High Fructose Intake Contributes to Elevated Diastolic Blood Pressure in Adolescent Girls: Results from The HELENA Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Assessment of Daily Fructose Intake
2.3. Assessment of Anthropometrics
2.4. Assessment of Blood Pressure
2.5. Assessment of Physical Activity
2.6. Assessment of Tobacco Consumption
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ventura, E.E.; Davis, J.N.; Goran, M.I. Sugar Content of Popular Sweetened Beverages Based on Objective Laboratory Analysis: Focus on Fructose Content. Obesity 2011, 19, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Latasa, P.; Louzada, M.; Steele, E.M.; Monteiro, C.A. Added sugars and ultra-processed foods in Spanish households (1990–2010). Eur. J. Clin. Nutr. 2018, 72, 1404–1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lelis, D.F.; Andrade, J.M.O.; Almenara, C.C.P.; Broseguini-Filho, G.B.; Mill, J.G.; Baldo, M.P. High fructose intake and the route towards cardiometabolic diseases. Life Sci. 2020, 259, 118235. [Google Scholar] [CrossRef] [PubMed]
- Bray, G.A.; Nielsen, S.J.; Popkin, B.M. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am. J. Clin. Nutr. 2004, 79, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Sievenpiper, J.L.; de Souza, R.J.; Mirrahimi, A.; Yu, M.E.; Carleton, A.J.; Beyene, J.; Chiavaroli, L.; Di Buono, M.; Jenkins, A.L.; Leiter, L.A.; et al. Effect of Fructose on Body Weight in Controlled Feeding Trials A Systematic Review and Meta-analysis. Ann. Intern. Med. 2012, 156, 291–304. [Google Scholar] [CrossRef]
- Ha, V.; Sievenpiper, J.L.; de Souza, R.J.; Chiavaroli, L.; Wang, D.D.; Cozma, A.I.; Mirrahimi, A.; Yu, M.E.; Carleton, A.J.; Dibuono, M.; et al. Effect of fructose on blood pressure: A systematic review and meta-analysis of controlled feeding trials. Hypertension 2012, 59, 787–795. [Google Scholar] [CrossRef] [Green Version]
- Rippe, J.M.; Angelopoulos, T.J. Fructose-Containing Sugars and Cardiovascular Disease. Adv. Nutr. 2015, 6, 430–439. [Google Scholar] [CrossRef] [Green Version]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Despres, J.-P.; Willett, W.C.; Hu, F.B. Sugar-Sweetened Beverages and Risk of Metabolic Syndrome and Type 2 Diabetes. Diabetes Care 2010, 33, 2477–2483. [Google Scholar] [CrossRef] [Green Version]
- Kelishadi, R.; Mansourian, M.; Heidari-Beni, M. Association of fructose consumption and components of metabolic syndrome in human studies: A systematic review and meta-analysis. Nutrition 2014, 30, 503–510. [Google Scholar] [CrossRef]
- Chiu, S.; Sievenpiper, J.L.; de Souza, R.J.; Cozma, A.I.; Mirrahimi, A.; Carleton, A.J.; Ha, V.; Di Buono, M.; Jenkins, A.L.; Leiter, L.A.; et al. Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis of controlled feeding trials. Eur. J. Clin. Nutr. 2014, 68, 416–423. [Google Scholar] [CrossRef]
- Wang, D.D.; Sievenpiper, J.L.; de Souza, R.J.; Chiavaroli, L.; Ha, V.; Cozma, A.I.; Mirrahimi, A.; Yu, M.E.; Carleton, A.J.; Di Buono, M.; et al. The Effects of Fructose Intake on Serum Uric Acid Vary among Controlled Dietary Trials. J. Nutr. 2012, 142, 916–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dornas, W.C.; de Lima, W.G.; Pedrosa, M.L.; Silva, M.E. Health Implications of High-Fructose Intake and Current Research. Adv. Nutr. 2015, 6, 729–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lustig, R.H. Fructose: Metabolic, Hedonic, and Societal Parallels with Ethanol. J. Am. Diet. Assoc. 2010, 110, 1307–1321. [Google Scholar] [CrossRef]
- Steele, E.M.; Baraldi, L.G.; Louzada, M.L.D.; Moubarac, J.C.; Mozaffarian, D.; Monteiro, C.A. Ultra-processed foods and added sugars in the US diet: Evidence from a nationally representative cross-sectional study. BMJ Open 2016, 6, e009892. [Google Scholar] [CrossRef] [Green Version]
- WHO. Diet, health and physical activity. In Global Status Report on Non Communicable Diseases; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Gidding, S.S.; McMahan, C.A.; McGill, H.C.; Colangelo, L.A.; Schreiner, P.J.; Williams, O.D.; Liu, K. Prediction of coronary artery calcium in young adults using the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) risk score: The CARDIA study. Arch. Intern. Med. 2006, 166, 2341–2347. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wang, Y. Tracking of blood pressure from childhood to adulthood—A systematic review and meta-regression analysis. Circulation 2008, 117, 3171–3180. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, S.; Choi, H.K.; Lustig, R.H.; Hsu, C.-Y. Sugar-Sweetened Beverages, Serum Uric Acid, and Blood Pressure in Adolescents. J. Pediatrics 2009, 154, 807–813. [Google Scholar] [CrossRef] [Green Version]
- Feig, D.I.; Soletsky, B.; Johnson, R.J. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension—A randomized trial. JAMA-J. Am. Med Assoc. 2008, 300, 924–932. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.V.; Kiat, H. The mechanisms underlying fructose-induced hypertension: A review. J. Hypertens. 2015, 33, 912–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayalath, V.H.; Sievenpiper, J.L.; de Souza, R.J.; Ha, V.; Mirrahimi, A.; Santaren, I.D.; Mejia, S.B.; Di Buono, M.; Jenkins, A.L.; Leiter, L.A.; et al. Total Fructose Intake and Risk of Hypertension: A Systematic Review and Meta-Analysis of Prospective Cohorts. J. Am. Coll. Nutr. 2014, 33, 328–339. [Google Scholar] [CrossRef]
- Ahmad, R.; Mok, A.; Rangan, A.M.; Louie, J.C.Y. Association of free sugar intake with blood pressure and obesity measures in Australian adults. Eur. J. Nutr. 2020, 59, 651–659. [Google Scholar] [CrossRef]
- Johnson, R.J.; Perez-Pozo, S.E.; Sautin, Y.Y.; Manitius, J.; Sanchez-Lozada, L.G.; Feig, D.I.; Shafiu, M.; Segal, M.; Glassock, R.J.; Shimada, M.; et al. Hypothesis: Could Excessive Fructose Intake and Uric Acid Cause Type 2 Diabetes? Endocr. Rev. 2009, 30, 96–116. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Amlal, H.; Haas, P.J.; Dringenberg, U.; Fussell, S.; Barone, S.L.; Engelhardt, R.; Zuo, J.; Seidler, U.; Soleimani, M. Fructose-induced hypertension: Essential role of chloride and fructose absorbing transporters PAT1 and Glut5. Kidney Int. 2008, 74, 438–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catena, C.; Giacchetti, G.; Novello, M.; Colussi, G.; Cavarape, A.; Sechi, L.A. Cellular mechanisms of insulin resistance in rats with fructose-induced hypertension. Am. J. Hypertens. 2003, 16, 973–978. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.W.; Chiang, M.T.; Yao, H.T.; Chiang, W. The effect of high-fat and high-fructose diets on glucose tolerance and plasma lipid and leptin levels in rats. Diabetes Obes. Metab. 2004, 6, 120–126. [Google Scholar] [CrossRef]
- Chen, H.H.; Chu, C.H.; Wen, S.W.; Lai, C.C.; Cheng, P.W.; Tseng, C.J. Excessive Fructose Intake Impairs Baroreflex Sensitivity and Led to Elevated Blood Pressure in Rats. Nutrients 2019, 11, 2581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vos, M.B.; Kimmons, J.E.; Gillespie, C.; Welsh, J.; Blanck, H.M. Dietary fructose consumption among US children and adults: The Third National Health and Nutrition Examination Survey. Medscape. J. Med. 2008, 10, 160. [Google Scholar]
- Marriott, B.P.; Cole, N.; Lee, E. National Estimates of Dietary Fructose Intake Increased from 1977 to 2004 in the United States. J. Nutr. 2009, 139, S1228–S1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savoca, M.R.; Evans, C.D.; Wilson, M.E.; Harshfield, G.A.; Ludwig, D.A. The association of caffeinated beverages with blood pressure in adolescents. Arch. Pediatrics Adolesc. Med. 2004, 158, 473–477. [Google Scholar] [CrossRef] [Green Version]
- White, J.S. Sugar-sweetened beverage effect on cardiovascular risk factors lacks significance. J. Pediatrics 2010, 156, 860–861. [Google Scholar] [CrossRef]
- Stanhope, K.L. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit. Rev. Clin. Lab. Sci. 2016, 53, 52–67. [Google Scholar] [CrossRef]
- Rippe, J.M.; Marcos, A. Controversies about sugars consumption: State of the science. Eur J. Nutr. 2016, 55, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Genovesi, S.; Giussani, M.; Orlando, A.; Orgiu, F.; Parati, G. Salt and Sugar: Two Enemies of Healthy Blood Pressure in Children. Nutrients 2021, 13, 697. [Google Scholar] [CrossRef]
- Moreno, L.A.; De, H.S.; Gonzalez-Gross, M.; Kersting, M.; Molnar, D.; Gottrand, F.; Barrios, L.; Sjostrom, M.; Manios, Y.; Gilbert, C.C.; et al. Design and implementation of the Healthy Lifestyle in Europe by Nutrition in Adolescence Cross-Sectional Study. Int. J. Obes. 2008, 32 (Suppl. 5), S4–S11. [Google Scholar] [CrossRef] [Green Version]
- Iliescu, C.; Béghin, L.; Maes, L.; Bourdeaudhuij, I.D.; Libersa, C.; Vereecken, C.; Gonzalez-Gross, M.; Kersting, M.; Molnar, D.; Leclercq, C.; et al. Socioeconomic questionnaire and clinical assessment in the HELENA Cross-Sectional Study: Methodology. Int. J. Obes. 2008, 32 (Suppl. 5), S19–S25. [Google Scholar] [CrossRef] [Green Version]
- Béghin, L.; Castera, M.; Manios, Y.; Gilbert, C.C.; Kersting, M.; De, H.S.; Kafatos, A.; Gottrand, F.; Molnar, D.; Sjostrom, M.; et al. Quality assurance of ethical issues and regulatory aspects relating to good clinical practices in the HELENA Cross-Sectional Study. Int. J. Obes. 2008, 32 (Suppl. 5), S12–S18. [Google Scholar] [CrossRef] [Green Version]
- Béghin, L.; Huybrechts, I.; Vicente-Rodríguez, G.; De Henauw, S.; Gottrand, F.; Gonzales-Gross, M.; Dallongeville, J.; Sjöström, M.; Leclercq, C.; Dietrich, S.; et al. Main characteristics and participation rate of European adolescents included in the HELENA study. Arch. Public Health 2012, 70, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Biro, G.; Hulshof, K.F.; Ovesen, L.; Amorim Cruz, J.A. Selection of methodology to assess food intake. Eur. J. Clin. Nutr. 2002, 56 (Suppl. 2), S25–S32. [Google Scholar] [CrossRef] [Green Version]
- Vereecken, C.A.; Covents, M.; Matthys, C.; Maes, L. Young adolescents’ nutrition assessment on computer (YANA-C). Eur. J. Clin. Nutr. 2005, 59, 658–667. [Google Scholar] [CrossRef] [Green Version]
- Vereecken, C.A.; Covents, M.; Sichert-Hellert, W.; Alvira, J.M.; Le Donne, C.; De Henauw, S.; De Vriendt, T.; Phillipp, M.K.; Béghin, L.; Manios, Y.; et al. Development and evaluation of a self-administered computerized 24-h dietary recall method for adolescents in Europe. Int. J. Obes. 2008, 32 (Suppl. 5), S26–S34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesana, M.I.; Hilbig, A.; Androutsos, O.; Cuenca-Garcia, M.; Dallongeville, J.; Huybrechts, I.; De Henauw, S.; Widhalm, K.; Kafatos, A.; Nova, E.; et al. Dietary sources of sugars in adolescents’ diet: The HELENA study. Eur. J. Nutr. 2018, 57, 629–641. [Google Scholar] [CrossRef]
- Duffey, K.J.; Huybrechts, I.; Mouratidou, T.; Libuda, L.; Kersting, M.; De, V.T.; Gottrand, F.; Widhalm, K.; Dallongeville, J.; Hallstrom, L.; et al. Beverage consumption among European adolescents in the HELENA study. Eur. J. Clin. Nutr. 2012, 66, 244–252. [Google Scholar] [CrossRef] [Green Version]
- Walker, R.W.; Dumke, K.A.; Goran, M.I. Fructose content in popular beverages made with and without high-fructose corn syrup. Nutrition 2014, 30, 928–935. [Google Scholar] [CrossRef] [Green Version]
- Walker, R.W.; Goran, M.I. Laboratory Determined Sugar Content and Composition of Commercial Infant Formulas, Baby Foods and Common Grocery Items Targeted to Children. Nutrients 2015, 7, 5850–5867. [Google Scholar] [CrossRef] [Green Version]
- Sluik, D.; Engelen, A.I.; Feskens, E.J. Fructose consumption in the Netherlands: The Dutch national food consumption survey 2007-2010. Eur. J. Clin. Nutr. 2015, 69, 475–481. [Google Scholar] [CrossRef]
- Raatz, S.K.; Johnson, L.K.; Picklo, M.J. Consumption of Honey, Sucrose, and High-Fructose Corn Syrup Produces Similar Metabolic Effects in Glucose-Tolerant and -Intolerant Individuals. J. Nutr. 2015, 145, 2265–2272. [Google Scholar] [CrossRef]
- Ramne, S.; Gray, N.; Hellstrand, S.; Brunkwall, L.; Enhorning, S.; Nilsson, P.M.; Engstrom, G.; Orho-Melander, M.; Ericson, U.; Kuhnle, G.G.C.; et al. Comparing Self-Reported Sugar Intake With the Sucrose and Fructose Biomarker From Overnight Urine Samples in Relation to Cardiometabolic Risk Factors. Front. Nutr. 2020, 7, 62. [Google Scholar] [CrossRef]
- Aeberli, I.; Zimmermann, M.B.; Molinari, L.; Lehmann, R.; l’Allemand, D.; Spinas, G.A.; Berneis, K. Fructose intake is a predictor of LDL particle size in overweight schoolchildren. Am. J. Clin. Nutr. 2007, 86, 1174–1178. [Google Scholar] [CrossRef] [Green Version]
- Yeung, C.H.C.; Louie, J.C.Y. Methodology for the assessment of added/free sugar intake in epidemiological studies. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 271–277. [Google Scholar] [CrossRef]
- Cole, T.J. The LMS method for constructing normalized growth standards. Eur. J. Clin. Nutr. 1990, 44, 45–60. [Google Scholar]
- The 4th report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004, 114 (Suppl. 2), 555–576. [CrossRef]
- Topouchian, J.A.; El Assaad, M.A.; Orobinskaia, L.V.; El Feghali, R.N.; Asmar, R.G. Validation of two automatic devices for self-measurement of blood pressure according to the International Protocol of the European Society of Hypertension: The Omron M6 (HEM-7001-E) and the Omron R7 (HEM 637-IT). Blood Press. Monit. 2006, 11, 165–171. [Google Scholar] [CrossRef]
- Flynn, J.T.; Kaelber, D.C.; Baker-Smith, C.M.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; de Ferranti, S.D.; Dionne, J.M.; Falkner, B.; Flinn, S.K.; et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics 2017, 140, 1–72. [Google Scholar] [CrossRef] [Green Version]
- Buxens, A.; Ruiz, J.R.; Arteta, D.; Artieda, M.; Santiago, C.; Gonzalez-Freire, M.; Martinez, A.; Tejedor, D.; Lao, J.I.; Gomez-Gallego, F.; et al. Can we predict top-level sports performance in power vs endurance events? A genetic approach. Scand. J. Med. Sci. Sports 2011, 21, 570–579. [Google Scholar] [CrossRef]
- Ekelund, U.; Anderssen, S.A.; Froberg, K.; Sardinha, L.B.; Andersen, L.B.; Brage, S. Independent associations of physical activity and cardiorespiratory fitness with metabolic risk factors in children: The European youth heart study. Diabetologia 2007, 50, 1832–1840. [Google Scholar] [CrossRef] [Green Version]
- Malcon, M.C.; Menezes, A.M.B.; Chatkin, M. Prevalence and risk factors for smoking among adolescents. Rev. Saude Publica 2003, 37, 1–7. [Google Scholar] [CrossRef]
- van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef] [Green Version]
- Rosner, B.; Cook, N.; Portman, R.; Daniels, S.; Falkner, B. Determination of blood pressure percentiles in normal-weight children: Some methodological issues. Am. J. Epidemiol. 2008, 167, 653–666. [Google Scholar] [CrossRef]
- de Moraes, A.C.; Carvalho, H.B.; Rey-Lopez, J.P.; Gracia-Marco, L.; Béghin, L.; Kafatos, A.; Jimenez-Pavon, D.; Molnar, D.; De, H.S.; Manios, Y.; et al. Independent and combined effects of physical activity and sedentary behavior on blood pressure in adolescents: Gender differences in two cross-sectional studies. PLoS ONE 2013, 8, e62006. [Google Scholar] [CrossRef]
- Popkin, B.M. Patterns of beverage use across the lifecycle. Physiol. Behav. 2010, 100, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Newens, K.J.; Walton, J. A review of sugar consumption from nationally representative dietary surveys across the world. J. Hum. Nutr. Diet. 2016, 29, 225–240. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.Z.; Anderson, G.H.; Flickinger, B.D.; Williamson-Hughes, P.S.; Empie, M.W. Fructose and non-fructose sugar intakes in the US population and their associations with indicators of metabolic syndrome. Food Chem. Toxicol. 2011, 49, 2875–2882. [Google Scholar] [CrossRef]
- Rizkalla, S.W. Health implications of fructose consumption: A review of recent data. Nutr. Metab. 2010, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jameel, F.; Phang, M.; Wood, L.G.; Garg, M.L. Acute effects of feeding fructose, glucose and sucrose on blood lipid levels and systemic inflammation. Lipids Health Dis. 2014, 13, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aleixandre, A.; Miguel, M. Dietary fiber and blood pressure control. Food Funct. 2016, 7, 1864–1871. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Malik, V.S. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: Epidemiologic evidence. Physiol. Behav. 2010, 100, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Bubach, S.; Loret De Mola, C.; Hardy, R.; Dreyfus, J.; Santos, A.C.; Horta, B.L. Early menarche and blood pressure in adulthood: Systematic review and meta-analysis. J. Public Health 2018, 40, 476–484. [Google Scholar] [CrossRef]
- Kwok, M.K.; Leung, G.M.; Schooling, C.M. Pubertal testis volume, age at pubertal onset, and adolescent blood pressure: Evidence from Hong Kong’s “Children of 1997” birth cohort. Am. J. Hum. Biol. 2017, 29, e22993. [Google Scholar] [CrossRef]
- Pratt, J.H.; Manatunga, A.K.; Wagner, M.A.; Jones, J.J.; Meaney, F.J. Adrenal androgen excretion during adrenarche. Relation to race and blood pressure. Hypertension 1990, 16, 462–467. [Google Scholar] [CrossRef] [Green Version]
- Szklo, M. Epidemiologic patterns of blood pressure in children. Epidemiol. Rev. 1979, 1, 143–169. [Google Scholar] [CrossRef]
- Béghin, L.; Vanhelst, J.; Drumez, E.; Migueles, J.H.; Androutsos, O.; Widhalm, K.; Julian, C.; Moreno, L.A.; De Henauw, S.; Gottrand, F. Gender influences physical activity changes during adolescence: The HELENA study. Clin. Nutr. 2019, 38, 2900–2905. [Google Scholar] [CrossRef] [Green Version]
- Lowndes, J.; Sinnett, S.; Yu, Z.; Rippe, J. The Effects of Fructose-Containing Sugars on Weight, Body Composition and Cardiometabolic Risk Factors When Consumed at up to the 90th Percentile Population Consumption Level for Fructose. Nutrients 2014, 6, 3153–3168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaby, A.R. Adverse effects of dietary fructose. Altern. Med. Rev. 2005, 10, 294–306. [Google Scholar] [PubMed]
- Lancaster, K.J. Current Intake and Demographic Disparities in the Association of Fructose-Rich Foods and Metabolic Syndrome. JAMA Netw. Open 2020, 3, e2010224. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, K.L.; Schwarz, J.M.; Keim, N.L.; Griffen, S.C.; Bremer, A.A.; Graham, J.L.; Hatcher, B.; Cox, C.L.; Dyachenko, A.; Zhang, W.; et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Investig. 2009, 119, 1322–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tappy, L.; Le, K.A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev. 2010, 90, 23–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sievenpiper, J.L.; de Souza, R.J.; Jenkins, D.J.A. Sugar: Fruit fructose is still healthy. Nature 2012, 482, 470. [Google Scholar] [CrossRef]
- Angelopoulos, T.J.; Lowndes, J.; Sinnett, S.; Rippe, J.M. Fructose Containing Sugars Do Not Raise Blood Pressure or Uric Acid at Normal Levels of Human Consumption. J. Clin. Hypertens. 2015, 17, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Moore, L.L.; Bradlee, M.L.; Singer, M.R.; Qureshi, M.M.; Buendia, J.R.; Daniels, S.R. Dietary Approaches to Stop Hypertension (DASH) eating pattern and risk of elevated blood pressure in adolescent girls. Br. J. Nutr. 2012, 108, 1678–1685. [Google Scholar] [CrossRef] [Green Version]
- Mansoori, S.; Kushner, N.; Suminski, R.R.; Farquhar, W.B.; Chai, S.C. Added Sugar Intake is Associated with Blood Pressure in Older Females. Nutrients 2019, 11, 2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Girls | Foods | Pure Fructose (g/day) | Total Fructose (g/day) |
Sugar-sweetened beverages | 7.98 (2.51 to 17.22) | 8.80 (2.76 to 18.98) | |
Nonchocolate confectionary | 0.12 (0.05 to 0.28) | 1.00 (0.40 to 2.41) | |
Chocolate | 1.53 (0.67 to 2.73) | 1.71 (0.75 to 3.05) | |
Cakes/pies/biscuits | 1.95 (1.07 to 2.90) | 8.79 (4.83 to 13.10) | |
Desserts and puddings | 0.09 (0.06 to 0.19) | 0.22 (0.14 to 0.47) | |
Breakfast and cereals | 0.01 (0.01 to 0.20) | 0.13 (0.07 to 1.90) | |
Others | 0.02 (0.01 to 0.02) | 0.02 (0.01 to 0.02) | |
Fruit and vegetable juices | 5.14 (1.85 to 10.08) | 5.86 (2.10 to 11.49) | |
Honey/jam/syrup | 1.31 (0.37 to 5.28) | 1.61 (0.45 to 6.50) | |
Fruits | 8.60 (4.62 to 13.70) | 10.45 (5.61 to 16.64) | |
Fructose from all food sources | 34.69 ** (25.39 to 46.35) | 51.24 ** (39.17 to 65.12) | |
Fructose from non-natural foods * | 12.94 ** (7.57 to 22.36) | 25.47 ** (18.04 to 36.76) | |
Boys | Foods | Pure Fructose (g/day) | Total Fructose (g/day) |
Sugar-sweetened beverages | 15.10 (6.04 to 27.45) | 16.64 (6.66 to 30.25) | |
Nonchocolate confectionary | 0.06 (0.03 to 0.20) | 0.55 (0.28 to 1.78) | |
Chocolate | 1.71 (0.91 to 3.74) | 1.91 (1.01 to 4.18) | |
Cakes/pies/biscuits | 2.12 (1.03 to 3.41) | 9.58 (4.64 to 15.40) | |
Desserts and puddings | 0.05 (0.04 to 0.08) | 0.12 (0.09 to 0.19) | |
Breakfast and cereals | 0.03 (0.02 to 0.28) | 0.25 (0.15 to 2.70) | |
Others | 0.01 (0.01 to 0.02) | 0.01 (0.01 to 0.02) | |
Fruit and vegetable juices | 5.43 (1.94 to 11.19) | 6.19 (2.21 to 12.75) | |
Honey/jam/syrup | 1.40 (0.61 to 5.81) | 1.73 (0.76 to 7.15) | |
Fruits | 8.05 (3.59 to 13.29) | 9.78 (4.37 to 16.13) | |
Fructose from all food sources | 45.29 ** (32.19 to 59.98) | 63.62 ** (47.55 to 81.12) | |
Fructose from non-natural foods * | 21.14 ** (11.69 to 34.60) | 35.89 ** (23.61 to 51.55) |
Tertiles Levels For Girls | n(%) | Ranges for Pure Fructose (g/day) | n (%) | Ranges for Total Fructose Exposure (g/day) |
All food sources | ||||
Low | 284 (31.5%) | 7.85 to 27.60 | 285 (31.6%) | 13.78 to 41.88 |
Middle | 311 (34.5%) | 27.63 to 41.76 | 310 (34.4%) | 41.92 to 59.38 |
High | 306 (34.0%) | 41.90 to 130.86 | 306 (34.0%) | 59.52 to 160.16 |
Non-natural foods | ||||
Low | 296 (32.9%) | 1.39 to 9.12 | 296 (32.8%) | 3.80 to 20.18 |
Middle | 305 (33.8%) | 9.15 to 18.73 | 304 (33.7%) | 20.22 to 32.01 |
High | 300 (33.3%) | 18.76 to 81.50 | 301 (33.4%) | 32.15 to 112.56 |
Tertiles Levels For Boys | n (%) | Ranges for Pure Fructose (g/day) | n (%) | Ranges for Total Fructose Exposure (g/day) |
All food sources | ||||
Low | 258 (32.1%) | 9.55 to 35.65 | 256 (31.8%) | 13.17 to 51.76 |
Middle | 270 (33.6%) | 35.65 to 53.98 | 273 (34.0%) | 51.77 to 72.70 |
High | 276 (34.3%) | 54.00 to 136.75 | 275 (34.2%) | 72.83 to 191.25 |
Non-natural foods | ||||
Low | 267 (33.2%) | 2.21 to 14.15 | 269 (33.5%) | 4.56 to 27.55 |
Middle | 272 (33.8%) | 14.19 to 28.92 | 267 (33.2%) | 27.61 to 45.01 |
High | 265 (33.0%) | 28.9 to 114.79 | 268 (33.3%) | 45.07 to 161.18 |
Blood Pressure for Girls | n | Mean ± SD (mmHg) |
Systolic blood pressure (SBP) | 901 | 111.56 ± 11.21 |
Elevated SBP above the 90th percentile > 125 (mmHg) | 84 | 132.52 ± 7.27 |
Mildly elevated above the 75th percentile > 118 (mmHg) | 223 | 125.7 ± 7.1 |
Mildly elevated above 110 (mmHg) | 487 | 119.6 ± 7.6 |
Diastolic blood pressure (DBP) | 901 | 64.48 ± 8.50 |
Elevated DBP above the 90th percentile > 75 (mmHg) | 86 | 80.52 ± 6.10 |
Mildly elevated above the 75th percentile > 69 (mmHg) | 228 | 75.4 ± 5.7 |
Mildly elevated above 70 (mmHg) | 199 | 76.1 ± 5.7 |
Blood Pressure for Boys | n | Mean ± SD (mmHg) |
Systolic blood pressure (SBP) | 804 | 119.61 ± 13.40 |
Elevated SBP above the 90th percentile > 137 (mmHg) | 79 | 145.32 ± 7.85 |
Mildly elevated above the 75th percentile > 127 (mmHg) | 203 | 137.1 ± 8.5 |
Mildly elevated above 110 (mmHg) | 600 | 125.1 ± 10.6 |
Diastolic blood pressure (DBP) | 804 | 63.99 ± 8.41 |
Elevated DBP above the 90th percentile > 75 (mmHg) | 86 | 79.21 ± 4.33 |
Mildly elevated above the 75th percentile > 69 (mmHg) | 197 | 75.0 ± 4.8 |
Mildly elevated above 70 (mmHg) | 170 | 75.8 ± 4.7 |
Model 1 | Model 2 | ||||
For Girls | Elevated SBP (n = 84) | OR (95%CI) | p | OR (95%CI) | p |
Pure fructose | 0.97 * | 0.66 * | |||
Low | 22/284 (7.7%) | 1.00 (ref.) | - | 1.00 (ref.) | - |
Middle | 22/311 (7.1%) | 0.72 (0.37 to 1.39) | 0.32 | 0.76 (0.38 to 1.53) | 0.45 |
High | 40/306 (13.1%) | 0.96 (0.51 to 1.84) | 0.91 | 1.14 (0.55 to 2.39) | 0.72 |
Total fructose exposure | 0.48 * | 0.86 * | |||
Low | 24/285 (8.4%) | 1.00 (ref.) | - | 1.00 (ref.) | - |
Middle | 21/310 (6.8%) | 0.67 (0.35 to 1.28) | 0.23 | 0.80 (0.40 to 1.60) | 0.54 |
High | 39/306 (12.7%) | 0.83 (0.44 to 1.57) | 0.57 | 1.06 (0.50 to 2.21) | 0.89 |
Model 1 | Model 2 | ||||
For Boys | Elevated SBP (n = 79) | OR (95%CI) | p | OR (95%CI) | p |
Pure fructose | 0.12 * | 0.035 * | |||
Low | 24/258 (9.3%) | 1.00 (ref.) | - | 1.00 (ref.) | - |
Middle | 25/270 (9.3%) | 0.72 (0.38 to 1.34) | 0.30 | 0.55 (0.27 to 1.09) | 0.084 |
High | 30/276 (10.9%) | 0.60 (0.31 to 1.14) | 0.12 | 0.44 (0.21 to 0.93) | 0.031 |
Total fructose exposure | 0.44 * | 0.13 * | |||
Low | 21/256 (8.2%) | 1.00 (ref.) | - | 1.00 (ref.) | - |
Middle | 28/273 (10.3%) | 0.96 (0.51 to 1.80) | 0.89 | 0.64 (0.32 to 1.30) | 0.22 |
High | 30/275 (10.9%) | 0.78 (0.41 to 1.50) | 0.46 | 0.54 (0.25 to 1.17) | 0.12 |
Model 1 | Model 2 | ||||
For Girls | Elevated DBP (n = 86) | OR (95%CI) | p | OR (95%CI) | p |
Pure fructose | 0.12 * | 0.038 * | |||
Low | 23/284 (8.1%) | 1.00 (ref.) | - | 1.00 (ref.) | - |
Middle | 18/311 (5.8%) | 0.68 (0.35 to 1.33) | 0.26 | 0.67 (0.34 to 1.34) | 0.26 |
High | 45/306 (14.7%) | 1.51 (0.81 to 2.78) | 0.19 | 1.93 (0.99 to 3.75) | 0.052 |
Total fructose exposure | 0.45 * | 0.086 * | |||
Low | 23/285 (8.1%) | 1.00 (ref.) | - | 1.00 (ref.) | - |
Middle | 23/310 (7.4%) | 0.89 (0.47 to 1.66) | 0.71 | 1.10 (0.57 to 2.10) | 0.78 |
High | 40/306 (13.1%) | 1.24 (0.67 to 2.31) | 0.50 | 1.83 (0.91 to 3.65) | 0.089 |
For Boys | Model 1 | Model 2 | |||
Elevated DBP (n = 86) | OR (95%CI) | p | OR (95%CI) | p | |
Pure fructose | 0.88 * | 0.38 * | |||
Low | 25/258 (9.7%) | 1.00 (ref.) | - | 1.00 (ref.) | - |
Middle | 29/270 (10.7%) | 1.02 (0.57 to 1.83) | 0.95 | 0.87 (0.45 to 1.68) | 0.69 |
High | 32/276 (11.6%) | 0.96 (0.52 to 1.77) | 0.89 | 0.72 (0.34 to 1.51) | 0.39 |
Total fructose exposure | 0.45 * | 0.97 * | |||
Low | 22/256 (8.6%) | 1.00 (ref.) | - | 1.00 (ref.) | - |
Middle | 29/273 (10.6%) | 1.11 (0.61 to 2.03) | 0.73 | 0.98 (0.49 to 1.94) | 0.95 |
High | 35/275 (12.7%) | 1.26 (0.68 to 2.34) | 0.46 | 1.01 (0.47 to 2.16) | 0.98 |
Model 1 | Model 2 | ||||
For Girls | Elevated SBP (n = 84) | OR (95%CI) | p | OR (95%CI) | p |
Pure fructose | 0.79 * | 0.70 * | |||
Low | 21/296 (7.1%) | 1.00 (ref.) | - | 1.00 (ref.) | - |
Middle | 29/305 (9.5%) | 1.01 (0.54 to 1.88) | 0.98 | 1.09 (0.56 to 2.10) | 0.80 |
High | 34/300 (11.3%) | 0.92 (0.49 to 1.76) | 0.81 | 1.15 (0.57 to 2.32) | 0.70 |
Total fructose exposure | 0.22 * | 0.38 * | |||
Low | 26/296 (8.8%) | 1.00 (ref.) | - | 1.00 (ref.) | - |
Middle | 26/304 (8.6%) | 0.79 (0.43 to 1.44) | 0.44 | 1.03 (0.52 to 2.04) | 0.93 |
High | 32/301 (10.6%) | 0.67 (0.36 to 1.26) | 0.22 | 1.45 (0.69 to 3.04) | 0.33 |
For Boys | Model 1 | Model 2 | |||
Elevated SBP (n = 79) | OR (95%CI) | p | OR (95%CI) | p | |
Pure fructose | 0.75 * | 0.52 * | |||
Low | 19/267 (7.1%) | 1.00 (ref.) | - | 1.00 (ref.) | - |
Middle | 30/272 (11.0%) | 1.15 (0.61 to 2.18) | 0.66 | 1.04 (0.53 to 2.06) | 0.90 |
High | 30/265 (11.3%) | 0.93 (0.48 to 1.81) | 0.83 | 0.81 (0.39 to 1.67) | 0.56 |
Total fructose exposure | 0.83 * | 0.45 * | |||
Low | 21/269 (7.8%) | 1.00 (ref.) | - | 1.00 (ref.) | - |
Middle | 28/267 (10.5%) | 1.02 (0.54 to 1.93) | 0.94 | 0.68 (0.35 to 1.33) | 0.26 |
High | 30/268 (11.2%) | 0.94 (0.49 to 1.79) | 0.85 | 0.83 (0.39 to 1.76) | 0.62 |
Model 1 | Model 2 | ||||
For Girls | Elevated DBP (n = 86) | OR (95%CI) | p | OR (95%CI) | p |
Pure fructose | 0.051 * | 0.013 * | |||
Low | 19/296 (6.4%) | 1.00 (ref.) | - | 1.00 (ref.) | - |
Middle | 26/305 (8.5%) | 1.23 (0.65 to 2.33) | 0.52 | 1.36 (0.71 to 2.59) | 0.36 |
High | 41/300 (13.7%) | 1.82 (0.97 to 3.39) | 0.061 | 2.27 (1.17 to 4.40) | 0.015 |
Total fructose exposure | 0.18 * | 0.030 * | |||
Low | 22/296 (7.4%) | 1.00 (ref.) | - | 1.00 (ref.) | - |
Middle | 24/304 (7.9%) | 0.97 (0.52 to 1.80) | 0.92 | 2.06 (1.14 to 3.70) | 0.016 |
High | 40/301 (13.3%) | 1.47 (0.81 to 2.66) | 0.21 | 1.85 (0.91 to 3.79) | 0.091 |
Model 1 | Model 2 | ||||
For Boys | Elevated DBP (n = 86) | OR (95%CI) | p | OR (95%CI) | p |
Pure fructose | 0.73 * | 0.87 * | |||
Low | 24/267 (9.0%) | 1.00 (ref.) | - | 1.00 (ref.) | - |
Middle | 30/272 (11.0%) | 1.06 (0.59 to 1.91) | 0.84 | 1.04 (0.53 to 2.01) | 0.91 |
High | 32/265 (12.1%) | 1.11 (0.60 to 2.06) | 0.73 | 1.06 (0.52 to 2.16) | 0.86 |
Total fructose exposure | 0.71 * | 0.86 * | |||
Low | 25/269 (9.3%) | 1.00 (ref.) | - | 1.00 (ref.) | - |
Middle | 29/267 (10.9%) | 1.02 (0.57 to 1.84) | 0.94 | 0.82 (0.42 to 1.59) | 0.55 |
High | 32/268 (11.9%) | 1.12 (0.61 to 2.04) | 0.72 | 1.17 (0.55 to 2.49) | 0.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Béghin, L.; Huybrechts, I.; Drumez, E.; Kersting, M.; Walker, R.W.; Kafatos, A.; Molnar, D.; Manios, Y.; Moreno, L.A.; De Henauw, S.; et al. High Fructose Intake Contributes to Elevated Diastolic Blood Pressure in Adolescent Girls: Results from The HELENA Study. Nutrients 2021, 13, 3608. https://doi.org/10.3390/nu13103608
Béghin L, Huybrechts I, Drumez E, Kersting M, Walker RW, Kafatos A, Molnar D, Manios Y, Moreno LA, De Henauw S, et al. High Fructose Intake Contributes to Elevated Diastolic Blood Pressure in Adolescent Girls: Results from The HELENA Study. Nutrients. 2021; 13(10):3608. https://doi.org/10.3390/nu13103608
Chicago/Turabian StyleBéghin, Laurent, Inge Huybrechts, Elodie Drumez, Mathilde Kersting, Ryan W Walker, Anthony Kafatos, Denes Molnar, Yannis Manios, Luis A Moreno, Stefaan De Henauw, and et al. 2021. "High Fructose Intake Contributes to Elevated Diastolic Blood Pressure in Adolescent Girls: Results from The HELENA Study" Nutrients 13, no. 10: 3608. https://doi.org/10.3390/nu13103608
APA StyleBéghin, L., Huybrechts, I., Drumez, E., Kersting, M., Walker, R. W., Kafatos, A., Molnar, D., Manios, Y., Moreno, L. A., De Henauw, S., & Gottrand, F. (2021). High Fructose Intake Contributes to Elevated Diastolic Blood Pressure in Adolescent Girls: Results from The HELENA Study. Nutrients, 13(10), 3608. https://doi.org/10.3390/nu13103608