Serum Osteoprotegerin Is an Independent Marker of Metabolic Complications in Non-DialysisDependent Chronic Kidney Disease Patients
Abstract
:1. Introduction
2. Methods
2.1. Design
2.2. Patients
2.3. Defining the Complications of Chronic Kidney Disease
- -
- Anaemia, when serum haemoglobin level was lower than 12 g/dL [16]
- -
- Protein energy wasting (PEW), when one of the following occurred: serum albumin level was lower than 3.8 g/dL, total cholesterol level was lower than 100 mg/dL, BMI was lower than 23 kg/m2 or Fat was lower than 10% [17]
- -
- Inflammatory state, when CRP >0.8 mg/dL or Fbg >400 mg/dL [17]
- -
- Poor prognostic factors of CKD progression, when HbA1c >8% or SBP >140 mmHg or presence of overhydration, i.e., (OH) >4 L [18]
2.4. Statistical Analysis
3. Results
3.1. Anaemia
3.2. Protein Energy Wasting (PEW)
3.3. Inflammatory State
3.4. Poor Prognostic Factors (Overhydration, Hyperglycaemia and Hypertension)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aggarwal, B.B. Signalling pathways of the TNF superfamily: A double-edged sword. Nat. Rev. Immunol. 2003, 3, 745–756. [Google Scholar] [CrossRef]
- Simonet, W.; Lacey, D.; Dunstan, C.; Kelley, M.; Chang, M.-S.; Lüthy, R.; Nguyen, H.; Wooden, S.; Bennett, L.; Boone, T.; et al. Osteoprotegerin: A Novel Secreted Protein Involved in the Regulation of Bone Density. Cell 1997, 89, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Rochette, L.; Meloux, A.; Rigal, E.; Zeller, M.; Cottin, Y.; Vergely, C. The role of osteoprotegerin in the crosstalk between vessels and bone: Its potential utility as a marker of cardiometabolic diseases. Pharmacol. Ther. 2018, 182, 115–132. [Google Scholar] [CrossRef]
- Rochette, L.; Meloux, A.; Rigal, E.; Zeller, M.; Cottin, Y.; Vergely, C. The Role of Osteoprotegerin and Its Ligands in Vascular Function. Int. J. Mol. Sci. 2019, 20, 705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munasinghe, A.; Lin, P.; Colina, C.M. Unraveling Binding Interactions between Human RANKL and Its Decoy Receptor Osteoprotegerin. J. Phys. Chem. B 2017, 121, 9141–9148. [Google Scholar] [CrossRef] [PubMed]
- Barbu, C.G.; Arsene, A.L.; Florea, S.; Albu, A.; Sirbu, A.; Martin, S.; Nicolae, A.C.; Burcea-Dragomiroiu, G.T.; Popa, D.E.; Velescu, B.S.; et al. Cardiovascular risk assessment in osteoporotic patients using osteoprotegerin as a reliable predictive biochemical marker. Mol. Med. Rep. 2017, 16, 6059–6067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiechl, S.; Schett, G.; Wenning, G.; Redlich, K.; Oberhollenzer, M.; Mayr, A.; Santer, P.; Smolen, J.; Poewe, W.; Willeit, J. Osteoprotegerin Is a Risk Factor for Progressive Atherosclerosis and Cardiovascular Disease. Circulation 2004, 109, 2175–2180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueland, T.; Yndestad, A.; Øie, E.; Florholmen, G.; Halvorsen, B.; Frøland, S.S.; Simonsen, S.; Christensen, G.; Gullestad, L.; Aukrust, P. Dysregulated Osteoprotegerin/RANK Ligand/RANK Axis in Clinical and Experimental Heart Failure. Circulation 2005, 111, 2461–2468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardi, S.; Fabris, B.; Thomas, M.; Toffoli, B.; Tikellis, C.; Candido, R.; Catena, C.; Mulatero, P.; Barbone, F.; Radillo, O.; et al. Osteoprotegerin increases in metabolic syndrome and promotes adipose tissue proinflammatory changes. Mol. Cell. Endocrinol. 2014, 394, 13–20. [Google Scholar] [CrossRef]
- Martin, A.B.; Ucero, A.; Zubiri, I.; Posada-Ayala, M.; Fernandez-Fernandez, B.; Cannata-Ortiz, P.; Sanchez-Niño, M.D.; Ruiz-Ortega, M.; Egido, J.; Alvarez-Llamas, G.; et al. Osteoprotegerin in Exosome-Like Vesicles from Human Cultured Tubular Cells and Urine. PLoS ONE 2013, 8, e72387. [Google Scholar] [CrossRef] [Green Version]
- Ford, M.L.; Smith, E.R.; Tomlinson, L.; Chatterjee, P.K.; Rajkumar, C.; Holt, S. FGF-23 and osteoprotegerin are independently associated with myocardial damage in chronic kidney disease stages 3 and 4. Another link between chronic kidney disease-mineral bone disorder and the heart. Nephrol. Dial. Transplant. 2011, 27, 727–733. [Google Scholar] [CrossRef]
- Rashtchizadeh, N.; Ghorbanihaghjo, A.; Argani, H.; Meimand, S.M.; Safa, J.; Vatankhahan, H.; Shahidi, M. Serum Receptor Activator of Nuclear Factor-κ B Ligand, Osteoprotegrin, and Intact Parathyroid Hormone in Hemodialysis and Renal Transplant Patients. Ther. Apher. Dial. 2012, 16, 600–604. [Google Scholar] [CrossRef]
- Janda, K.; Krzanowski, M.; Chowaniec, E.; Kuśnierz-Cabala, B.; Dumnicka, P.; Kraśniak, A.; Podolec, P.; Sułowicz, W. Osteoprotegerin as a marker of cardiovascular risk in patients on peritoneal dialysis. Pol. Arch. Intern. Med. 2013, 123, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.-X.; Li, J.-B.; Huang, N.; Huang, X.-W.; Li, Y.-L.; Huang, F.-X. Elevated Osteoprotegerin Concentration Predicts Increased Risk of Cardiovascular Mortality in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Kidney Blood Press. Res. 2020, 45, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, G.B.; Abdel-Latif, E.A. Serum osteoprotegerin (OPG) in children with primary nephrotic syndrome. Saudi J. Kidney Dis. Transplant. 2011, 22, 955–962. [Google Scholar]
- Tonelli, M.; Wanner, C.; Cass, A.; Amit, G.; Holdaas, H.; Jardine, A.; Jiang, L.; Kronenberg, F.; Parekh, R.; Shoji, T.; et al. Summary of Recommendation Statements. Kidney Int. Suppl. 2012, 2, 283–287. [Google Scholar] [CrossRef] [Green Version]
- Fouque, D.; Kalantar-Zadeh, K.; Kopple, J.; Cano, N.; Chauveau, P.; Cuppari, L.; Franch, H.; Guarnieri, G.; Ikizler, T.; Kaysen, G.; et al. A proposed nomenclature and diagnostic criteria for protein–energy wasting in acute and chronic kidney disease. Kidney Int. 2008, 73, 391–398. [Google Scholar] [CrossRef] [Green Version]
- de Boer, I.H.; Caramori, M.L.; Chan, J.C.; Heerspink, H.J.; Hurst, C.; Khunti, K.; Liew, A.; Michos, E.D.; Navaneethan, S.D.; Olowu, W.A.; et al. Executive summary of the 2020 KDIGO Diabetes Management in CKD Guideline: Evidence-based advances in monitoring and treatment. Kidney Int. 2020, 98, 839–848. [Google Scholar] [CrossRef]
- Hanley, J.A.; Hajian-Tilaki, K.O. Sampling variability of nonparametric estimates of the areas under receiver operating characteristic curves: An update. Acad. Radiol. 1997, 4, 49–58. [Google Scholar] [CrossRef]
- Kamińska, J.; Stopiński, M.; Mucha, K.; Pac, M.; Gołębiowski, M.; Niewczas, M.A.; Pączek, L.; Foroncewicz, B. Circulating Osteoprotegerin in Chronic Kidney Disease and All-Cause Mortality. Int. J. Gen. Med. 2021, 14, 2413–2420. [Google Scholar] [CrossRef]
- Moréna, M.; Jaussent, I.; Halkovich, A.; Dupuy, A.-M.; Bargnoux, A.-S.; Chenine, L.; Leray-Moragues, H.; Klouche, K.; Vernhet, H.; Canaud, B.; et al. Bone Biomarkers Help Grading Severity of Coronary Calcifications in Non Dialysis Chronic Kidney Disease Patients. PLoS ONE 2012, 7, e36175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, T.; Wang, M.; Ma, D. TNF-α, a good or bad factor in hematological diseases? Stem Cell Investig. 2014, 1, 12. [Google Scholar] [CrossRef]
- Zauli, G.; Corallini, F.; Bossi, F.; Fischetti, F.; Durigutto, P.; Celeghini, C.; Tedesco, F.; Secchiero, P. Osteoprotegerin increases leukocyte adhesion to endothelial cells both in vitro and in vivo. Blood 2007, 110, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, M.K.; Levin, A.; Er, L.; McIntyre, C.W. Elevated osteoprotegerin is associated with all-cause mortality in CKD stage 4 and 5 patients in addition to vascular calcification. Nephrol. Dial. Transplant. 2009, 24, 3157–3162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bargnoux, A.-S.; Dupuy, A.-M.; Garrigue, V.; Jaussent, I.; Gahide, G.; Badiou, S.; Szwarc, I.; Deleuze, S.; Vernhet, H.; Cristol, J.-P.; et al. Evolution of Coronary Artery Calcifications Following Kidney Transplantation: Relationship with Osteoprotegerin Levels. Arab. Archaeol. Epigr. 2009, 9, 2571–2579. [Google Scholar] [CrossRef]
- Bucay, N.; Sarosi, I.; Dunstan, C.; Morony, S.; Tarpley, J.; Capparelli, C.; Scully, S.; Tan, H.L.; Xu, W.; Lacey, D.L.; et al. osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 1998, 12, 1260–1268. [Google Scholar] [CrossRef]
- Van Campenhout, A.; Golledge, J. Osteoprotegerin, vascular calcification and atherosclerosis. Atherosclerosis 2009, 204, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Bonetti, P.O.; Lerman, L.O.; Lerman, A. Endothelial Dysfunction. Arter. Thromb. Vasc. Biol. 2003, 23, 168–175. [Google Scholar] [CrossRef]
- De Ciriza, C.P.; Lawrie, A.; Varo, N. Osteoprotegerin in Cardiometabolic Disorders. Int. J. Endocrinol. 2015, 2015, 564934. [Google Scholar] [CrossRef]
- Bikbov, B.; Purcell, C.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [Green Version]
Median | IQR | |
---|---|---|
Age [years] | 66 | 59–72 |
Serum Creatinine concentration [mg/dL] | 1.9 | 1.5–2.7 |
eGFR [mL/min/1.73 m2] | 38.4 | 25.4–48.9 |
Hgb [g/dL] | 13.4 | 12.1–14.6 |
Serum albumin concentration [g/dL] | 4.4 | 4.1–4.6 |
Total cholesterol [mg/dL] | 165 | 143–207 |
BMI [kg/m2] | 28.6 | 25.4–33.3 |
Fat [%] | 29.8 | 24.1–36.7 |
CRP [mg/dL] | 0.2 | 0.1–0.4 |
Fibrinogen [mg/dL] | 339 | 268–419 |
HgbA1c [%] | 5.8 | 5.3–6.4 |
Systolic blood pressure [mmHg] | 130 | 125–140 |
Overhydration OH [L] | −0.1 | −0.9–1.2 |
Osteoprotegerin [pg/mL] | 425.6 | 300–556.3 |
OPG | R | p |
---|---|---|
Age | 0.44 | <0.001 |
Serum Creatinine concentration | 0.34 | <0.001 |
eGFR mL/min/1.73 m2 | −0.36 | <0.001 |
Hgb | −0.52 | <0.001 |
Serum albumin concentration | −0.37 | <0.001 |
Total cholesterol | −0.21 | 0.033 |
BMI | 0.01 | 0.869 |
Fat | 0.21 | 0.045 |
CRP | 0.33 | <0.001 |
Fibrinogen | 0.39 | 0.002 |
HgbA1c | 0.48 | <0.001 |
Systolic blood pressure | 0.30 | 0.002 |
Overhydration OH [L] | 0.34 | 0.001 |
Parameter | B ± SE | OR (95% CI) | p-Value of Variable | H–L p-Value | AUC ± SE | p-Value of Model |
---|---|---|---|---|---|---|
Intercept | 0.545 ± 1.755 | - | 0.756 | |||
Age | −0.043 ± 0.032 | 0.958 (0.899–1.021) | 0.184 | |||
OPG | 0.006 ± 0.002 | 1.006 (1.002–1.021) | 0.004 | 0.749 | 0.84 ± 0.05 | <0.001 |
eGFR | −0.052 ± 0.023 | 0.95 (0.909–1.021) | 0.023 | |||
Intercept | 0.847 ± 1.641 | - | 0.606 | |||
Age | 0.008 ± 0.025 | 1.008 (0.959–1.059) | 0.756 | 0.150 | 0.76 ± 0.06 | <0.001 |
eGFR | −0.077 ± 0.021 | 0.926 (0.889–0.964) | <0.001 |
Parameter | B ± SE | OR (95% CI) | p-Value of Variable | H–L p-Value | AUC ± SE | p-Value of Model |
---|---|---|---|---|---|---|
Intercept | −1.254 ± 2.082 | - | 0.547 | |||
Age | −0.023 ± 0.035 | 0.977 (0.912–1.048) | 0.522 | |||
OPG | 0.004 ± 0.002 | 1.004 (0.999–1.008) | 0.051 | 0.544 | 0.79 ± 0.05 | <0.001 |
eGFR | −0.029 ± 0.025 | 0.971 (0.925–1.019) | 0.234 | |||
Intercept | −0.676 ± 1.984 | - | 0.726 | |||
Age | 0.011 ± 0.030 | 1.011 (0.953–1.073) | 0.724 | 0.466 | 0.71 ± 0.06 | <0.001 |
eGFR | −0.052 ± 0.022 | 0.949 (0.910–0.991) | 0.018 |
Parameter | B ± SE | OR (95% CI) | p-Value of Variable | H–L p-Value | AUC ± SE | p-Value of Model |
---|---|---|---|---|---|---|
Intercept | −4.302 ± 2.009 | - | 0.032 | |||
Age | 0.012 ± 0.031 | 1.012 (0.952–1.076) | 0.693 | |||
OPG | 0.005 ± 0.002 | 1.005 (1.002–1.009) | 0.005 | 0.703 | 0.77 ± 0.05 | <0.001 |
GFR | −0.007 ± 0.021 | 0.993 (0.952–1.036) | 0.748 | |||
Intercept | −3.238 ± 1.798 | - | 0.072 | |||
Age | 0.050 ± 0.027 | 1.052 (0.997–1.109) | 0.063 | 0.520 | 0.67 ± 0.06 | <0.007 |
GFR | −0.036 ± 0.018 | 0.964 (0.931–0.999) | <0.045 |
Parameter | B ± SE | OR (95% CI) | p-Value of Variable | H–L p-Value | AUC ± SE | p-Value of Model |
---|---|---|---|---|---|---|
Intercept | −0.715 ± 1.677 | - | 0.670 | |||
Age | −0.020 ± 0.030 | 0.980 (0.924–1.039) | 0.499 | |||
OPG | 0.005 ± 0.001 | 1.005 (1.002–1.009) | 0.006 | 0.625 | 0.77 ± 0.05 | <0.001 |
GFR | −0.034 ± 0.20 | 0.966 (0.928–1.006) | 0.093 | |||
Intercept | −0.301 ± 1.578 | - | 0.849 | |||
Age | 0.022 ± 0.025 | 1.022 (0.974–1.073) | 0.373 | 0.719 | 0.67 ± 0.06 | 0.007 |
GFR | −0.057 ± 0.019 | 0.944 (0.911–0.980) | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rymarz, A.; Romejko, K.; Matyjek, A.; Bartoszewicz, Z.; Niemczyk, S. Serum Osteoprotegerin Is an Independent Marker of Metabolic Complications in Non-DialysisDependent Chronic Kidney Disease Patients. Nutrients 2021, 13, 3609. https://doi.org/10.3390/nu13103609
Rymarz A, Romejko K, Matyjek A, Bartoszewicz Z, Niemczyk S. Serum Osteoprotegerin Is an Independent Marker of Metabolic Complications in Non-DialysisDependent Chronic Kidney Disease Patients. Nutrients. 2021; 13(10):3609. https://doi.org/10.3390/nu13103609
Chicago/Turabian StyleRymarz, Aleksandra, Katarzyna Romejko, Anna Matyjek, Zbigniew Bartoszewicz, and Stanisław Niemczyk. 2021. "Serum Osteoprotegerin Is an Independent Marker of Metabolic Complications in Non-DialysisDependent Chronic Kidney Disease Patients" Nutrients 13, no. 10: 3609. https://doi.org/10.3390/nu13103609
APA StyleRymarz, A., Romejko, K., Matyjek, A., Bartoszewicz, Z., & Niemczyk, S. (2021). Serum Osteoprotegerin Is an Independent Marker of Metabolic Complications in Non-DialysisDependent Chronic Kidney Disease Patients. Nutrients, 13(10), 3609. https://doi.org/10.3390/nu13103609