory responses from the muscle damage induced by high-intensity exercise in SD rats. Cytokine 2013, 63, 27–35. [Google Scholar] [CrossRef]
- Tomlinson, P.B.; Joseph, C.; Angioi, M. Effects of vitamin D supplementation on upper and lower body muscle strength levels in healthy individuals. A systematic review with meta-analysis. J. Sci. Med. Sport 2015, 18, 575–580. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, D.; Green, S.; Higgins, J.P.T. Defining the review question and developing criteria for including studies. In Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J.P.T., Green, S., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2008; pp. 81–94. [Google Scholar]
- Nieman, D.C.; Gillitt, N.D.; Shanely, R.A.; Dew, D.; Meaney, M.P.; Luo, B. Vitamin D2 supplementation amplifies eccentric exercise-induced muscle damage in NASCAR Pit Crew athletes. Nutrients 2013, 6, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Shanely, R.A.; Nieman, D.C.; Knab, A.M.; Gillitt, N.D.; Meaney, M.P.; Jin, F.; Sha, W.; Cialdella-Kam, L. Influence of vitamin D mushroom powder supplementation on exercise-induced muscle damage in vitamin D insufficient high school athletes. J. Sports Sci. 2014, 32, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Parsaie, N.; Ghavamzadeh, S.; Cheraghi, M. Effects of cholecalciferol supplementation on inflammatory markers and muscle damage indices of soccer players after a simulated soccer match. Nutrition 2019, 59, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Ashtary-Larky, D.; Kheirollah, A.; Bagheri, R.; Ghaffari, M.A.; Mard, S.A.; Hashemi, S.J.; Mir, I.; Wong, A. A single injection of vitamin D3 improves insulin sensitivity and β-cell function but not muscle damage or the inflammatory and cardiovascular responses to an acute bout of resistance exercise in vitamin D-deficient resistance-trained males. Br. J. Nutr. 2020, 123, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Pilch, W.; Kita, B.; Piotrowska, A.; Tota, L.; Maciejczyk, M.; Czerwińska-Ledwig, O.; Sadowska-Krepa, E.; Kita, S.; Pałka, T. The effect of vitamin D supplementation on the muscle damage after eccentric exercise in young men: A randomized, control trial. J. Int. Soc. Sports Nutr. 2020, 17, 53. [Google Scholar] [CrossRef]
- Żebrowska, A.; Sadowska-Krępa, E.; Stanula, A.; Waśkiewicz, Z.; Łakomy, O.; Bezuglov, E.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. The effect of vitamin D supplementation on serum total 25(OH) levels and biochemical markers of skeletal muscles in runners. J. Int. Soc. Sports Nutr. 2020, 17, 18. [Google Scholar] [CrossRef] [Green Version]
- Hedges, L.V. Distribution theory for glass’s estimator of effect size and related estimators. J. Educ. Behav. Stat. 1981, 6, 107–128. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-Analysis in Clinical Trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Higgins, J.; Thomas, J. Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; Wiley Cochrane Series: Hoboken, NJ, USA, 2019. [Google Scholar]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Close, G.L.; Russell, J.; Cobley, J.N.; Owens, D.J.; Wilson, G.; Gregson, W.; Morton, J.P. Assessment of vitamin D concentration in non-supplemented professional athletes and healthy adults during the winter months in the UK: Implications for skeletal muscle function. J. Sports Sci. 2013, 31, 344–353. [Google Scholar] [CrossRef]
- Owens, D.J.; Webber, D.; Impey, S.G.; Tang, J.; Donovan, T.F.; Fraser, W.D.; Close, G.L. Vitamin D supplementation does not improve human skeletal muscle contractile properties in insufficient young males. Eur. J. Appl. Physiol. 2014, 114, 1309–1320. [Google Scholar] [CrossRef] [Green Version]
- Owens, D.J.; Sharples, A.P.; Polydorou, I.; Alwan, N.; Donovan, T.; Tang, J.; Close, G.L. A systems-based investigation into vitamin D and skeletal muscle repair, regeneration, and hypertrophy. Am. J. Physiol. Endocrinol. Metab. 2015, 309, E1019–E1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, R.M.; Redzic, M.; Thomas, D.T. The effects of season-long vitamin D supplementation on collegiate swimmers and divers. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 431–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, T.; Schneider, E.D.; Dixon, B.M.; Henriksen, V.T.; Weaver, L.K. Supplemental vitamin D enhances the recovery in peak isometric force shortly after intense exercise. Nutr. Metab. 2013, 10, 69. [Google Scholar] [CrossRef] [Green Version]
- Clarkson, P.M.; Hubal, M.J. Exercise-induced muscle damage in humans. Am. J. Phys. Med. Rehabil. 2002, 81, 52–69. [Google Scholar] [CrossRef] [PubMed]
- Tripkovic, L.; Lambert, H.; Hart, K.; Smith, C.P.; Bucca, G.; Penson, S.; Chope, G.; Hypponen, E.; Berry, J.; Vieth, R.; et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 95, 1357–1364. [Google Scholar] [CrossRef] [Green Version]
- Caballero-García, A.; Córdova-Martínez, A.; Vicente-Salar, N.; Roche, E.; Pérez-Valdecantos, D. Vitamin D, Its role in recovery after muscular damage following exercise. Nutrients 2021, 13, 2336. [Google Scholar] [CrossRef]
Study | Randomized (Selection Bias) | Blinding of Participants (Performance Bias) | Blinding of Outcome Assessment (Detection Bias) |
---|---|---|---|
Nieman et al., 2013 [32] | + | + | + |
Shanely et al., 2014 [33] | + | + | + |
Parsaie et al., 2019 [34] | + | + | + |
Ashtary-Larky et al., 2020 [35] | + | + | + |
Pilch et al., 2020 [36] | + | − | − |
Żebrowska et al., 2020 [37] | − | + | + |
Athletic level of participants | Young men/High school | 2 studies: Pilch et al., 2020 [36] Shanely et al., 2014 [33] |
Resistance-trained men/Male runners | 2 studies: Ashtary-Larky et al., 2020 [35] Żebrowska et al., 2020 [37] | |
Male soccer players | 1 study: Parsaie et al., 2019 [34] | |
NASCAR pit crew | 1 study: Nieman et al., 2013 [32] | |
Age of participants | <20 years old | 1 study: Shanely et al., 2014 [33] |
20–30 years old | 4 studies: Nieman et al., 2013 [32] Parsaie et al., 2019 [34] Ashtary-Larky et al., 2020 [35] Pilch et al., 2020 [36] | |
30–40 years old | 1 study: Żebrowska et al., 2020 [37] | |
Vitamin D administration | Ingestion | 5 studies: Nieman et al., 2013 [32] Parsaie et al., 2019 [34] Pilch et al., 2020 [36] Shanely et al., 2014 [33] Żebrowska et al., 2020 [37] |
Injection | 1 study: Ashtary-Larky et al., 2020 [35] | |
Vitamin D dose (type) | 600 IU/day (vitD2) | 1 study: Shanely et al., 2014 [33] |
2000 IU/week (vitD3) | 1 study: Żebrowska et al., 2020 [37] | |
3800 IU/day (vitD2) | 1 study: Nieman et al., 2013 [32] | |
50,000 IU/day (vitD3) | 1 study: Parsaie et al., 2019 [34] | |
300,000 IU injected in one dose (vitD3) | 1 study: Ashtary-Larky et al., 2020 [35] | |
Calculated from participant’s body mass using Singh and Bonham formula (vitD3) | 1 study: Pilch et al., 2020 [36] | |
Extent of supplementation | 3 weeks | 1 study: Żebrowska et al., 2020 [37] |
4 weeks | 1 study: Ashtary-Larky et al., 2020 [35] | |
6 weeks | 2 studies: Nieman et al., 2013 [32] Shanely et al., 2014 [33] | |
8 weeks | 1 study: Parsaie et al., 2019 [34] | |
12 weeks | 1 study: Pilch et al., 2020 [36] | |
Exercise type | Eccentric exercise | 3 studies: Nieman et al., 2013 [32] Pilch et al., 2020 [36] Żebrowska et al., 2020 [37] |
Loughborough intermittent shuttle test | 2 studies: Parsaie et al., 2019 [34] Shanely et al., 2014 [33] | |
Acute resistance exercise (different presses and weights) | 1 study: Ashtary-Larky et al., 2020 [35] |
Study | Circulating Vitamin D Levels (ng/mL) before the Study | Dose (IU) | Extent |
---|---|---|---|
Nieman et al., 2013 [32] | 39 ± 2 (Experimental group *) 43 ± 3 (Placebo group) | 3800 IU/day | 6 weeks |
Shanely et al., 2014 [33] | 25 ± 2 (Experimental group *) 25 ± 2 (Placebo group) | 600 IU/day | 6 weeks |
Parsaie et al., 2019 [34] | 14 (Experimental group *) 15 (Placebo group) | 50,000 IU/week | 8 weeks |
Ashtary-Larky et al., 2020 [35] | 14 ± 3.9 (Experimental group *) 22 ± 5 (Placebo group) | 300,000 IU injected | 4 weeks |
Pilch et al., 2020 [36] | 30.5 ± 0.34 (OE group: Optimal levels of vitamin D at the beginning and supplemented during the intervention) 36.16 ± 4.4 (OC group: Optimal levels of vitamin D at the beginning and no supplemented during the intervention) 19 ± 1 (SE group: Suboptimal levels of vitamin D at the beginning and supplemented during the intervention) 14 ± 5 (SC group: Suboptimal levels of vitamin D at the beginning and no supplemented during the intervencion) | Calculated from participant’s body mass using Singh and Bonham formula. | 12 weeks |
Żebrowska et al., 2020 [37] | 40 ± 8.8 (Experimental group *) 33.3 ± 3.4 (Placebo group) | 2000 IU/day | 3 weeks |
Study | Sample Size | Analyzed Parameters (Time for Measurement) | Main Outcomes |
---|---|---|---|
Nieman et al., 2013 [32] | 28 | CK, LDH, Mb (immediately after exercise execution) | ↑CK, ↑LDH, ↑Mb |
Shanely et al., 2014 [33] | 50 | CK, LDH, Mb (immediately after exercise execution) | =CK, =LDH, =Mb |
Parsaie et al., 2019 [34] | 22 | CK, LDH (immediately after exercise execution) | =CK, =LDH |
Ashtary-Larky et al., 2020 [35] | 14 | CK, LDH (1 h after exercise execution) | =CK, =LDH |
Pilch et al., 2020 [36] | 60 | CK, LDH, Mb (1 h after exercise execution) | ↓CK, ↓LDH, ↓Mb * |
Żebrowska et al., 2020 [37] | 24 | CK, LDH, Mb (1 h after exercise execution) | ↓CK, ↓LDH, ↓Mb |
Study | Limitations |
---|---|
Nieman et al., 2013 [32] | Physical activity consists in a very specific job, difficult to compare with other sport disciplines. Small sample size. Gender not specified (likely men). Supplementation with ergocalciferol. |
Shanely et al., 2014 [33] | Information regarding the physical activity performed is limited, being complicated the comparison with other studies. Analytical method for vitamin D determination: chemiluminescent immunoassay. Performed only in men. Supplementation with ergocalciferol. |
Parsaie et al., 2019 [34] | Analytical method for vitamin D determination: immunoassay. Small sample size. Gender not specified. Differences in baseline BMI between groups. |
Ashtary-Larky et al., 2020 [35] | The exact type of endurance activity is not indicated. Analytical method for vitamin D determination: immunoassay (ELISA). Small sample size. Performed only in men. Short duration.One dose of vitamin D. |
Pilch et al., 2020 [36] | Subjective control of the physical activity performed. The intensity is difficault to compare with other studies. Analytical method for vitamin D determination: immunoassay (ELISA). Performed only in men. |
Żebrowska et al., 2020 [37] | Analytical method for vitamin D determination: no indicated. Small sample size. Performed only in men. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bello, H.J.; Caballero-García, A.; Pérez-Valdecantos, D.; Roche, E.; Noriega, D.C.; Córdova-Martínez, A. Effects of Vitamin D in Post-Exercise Muscle Recovery. A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 4013. https://doi.org/10.3390/nu13114013
Bello HJ, Caballero-García A, Pérez-Valdecantos D, Roche E, Noriega DC, Córdova-Martínez A. Effects of Vitamin D in Post-Exercise Muscle Recovery. A Systematic Review and Meta-Analysis. Nutrients. 2021; 13(11):4013. https://doi.org/10.3390/nu13114013
Chicago/Turabian StyleBello, Hugo J., Alberto Caballero-García, Daniel Pérez-Valdecantos, Enrique Roche, David C. Noriega, and Alfredo Córdova-Martínez. 2021. "Effects of Vitamin D in Post-Exercise Muscle Recovery. A Systematic Review and Meta-Analysis" Nutrients 13, no. 11: 4013. https://doi.org/10.3390/nu13114013
APA StyleBello, H. J., Caballero-García, A., Pérez-Valdecantos, D., Roche, E., Noriega, D. C., & Córdova-Martínez, A. (2021). Effects of Vitamin D in Post-Exercise Muscle Recovery. A Systematic Review and Meta-Analysis. Nutrients, 13(11), 4013. https://doi.org/10.3390/nu13114013