Potential of Vitamin D Food Fortification in Prevention of Cancer Deaths—A Modeling Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Selection
2.2. Randomized Trials on Vitamin D Supplementation and Cancer Mortality
2.3. Effect of Vitamin D Supplementation on Serum 25(OH)D Levels
2.4. Effects of Vitamin D Food Fortification on Vitamin D Levels
2.5. Costs and Savings
3. Results
3.1. Randomized Trials on Vitamin D Supplementation and Cancer Mortality
3.2. Effect of Supplementation on Serum Levels
3.3. Effects of Vitamin D Food Fortification on Vitamin D Levels
3.4. Costs and Savings
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keum, N.; Lee, D.H.; Greenwood, D.C.; Manson, J.E.; Giovannucci, E. Vitamin D supplementation and total cancer incidence and mortality: A meta-analysis of randomized controlled trials. Ann. Oncol. 2019, 30, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.E.; Bassuk, S.S.; Buring, J.E.; Group, V.R. Principal results of the VITamin D and OmegA-3 TriaL (VITAL) and updated meta-analyses of relevant vitamin D trials. J. Steroid Biochem. Mol. Biol. 2020, 198, 105522. [Google Scholar] [CrossRef] [PubMed]
- Niedermaier, T.; Gredner, T.; Kuznia, S.; Schottker, B.; Mons, U.; Brenner, H. Vitamin D supplementation to the older adult population in Germany has the cost-saving potential of preventing almost 30,000 cancer deaths per year. Mol. Oncol. 2021, 15, 1986–1994. [Google Scholar] [CrossRef] [PubMed]
- Jaaskelainen, T.; Itkonen, S.T.; Lundqvist, A.; Erkkola, M.; Koskela, T.; Lakkala, K.; Dowling, K.G.; Hull, G.L.; Kroger, H.; Karppinen, J.; et al. The positive impact of general vitamin D food fortification policy on vitamin D status in a representative adult Finnish population: Evidence from an 11-y follow-up based on standardized 25-hydroxyvitamin D data. Am. J. Clin. Nutr. 2017, 105, 1512–1520. [Google Scholar] [CrossRef] [Green Version]
- Moyersoen, I.; Devleesschauwer, B.; Dekkers, A.; de Ridder, K.; Tafforeau, J.; van Camp, J.; van Oyen, H.; Lachat, C. Intake of Fat-Soluble Vitamins in the Belgian Population: Adequacy and Contribution of Foods, Fortified Foods and Supplements. Nutrients 2017, 9, 860. [Google Scholar] [CrossRef]
- Itkonen, S.T.; Andersen, R.; Bjork, A.K.; Brugard Konde, A.; Eneroth, H.; Erkkola, M.; Holvik, K.; Madar, A.A.; Meyer, H.E.; Tetens, I.; et al. Vitamin D status and current policies to achieve adequate vitamin D intake in the Nordic countries. Scand. J. Public Health 2020, 49, 616–627. [Google Scholar] [CrossRef]
- Laird, E.; Kenny, R.A. Vitamin D Deficiency in Ireland–Implications for COVID-19. Results from the Irish Longitudinal Study on Ageing (TILDA). Available online: https://tilda.tcd.ie/publications/reports/pdf/Report_Covid19VitaminD.pdf (accessed on 22 October 2021).
- Maurya, V.K.; Bashir, K.; Aggarwal, M. Vitamin D microencapsulation and fortification: Trends and technologies. J. Steroid Biochem. Mol. Biol. 2020, 196, 105489. [Google Scholar] [CrossRef]
- Trivedi, D.P.; Doll, R.; Khaw, K.T. Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: Randomised double blind controlled trial. BMJ 2003, 326, 469. [Google Scholar] [CrossRef] [Green Version]
- Manson, J.E.; Cook, N.R.; Lee, I.M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Gordon, D.; Copeland, T.; D’Agostino, D.; et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N. Engl. J. Med. 2019, 380, 33–44. [Google Scholar] [CrossRef]
- Wactawski-Wende, J.; Kotchen, J.M.; Anderson, G.L.; Assaf, A.R.; Brunner, R.L.; O’Sullivan, M.J.; Margolis, K.L.; Ockene, J.K.; Phillips, L.; Pottern, L.; et al. Calcium plus vitamin D supplementation and the risk of colorectal cancer. N. Engl. J. Med. 2006, 354, 684–696. [Google Scholar] [CrossRef] [Green Version]
- Scragg, R.; Khaw, K.T.; Toop, L.; Sluyter, J.; Lawes, C.M.M.; Waayer, D.; Giovannucci, E.; Camargo, C.A., Jr. Monthly high-dose vitamin D supplementation and cancer risk: A post hoc analysis of the vitamin D assessment randomized clinical trial. JAMA Oncol. 2018, 4, e182178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avenell, A.; MacLennan, G.S.; Jenkinson, D.J.; McPherson, G.C.; McDonald, A.M.; Pant, P.R.; Grant, A.M.; Campbell, M.K.; Anderson, F.H.; Cooper, C.; et al. Long-term follow-up for mortality and cancer in a randomized placebo-controlled trial of vitamin D(3) and/or calcium (RECORD trial). J. Clin. Endocrinol. Metab. 2012, 97, 614–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haykal, T.; Samji, V.; Zayed, Y.; Gakhal, I.; Dhillon, H.; Kheiri, B.; Kerbage, J.; Veerapaneni, V.; Obeid, M.; Danish, R.; et al. The role of vitamin D supplementation for primary prevention of cancer: Meta-analysis of randomized controlled trials. J. Community Hosp. Intern. Med. Perspect. 2019, 9, 480–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaCroix, A.Z.; Kotchen, J.; Anderson, G.; Brzyski, R.; Cauley, J.A.; Cummings, S.R.; Gass, M.; Johnson, K.C.; Ko, M.; Larson, J.; et al. Calcium plus vitamin D supplementation and mortality in postmenopausal women: The Women’s Health Initiative calcium-vitamin D randomized controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, J.; Fowler, S.; Detter, J.; Sherman, S. Combination treatment with estrogen and calcitriol in the prevention of age-related bone loss. J. Clin. Endocrinol. Metab. 2001, 86, 3618–3628. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Niu, W. Meta-analysis of randomized controlled trials on vitamin D supplement and cancer incidence and mortality. BioSci. Rep. 2019, 39, BSR20190369. [Google Scholar] [CrossRef] [Green Version]
- Baron, J.A.; Barry, E.L.; Mott, L.A.; Rees, J.R.; Sandler, R.S.; Snover, D.C.; Bostick, R.M.; Ivanova, A.; Cole, B.F.; Ahnen, D.J.; et al. A Trial of Calcium and Vitamin D for the Prevention of Colorectal Adenomas. N. Engl. J. Med. 2015, 373, 1519–1530. [Google Scholar] [CrossRef]
- Akiba, T.; Morikawa, T.; Odaka, M.; Nakada, T.; Kamiya, N.; Yamashita, M.; Yabe, M.; Inagaki, T.; Asano, H.; Mori, S.; et al. Vitamin D Supplementation and Survival of Patients with Non-small Cell Lung Cancer: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Cancer Res. 2018, 24, 4089–4097. [Google Scholar] [CrossRef] [Green Version]
- U.S. Food and Drug Administration. Vitamin D for Milk and Milk Alternatives. Available online: https://www.fda.gov/food/food-additives-petitions/vitamin-d-milk-and-milk-alternatives (accessed on 5 July 2021).
- Autier, P.; Gandini, S.; Mullie, P. A systematic review: Influence of vitamin D supplementation on serum 25-hydroxyvitamin D concentration. J. Clin. Endocrinol. Metab. 2012, 97, 2606–2613. [Google Scholar] [CrossRef] [Green Version]
- Sandmann, A.; Amling, M.; Barvencik, F.; Konig, H.H.; Bleibler, F. Economic evaluation of vitamin D and calcium food fortification for fracture prevention in Germany. Public Health Nutr. 2017, 20, 1874–1883. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, R.L.; Liley, J.B.; Bjorn, L.O. UV radiation: Balancing risks and benefits. Photochem. PhotoBiol. 2009, 85, 88–98. [Google Scholar] [CrossRef] [PubMed]
- New Zealand Ministry of Health. Vitamin D. Available online: https://www.health.govt.nz/your-health/healthy-living/food-activity-and-sleep/healthy-eating/vitamin-d#:~:text=Vitamin%20D%20deficiency,blood%20level%20of%20vitamin%20D (accessed on 19 February 2021).
- Rabenberg, M.; Mensink, G. Vitamin-D-Status in Deutschland. J. Health Monit. 2016, 1, 36–42. [Google Scholar]
- Cashman, K.D.; Dowling, K.G.; Skrabakova, Z.; Gonzalez-Gross, M.; Valtuena, J.; De Henauw, S.; Moreno, L.; Damsgaard, C.T.; Michaelsen, K.F.; Molgaard, C.; et al. Vitamin D deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016, 103, 1033–1044. [Google Scholar] [CrossRef] [Green Version]
- Keane, E.M.; Healy, M.; O’Moore, R.; Coakley, D.; Walsh, J.B. Vitamin D-fortified liquid milk: Benefits for the elderly community-based population. Calcif. Tissue Int. 1998, 62, 300–302. [Google Scholar] [CrossRef] [PubMed]
- McKenna, M.J.; Freaney, R.; Byrne, P.; McBrinn, Y.; Murray, B.; Kelly, M.; Donne, B.; O’Brien, M. Safety and efficacy of increasing wintertime vitamin D and calcium intake by milk fortification. QJM 1995, 88, 895–898. [Google Scholar] [PubMed]
- Khadgawat, R.; Marwaha, R.K.; Garg, M.K.; Ramot, R.; Oberoi, A.K.; Sreenivas, V.; Gahlot, M.; Mehan, N.; Mathur, P.; Gupta, N. Impact of vitamin D fortified milk supplementation on vitamin D status of healthy school children aged 10–14 years. Osteoporos. Int. 2013, 24, 2335–2343. [Google Scholar] [CrossRef]
- Kruger, M.C.; Chan, Y.M.; Lau, C.; Lau, L.T.; Chin, Y.S.; Kuhn-Sherlock, B.; Schollum, L.M.; Todd, J.M. Fortified Milk Supplementation Improves Vitamin D Status, Grip Strength, and Maintains Bone Density in Chinese Premenopausal Women Living in Malaysia. BioRes. Open. Access 2019, 8, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Gasparri, C.; Perna, S.; Spadaccini, D.; Alalwan, T.; Girometta, C.; Infantino, V.; Rondanelli, M. Is vitamin D-fortified yogurt a value-added strategy for improving human health? A systematic review and meta-analysis of randomized trials. J. Dairy Sci. 2019, 102, 8587–8603. [Google Scholar] [CrossRef]
- Nikooyeh, B.; Neyestani, T.R.; Zahedirad, M.; Mohammadi, M.; Hosseini, S.H.; Abdollahi, Z.; Salehi, F.; Mirzay Razaz, J.; Shariatzadeh, N.; Kalayi, A.; et al. Vitamin D-Fortified Bread Is as Effective as Supplement in Improving Vitamin D Status: A Randomized Clinical Trial. J. Clin. Endocrinol. Metab. 2016, 101, 2511–2519. [Google Scholar] [CrossRef]
- Itkonen, S.T.; Skaffari, E.; Saaristo, P.; Saarnio, E.M.; Erkkola, M.; Jakobsen, J.; Cashman, K.D.; Lamberg-Allardt, C. Effects of vitamin D2-fortified bread v. supplementation with vitamin D2 or D3 on serum 25-hydroxyvitamin D metabolites: An 8-week randomised-controlled trial in young adult Finnish women. Br. J. Nutr. 2016, 115, 1232–1239. [Google Scholar] [CrossRef] [Green Version]
- Biancuzzo, R.M.; Young, A.; Bibuld, D.; Cai, M.H.; Winter, M.R.; Klein, E.K.; Ameri, A.; Reitz, R.; Salameh, W.; Chen, T.C.; et al. Fortification of orange juice with vitamin D(2) or vitamin D(3) is as effective as an oral supplement in maintaining vitamin D status in adults. Am. J. Clin. Nutr. 2010, 91, 1621–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madsen, K.H.; Rasmussen, L.B.; Andersen, R.; Molgaard, C.; Jakobsen, J.; Bjerrum, P.J.; Andersen, E.W.; Mejborn, H.; Tetens, I. Randomized controlled trial of the effects of vitamin D-fortified milk and bread on serum 25-hydroxyvitamin D concentrations in families in Denmark during winter: The VitmaD study. Am. J. Clin. Nutr. 2013, 98, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Black, L.J.; Seamans, K.M.; Cashman, K.D.; Kiely, M. An updated systematic review and meta-analysis of the efficacy of vitamin D food fortification. J. Nutr. 2012, 142, 1102–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, L.J.; Walton, J.; Flynn, A.; Cashman, K.D.; Kiely, M. Small Increments in Vitamin D Intake by Irish Adults over a Decade Show That Strategic Initiatives to Fortify the Food Supply Are Needed. J. Nutr. 2015, 145, 969–976. [Google Scholar] [CrossRef] [Green Version]
- Raulio, S.; Erlund, I.; Mannisto, S.; Sarlio-Lahteenkorva, S.; Sundvall, J.; Tapanainen, H.; Vartiainen, E.; Virtanen, S.M. Successful nutrition policy: Improvement of vitamin D intake and status in Finnish adults over the last decade. Eur. J. Public Health 2017, 27, 268–273. [Google Scholar] [CrossRef] [Green Version]
- McCourt, A.; McNulty, B.A.; Walton, J.; O’Sullivan, A. Efficacy and safety of food fortification to improve vitamin D intakes of older adults. Nutrition 2020, 75–76, 110767. [Google Scholar] [CrossRef]
- Shakur, Y.A.; Lou, W.; L’Abbe, M.R. Examining the effects of increased vitamin D fortification on dietary inadequacy in Canada. Can. J. Public Health 2014, 105, e127–e132. [Google Scholar] [CrossRef]
- Schottker, B.; Jorde, R.; Peasey, A.; Thorand, B.; Jansen, E.H.; Groot, L.; Streppel, M.; Gardiner, J.; Ordonez-Mena, J.M.; Perna, L.; et al. Vitamin D and mortality: Meta-analysis of individual participant data from a large consortium of cohort studies from Europe and the United States. BMJ 2014, 348, g3656. [Google Scholar] [CrossRef] [Green Version]
- Mariotto, A.B.; Enewold, L.; Zhao, J.; Zeruto, C.A.; Yabroff, K.R. Medical Care Costs Associated with Cancer Survivorship in the United States. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1304–1312. [Google Scholar] [CrossRef]
- Rizzoli, R. Vitamin D supplementation: Upper limit for safety revisited? Aging Clin. Exp. Res. 2021, 33, 19–24. [Google Scholar] [CrossRef]
- Malihi, Z.; Wu, Z.; Stewart, A.W.; Lawes, C.M.; Scragg, R. Hypercalcemia, hypercalciuria, and kidney stones in long-term studies of vitamin D supplementation: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2016, 104, 1039–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilz, S.; Marz, W.; Cashman, K.D.; Kiely, M.E.; Whiting, S.J.; Holick, M.F.; Grant, W.B.; Pludowski, P.; Hiligsmann, M.; Trummer, C.; et al. Rationale and Plan for Vitamin D Food Fortification: A Review and Guidance Paper. Front. Endocrinol. (Lausanne) 2018, 9, 373. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Hu, J.; Huo, X.; Miao, R.; Zhang, Y.; Ma, F. Effects of vitamin D supplementation on cognitive function and blood Abeta-related biomarkers in older adults with Alzheimer’s disease: A randomised, double-blind, placebo-controlled trial. J. Neurol. Neurosurg. Psychiatry 2019, 90, 1347–1352. [Google Scholar] [CrossRef] [PubMed]
- Bellan, M.; Andreoli, L.; Mele, C.; Sainaghi, P.P.; Rigamonti, C.; Piantoni, S.; De Benedittis, C.; Aimaretti, G.; Pirisi, M.; Marzullo, P. Pathophysiological role and therapeutic implications of vitamin D in autoimmunity: Focus on chronic autoimmune diseases. Nutrients 2020, 12, 789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maretzke, F.; Bechthold, A.; Egert, S.; Ernst, J.B.; Melo van Lent, D.; Pilz, S.; Reichrath, J.; Stangl, G.I.; Stehle, P.; Volkert, D.; et al. Role of vitamin D in preventing and treating selected extraskeletal diseases-an umbrella review. Nutrients 2020, 12, 969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vimaleswaran, K.S.; Cavadino, A.; Berry, D.J.; LifeLines Cohort Study investigators; Jorde, R.; Dieffenbach, A.K.; Lu, C.; Alves, A.C.; Heerspink, H.J.; Tikkanen, E.; et al. Association of vitamin D status with arterial blood pressure and hypertension risk: A mendelian randomisation study. Lancet Diabetes Endocrinol. 2014, 2, 719–729. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.M.; Ismaeel, A.; Griffis, R.B.; Weems, S. Effects of vitamin D supplementation on muscle strength in athletes: A systematic review. J. Strength Cond. Res. 2017, 31, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Arabi, S.M.; Ranjbar, G.; Bahrami, L.S.; Vafa, M.; Norouzy, A. The effect of vitamin D supplementation on hemoglobin concentration: A systematic review and meta-analysis. Nutr. J. 2020, 19, 11. [Google Scholar] [CrossRef] [PubMed]
- Karahan, S.; Katkat, F. Impact of Serum 25(OH) Vitamin D Level on Mortality in Patients with COVID-19 in Turkey. J. Nutr. Health Aging 2021, 25, 189–196. [Google Scholar] [CrossRef]
- Boulkrane, M.S.; Ilina, V.; Melchakov, R.; Fedotova, J.; Drago, F.; Gozzo, L.; Das, U.N.; Abd El-Aty, A.M.; Baranenko, D. COVID-19 Disease and Vitamin D: A Mini-Review. Front. Pharmacol 2020, 11, 604579. [Google Scholar] [CrossRef]
- Katz, J.; Yue, S.; Xue, W. Increased risk for COVID-19 in patients with vitamin D deficiency. Nutrition 2020, 84, 111106. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Saxena, D.; Mavalankar, D. Vitamin D supplementation, COVID-19 & Disease Severity: A meta-analysis. QJM 2021, 114, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Schleicher, R.L.; Sternberg, M.R.; Looker, A.C.; Yetley, E.A.; Lacher, D.A.; Sempos, C.T.; Taylor, C.L.; Durazo-Arvizu, R.A.; Maw, K.L.; Chaudhary-Webb, M.; et al. National Estimates of Serum Total 25-Hydroxyvitamin D and Metabolite Concentrations Measured by Liquid Chromatography-Tandem Mass Spectrometry in the US Population during 2007–2010. J. Nutr. 2016, 146, 1051–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Agency for Research on Cancer. GLOBOCAN, Estimated Number of Deaths from 2018 to 2040, All Cancers, Both Sexes, All Ages. Available online: https://gco.iarc.fr/tomorrow (accessed on 25 September 2021).
First Author, Year, Reference | Databases Searched | Literature Searched Until | Number of Included Studies (References) | Included Participants | Cancer Deaths | Statistical Model for Pooling | RR (95% CI) |
---|---|---|---|---|---|---|---|
Keum 2019 [1] | PubMed, Embase | November 2018 | 5 [9,10,11,12,13] | 75,241 | 1107 | Random-effects | 0.87 (0.79–0.96) 1 |
Haykal 2019 [14] | PubMed, Embase, CENTRAL | December 2018 | 5 [9,10,13,15,16] | 31,163 | 1533 | Random-effects | 0.87 (0.79–0.96) |
Zhang X 2019 [17] | PubMed, Embase | August 2018 | 7 [9,10,11,12,13,18,19] | NR | 1763 | Random-effects | 0.87 (0.79–0.95) |
First Author, Year (Reference) | Country | Participants | %Women | Mean Age (Age Range) (Years) | Duration of Intervention (Years) | Follow-Up (Years) | Supplementation Dose | Baseline 25(OH)D (nmol/L) | Increase in 25(OH)D Levels, Measurement | RR (95% CI) for Cancer Mortality |
---|---|---|---|---|---|---|---|---|---|---|
Wactawski-Wende 2006 [11] | USA | N = 36,282; post-menopausal women | 100 | 50–79 | Mean 7 | Mean 7 | 400 IU/day | Median (IQR) 42.4 (31.0–58.3) | Intervention: +12 nmol/L Control: NR | 0.89 (0.77–1.03) |
Avenell 2012 [13] | UK | N = 5292; previous low-trauma fracture | 84.7 | 77 (≥70) | 2–5 | 3 | 800 IU/day | Mean 38 | Intervention: +24 nmol/L after 1 year Control: +6 nmol/l after 1 year | 0.85 (0.68–1.06) |
Trivedi 2003 [9] | UK | N = 2686; doctors | 31.9 | 74.8 (65–85) | 5 | 5 | 100,000 IU/ 4 months (≙820 IU/day) | Not measured | Vs. placebo Men: +14.6 nmol/L Women: +26.4 nmol/L,~3 weeks after intake (Sept/Oct) | 0.86 (0.61–1.20) |
Manson 2018 [10] | USA 1 | N = 25,871; 71% white, 20.2% black, 4% Hispanic | 50.6 | 67.1 (men ≥ 50, women ≥ 55) | 3–6 | Median (range) 5.3 (3.8–6.1) | 2000 IU/day | Median 71 | Intervention: +30 nmol/L Placebo: −2 nmol/L, 1 year after first dose | 0.83 (0.67–1.02) |
Scragg 2018 [12] | New Zealand | N = 5110; residents of Auckland | 41.9 | 65.9 (50–84) | Median (range) 3.3 (2.5–4.2) | Median 3.3 | 200,000 IU initial bolus + 100,000 IU/month | Mean (SD) 66.3 (22.5) | Intervention: +56–+71 nmol/L Control: +7–+22 nmol/L | 0.99 (0.60–1.64) |
First Author, Year (Reference) | Fortified Food, Year(s), (Intake) | Population, Trial Duration | Baseline Levels (nmol/L) | Follow-Up Levels | Intervention Effect (nmol/L) |
---|---|---|---|---|---|
Milk and milk products | |||||
Keane 1998 [27] | Milk, June 1993–June 1994 (200 IU/day) | 51 older individuals from Dublin, Ireland, 12 months | v.: 24 p: 25 | v.: 46.25 p: 31.8 | +15 |
McKenna 1995 [28] | Milk (480 IU/l), Oct/Nov 1993–March 1994 | 102 students + hospital personnel from Dublin, Ireland, ~4 months (Oct/Nov–March) | v: 77 p: 85 | v: 62 p: 54 | +16 |
Khadgawat 2013 [29] | Milk (600 or 1000 IU/day) | 713 Indian school children, 12 weeks | 11.7 (11.4–11.9 across groups) | p: 10.8 nmol/L; 600 IU: 22.9 nmol/L; 1000 IU: 27.7 nmol/L | +12.1 (600 IU); +16.9 (1000 IU) |
Jaaskelainen 2017 1 [4] | Fluid milk products and soy- and cereal-based drinks (20 IU/100 g) and fat spreads (400 IU /100 g), 2000–2011 | 6134 (2000) and 4051 (2011) adults representative for the Finnish population, observational pre-post design, 11 years | 47.6 (men); 47.5 (women) | 65.2 nmol/L (men); 65.6 nmol/L (women) | +17.6 (men); +18.1 (women) |
Kruger 2019 [30] | Milk powder (600 IU/day), 2019 | 133 Premenopausal Chinese women living in Malaysia, 12 months | 48.6 | 60.8 nmol/L | +12.2 |
Gasparri 2019 [31] | Yoghurt 2011–2018 | Various (meta-analysis), N = 665, 8–16 weeks | Various | Various | +31.0 |
Bread | |||||
Nikooyeh 2016 [32] | Bread (1000 IU/50 g), 2015 | 90 healthy individuals aged 20–60 years from Iran, 8 weeks | v: 33.9 p: 34.7 | v: 72.9 p: 25.4 | +48.3 |
Itkonen 2016 [33] | Bread, 2016 (1040 IU/day in 87 g of bread) | 41 young adult women recruited from Finnish university campus, 8 weeks | v: 64.6 p: 66.2 | v: 71.6 p: 66.2 | +7.0 |
Other or several products | |||||
Biancuzzo 2010 [34] | Orange juice (OJ), 2010 (1000 IU/237 mL of juice) | 105 adults aged 18–79 from the U.S., 11 weeks | D3 in OJ: 17.9 D2 in OJ: 15.8 p: 19.8 | D3 in OJ: 30.7 D2 in OJ: 26.4 p: 18.1 | D2 in OJ: +14.5; D3 in OJ: +12.3 |
Madsen 2013 [35] | Milk and bread, 2010–2011 (median 376 IU/day in intervention vs. 88 IU in control group) | 201 families in Denmark (82), 6 months | v: 73 p: 70 | v: 63 p: 41 | +19 |
First Author, Year, Ref. | Country, Population, Age | Fortified Food(s) | Estimated Daily Average Uptake (IU) | Serum 25(OH)D Levels (nmol/L) | Prevalence of Vitamin D Inadequacy | |||||
---|---|---|---|---|---|---|---|---|---|---|
Before | After | Diff. | ||||||||
Khadgawat 2013 [29] | India, children aged 10–14 years | Milk | NR | NR | +600 | All: +30; Boys: +30; Girls: +30 | NR | |||
NR | +1000 | All: +42; Boys: +40; Girls: +42.5 | NR | |||||||
Black 2015 [37] | Ireland, adults aged 18–64 years | Fat spreads, milk | 116 (Median) | 140 (Median) | +24 | Assuming + 2 per 20 IU: +2.4 | NR | |||
Raulio 2017 [38] | Finland, representative adult Finnish population | Milk products, fat spreads | Men, 25–44 y: 180 | Men, 25–44 y: 444 | +264 | Assuming +2 per 20 IU: Men, 25–44 y: +13 Men, 45–64 y: +6.4 Women, 25–44 y: +10 Women, 45–64 y: +9.2 | NR | |||
45–64: 276 | 45–64: 452 | +176 | ||||||||
Women, 25–44: 132 | Women, 25–44: 332 | +200 | ||||||||
45–64: 164 | 45–64: 352 | +188 | ||||||||
Jaaskelainen 2017 [4] | Finland, ≥30 years | Milk products, fat spreads | Men: 280 Women: 280 | Men: 560 Women: 480 | +180 +200 | 48 → 65 (+ 17) Largest increases in those with previously lowest levels: +34 (<30); +24 (30−<50); +10 (≥50) | Men: 54.8% → 9.4%, Women: 56.5% → 8.9% 74% of men and 58% of women reached ≥400 IU/day from diet alone | |||
Black 2012 [36] | NA (meta-analysis) | NA | NA | NA | +440 per 40 | +19.4 +1.2 | NR | |||
Modelled effects of hypothetical fortification scenarios | ||||||||||
McCourt 2020 [39] | Ireland, adults ≥ 50 years | Mostly (93%) milk, fat spreads, cereals | Milk: +36 Fat spreads: +8 | NR | ||||||
Before | M2 | M3 | M4 | M5 | ||||||
Shakur 2014 [40] | Canada, nationally representative, 51–70 years | Milk, yoghurt, cheese (uptake per serving in IU) | “Model 1”/M1: reference, no fortification, 0 M2: 50 (cheese + yoghurt), 108 (milk) M3: 150 (cheese + yoghurt + milk) M4: 270 (milk), 150 (cheese + yoghurt) M5: 270 (milk + cheese + yoghurt) | Men 80% Women 90% | 70% 83% | <40% 60% | ~25% 45% | 15% 30% |
Intake of 25(OH)D by Food Fortification in IU/Day (40 IU = 1 µg) 1 | Assumed Serum 25(OH)D Increase | Assumed Corresponding Expected Mortality Reduction | Cancer Deaths Prevented | Corresponding Savings (in Thousand €) | Costs (in Thousand €) | Net Savings (in Thousand €) | €/Life-Year Saved, Disregarding Savings |
---|---|---|---|---|---|---|---|
400 | +20 nmol/L | 11% | 25,281 | 1,011,239 | 15,166 | 996,073 | 49 |
20% lower costs | +20 nmol/L | 11% | 25,281 | 1,011,239 | 12,133 | 999,106 | 39 |
20% higher costs | +20 nmol/L | 11% | 25,281 | 1,011,239 | 18,199 | 993,040 | 59 |
600 | +30 nmol/L | 13% | 29,877 | 1,195,100 | 17,493 | 1,177,607 | 48 |
20% lower costs | +30 nmol/L | 13% | 29,877 | 1,195,100 | 13,994 | 1,181,106 | 39 |
20% higher costs | +30 nmol/L | 13% | 29,877 | 1,195,100 | 20,991 | 1,174,109 | 58 |
800 | +40 nmol/L | 15% | 34,474 | 1,378,962 | 19,819 | 1,359,143 | 47 |
20% lower costs | +40 nmol/L | 15% | 34,474 | 1,378,962 | 15,855 | 1,363,107 | 38 |
20% higher costs | +40 nmol/L | 15% | 34,474 | 1,378,962 | 23,783 | 1,355,179 | 57 |
1000 | +50 nmol/L | 15.3% | 35,164 | 1,406,541 | 22,146 | 1,384,395 | 52 |
20% lower costs | +50 nmol/L | 15.3% | 35,164 | 1,406,541 | 17,717 | 1,388,824 | 41 |
20% higher costs | +50 nmol/L | 15.3% | 35,164 | 1,406,541 | 26,575 | 1,379,966 | 62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niedermaier, T.; Gredner, T.; Kuznia, S.; Schöttker, B.; Mons, U.; Brenner, H. Potential of Vitamin D Food Fortification in Prevention of Cancer Deaths—A Modeling Study. Nutrients 2021, 13, 3986. https://doi.org/10.3390/nu13113986
Niedermaier T, Gredner T, Kuznia S, Schöttker B, Mons U, Brenner H. Potential of Vitamin D Food Fortification in Prevention of Cancer Deaths—A Modeling Study. Nutrients. 2021; 13(11):3986. https://doi.org/10.3390/nu13113986
Chicago/Turabian StyleNiedermaier, Tobias, Thomas Gredner, Sabine Kuznia, Ben Schöttker, Ute Mons, and Hermann Brenner. 2021. "Potential of Vitamin D Food Fortification in Prevention of Cancer Deaths—A Modeling Study" Nutrients 13, no. 11: 3986. https://doi.org/10.3390/nu13113986
APA StyleNiedermaier, T., Gredner, T., Kuznia, S., Schöttker, B., Mons, U., & Brenner, H. (2021). Potential of Vitamin D Food Fortification in Prevention of Cancer Deaths—A Modeling Study. Nutrients, 13(11), 3986. https://doi.org/10.3390/nu13113986