Cardiac Oxidative Stress and the Therapeutic Approaches to the Intake of Antioxidant Supplements and Physical Activity
Abstract
:1. Introduction
2. The Formation of ROS and Antioxidant Systems
2.1. Reactive Oxygen Species
2.2. Antioxidant Systems
2.2.1. Enzymatic Antioxidants
Superoxide Dismutase
Catalase
Glutathione Peroxidase
2.2.2. Non-Enzymatic Antioxidants
Endogenous Non-Enzymatic Antioxidants
- Glutathione
- CoEnzyme Q-10 (CoQ10)
Exogenous Non-Enzymatic Antioxidants
- Vitamin C
- Vitamin E
3. Sources of ROS in the Heart
3.1. Mitochondrial Respiratory Chain ROS
3.2. Xanthine Oxidase
3.3. Nitric Oxide Synthases (NOSs)
3.4. Nicotinamide Adenine Dinucleotide Phosphate Oxidase
4. MiRNA
5. Omega-3
6. Creatine Supplementation
7. Exercise and Stress Oxidative in the Heart
7.1. Endothelial Dysfunction, Cardiac Oxidative Stress and Exercise
7.2. Hypertension, Cardiac Oxidative Stress and Exercise
8. Antioxidant and Physical Activity Therapies for Heart Disease Related to Oxidative Stress
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- D’Oria, R.; Schipani, R.; Leonardini, A.; Natalicchio, A.; Perrini, S.; Cignarelli, A.; Laviola, L.; Giorgino, F. The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor. Oxidative. Med. Cell. Longev. 2020, 2020, 1–29. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef]
- Taherkhani, S.; Suzuki, K.; Ruhee, R. A Brief Overview of Oxidative Stress in Adipose Tissue with a Therapeutic Approach to Taking Antioxidant Supplements. Antioxidants 2021, 10, 594. [Google Scholar] [CrossRef]
- Kaminski, K.A.; Bonda, T.A.; Korecki, J.; Musial, W.J. Oxidative stress and neutrophil activation—The Two Keystones of Ische-mia/Rreperfusion Injury. Int. J. Cardiol. 2002, 86, 41–59. [Google Scholar] [CrossRef]
- Finkel, T.; Holbrook, N. Oxidative Stress and Aging: Catalase is a Longevity Determinant Enzyme. Nature 2000, 408, 239. [Google Scholar] [CrossRef] [PubMed]
- Elahi, M.M.; Kong, Y.X.; Matata, B.M. Oxidative Stress as a Mediator of Cardiovascular Disease. Oxidative. Med. Cell. Longev. 2009, 2, 259–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Incalza, M.A.; D’Oria, R.; Natalicchio, A.; Perrini, S.; Laviola, L.; Giorgino, F. Oxidative Stress and Reactive Oxygen Species in Endothelial Dysfunction Associated with Cardiovascular and Metabolic Diseases. Vasc. Pharmacol. 2018, 100, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Taherkhani, S.; Suzuki, K.; Castell, L. A Short Overview of Changes in Inflammatory Cytokines and Oxidative Stress in Re-sponse to Physical Activity and Antioxidant Supplementation. Antioxidants 2020, 9, 886. [Google Scholar] [CrossRef]
- Valaei, K.; Mehrabani, J.; Wong, A. Effects of L-citrulline Supplementation on Nitric Oxide and Antioxidant Markers after High-Intensity Interval Exercise in Young Men: A randomized Controlled Trial. Br. J. Nutr. 2021, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Gaucher, C.; Boudier, A.; Bonetti, J.; Clarot, I.; Leroy, P.; Parent, M. Glutathione: Antioxidant Properties Dedicated to Nanotech-nologies. Antioxidants 2018, 7, 62. [Google Scholar] [CrossRef] [Green Version]
- Khoramipour, K.; Chamari, K.; Hekmatikar, A.A.; Ziyaiyan, A.; Taherkhani, S.; Elguindy, N.M.; Bragazzi, N.L. Adiponectin: Structure, Physiological Functions, Role in Diseases, and Effects of Nutrition. Nutrients 2021, 13, 1180. [Google Scholar] [CrossRef] [PubMed]
- Galán, A.I.; Palacios, E.; Ruiz, F.; Díez, A.; Arji, M.; Almar, M.; Moreno, C.; Calvo, J.I.; Muñoz, M.E.; Delgado, M.A.; et al. Exercise, Oxidative Stress and Risk of Cardiovascular Disease in the Elderly. Protective Role of Antioxidant Functional Foods. BioFactors 2006, 27, 167–183. [Google Scholar] [CrossRef]
- Mazzeo, R.S.; Cavanagh, P.; Evans, W.J.; Fiatarone, M.; Hagberg, J.; McAuley, E.; Startzell, J. ACSM Position Stand: Exercise and Physical Activity for Older Adults. Med. Sci. Sports Exerc. 1998, 30, 992–1008. [Google Scholar] [CrossRef]
- Halbert, J.; Silagy, C.; Finucane, P.; Withers, R.; Hamdorf, P. Exercise Training and Blood Lipids in Hyperlipidemic and Normoli-Pidemic Adults: A Meta-Analysis of Randomized, Controlled Trials. Eur. J. Clin. Nutr. 1999, 53, 514–522. [Google Scholar] [CrossRef] [Green Version]
- Taddei, S.; Galetta, F.; Virdis, A.; Ghiadoni, L.; Salvetti, G.; Franzoni, F.; Giusti, C.; Salvetti, A. Physical Activity Prevents Age-Related Impairment in Nitric Oxide Availability in Elderly Athletes. Circulation 2000, 101, 2896–2901. [Google Scholar] [CrossRef]
- Antoniades, C.; Tousoulis, D.; Tentolouris, C.; Toutouzas, P.; Stefanadis, C. Oxidative Stress, Antioxidant Vitamins, and Athero-sclerosis. Herz 2003, 28, 628–638. [Google Scholar] [CrossRef]
- Ahmad, G.; Almasry, M.; Dhillon, A.S.; Abuayyash, M.M.; Kothandaraman, N.; Cakar, Z. Overview and Sources of Reactive Oxygen Species (ROS) in the Reproductive System. In Oxidative Stress in Human Reproduction; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–16. [Google Scholar]
- Silva, A.N.; Lima, L.C.F. The Association between Physical Exercise and Reactive Oxygen Species (ROS) Production. J. Sport. Med. Stud. Doping. 2015, 5, 1–7. [Google Scholar]
- Giordano, F.J. Oxygen, Oxidative Stress, Hypoxia, and Heart Failure. J. Clin. Investig. 2005, 115, 500–508. [Google Scholar] [CrossRef]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef] [Green Version]
- Tsutsui, H.; Kinugawa, S.; Matsushima, S. Oxidative Stress and Heart Failure. Am. J. Physiol. -Heart Circ. Physiol. 2011, 301, H2181–H2190. [Google Scholar] [CrossRef] [Green Version]
- Takimoto, E.; Kass, D.A. Role of Oxidative Stress in Cardiac Hypertrophy and Remodeling. Hypertension 2007, 49, 241–248. [Google Scholar] [CrossRef]
- Förstermann, U. Nitric Oxide and Oxidative Stress in Vascular Disease. Pflügers. Arch. Eur. J. Physiol. 2010, 459, 923–939. [Google Scholar] [CrossRef]
- Förstermann, U. Oxidative Stress in Vascular Disease: Causes, Defense Mechanisms and Potential Therapies. Nat. Clin. Pract. Cardiovasc. Med. 2008, 5, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Forstermann, U.; Munzel, T. Endothelial Nitric Oxide Synthase in Vascular Disease: From Marvel to Menace. Circulation 2006, 113, 1708–1714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadet, J.; Ravanat, J.-L.; TavernaPorro, M.; Menoni, H.; Angelov, D. Oxidatively Generated Complex DNA Damage: Tandem and Clustered Lesions. Cancer. Lett. 2012, 327, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Clark, I.A.; Cowden, W.B.; Hunt, N.H. Free Radical-Induced Pathology. Med. Res. Rev. 1985, 5, 297–332. [Google Scholar] [CrossRef]
- Aslani, B.A.; Ghobadi, S. Studies on Oxidants and Antioxidants with a Brief Glance at Their Relevance to the Immune System. Life. Sci. 2016, 146, 163–173. [Google Scholar] [CrossRef]
- Singh, Y.P.; Patel, R.N.; Singh, Y.; Butcher, R.J.; Vishakarma, P.K.; Singh, R.B. Structure and Antioxidant Superoxide Dismutase Activity of Copper (II) Hydrazone Complexes. Polyhedron 2017, 122, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Perrotta, I.; Aquila, S. The Role of Oxidative Stress and Autophagy in Atherosclerosis. Oxidative. Med. Cell. Longev. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Prasad, N.; Ramteke, P.; Dholia, N.; Yadav, U.C. Therapeutic Interventions to Block Oxidative Stress-Associated Pathologies. In Immunity and Inflammation in Health and Disease; Elsevier: Amsterdam, The Netherlands, 2018; pp. 341–362. [Google Scholar]
- Tosun, M.; Yağcı, R.; Erdurmuş, M. Glaucoma and Antioxidant Status. In Handbook of Nutrition, Diet, and the Eye; Elsevier: Amsterdam, The Netherlands, 2019; pp. 203–219. [Google Scholar]
- McMurray, J.J. Clinical Practice. Systolic Heart Failure. N. Engl. J. Med. 2010, 362, 228–238. [Google Scholar] [CrossRef]
- Shiomi, T.; Tsutsui, H.; Matsusaka, H.; Murakami, K.; Hayashidani, S.; Ikeuchi, M.; Wen, J.; Kubota, T.; Utsumi, H.; Takeshita, A. Overexpression of Glutathione Peroxidase Prevents Left Ventricular Remodeling and Failure after Myocardial Infarction in Mice. Circulation 2004, 109, 544–549. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Huang, Y.; Zhai, L. Impact of Nutritional and Environmental Factors on Inflammation, Oxidative Stress, and the Microbiome. Biomed. Res. Int. 2018, 2018, 5606845. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Nahar, K.; Anee, T.I.; Fujita, M. Glutathione in Plants: Biosynthesis and Physiological Role in Environ-mental Stress Tolerance. Physiol. Mol. Biol. Plants 2017, 23, 249–268. [Google Scholar] [CrossRef] [PubMed]
- Tafazoli, A. Coenzyme Q10 in Breast Cancer Care. Futur. Oncol. 2017, 13, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Gvozdjakova, A.; Kucharská, J.; Dubravicky, J.; Mojto, V.; Singh, R.B. Coenzyme Q10, α-Tocopherol, and Oxidative Stress Could Be Important Metabolic Biomarkers of Male Infertility. Dis. Markers 2015, 2015, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancini, A.; Balercia, G. Coenzyme Q(10) in Male Infertility: Physiopathology and Therapy. BioFactors 2011, 37, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Q.E.; Tan, T.S.; Kawamukai, M.; Chen, E.S. Cellular Factories for Coenzyme Q10 Production. Microb. Cell. Factories 2017, 16, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Rowe, S.; Carr, A.C. Global Vitamin C Status and Prevalence of Deficiency: A Cause for Concern? Nutrients 2020, 12, 2008. [Google Scholar] [CrossRef]
- Osganian, S.K.; Stampfer, M.J.; Rimm, E.; Spiegelman, D.; Hu, F.B.; Manson, J.E.; Willett, W.C. Vitamin C and Risk of Coronary Heart Disease in Women. J. Am. Coll. Cardiol. 2003, 42, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Rescigno, A.; Dettori, T.; Calina, D.; Docea, A.O.; Singh, L.; Cebeci, F.; Özçelik, B.; Bhia, M.; Beirami, A.D.; et al. Avocado–Soybean Unsaponifiables: A Panoply of Po-tentialities to be Exploited. Biomolecules 2020, 10, 130. [Google Scholar] [CrossRef] [Green Version]
- Morelli, M.B.; Gambardella, J.; Castellanos, V.; Trimarco, V.; Santulli, G. Vitamin C and Cardiovascular Disease: An Update. Antioxidants 2020, 9, 1227. [Google Scholar] [CrossRef]
- Wyckelsma, V.L.; Venckunas, T.; Brazaitis, M.; Gastaldello, S.; Snieckus, A.; Eimantas, N.; Baranauskiene, N.; Subocius, A.; Skurvydas, A.; Pääsuke, M.; et al. Vitamin C and E Treatment Blunts Sprint Interval Training–Induced Changes in Inflammatory Mediator-, Calcium-, and Mitochondria-Related Signaling in Recreationally Active Elderly Humans. Antioxidants 2020, 9, 879. [Google Scholar] [CrossRef]
- Sugamura, K.; Keaney, J.F. Reactive Oxygen Species in Cardiovascular Disease. Free. Radic. Biol. Med. 2011, 51, 978–992. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.K.; Han, J. Mitochondria-Targeted Antioxidants for the Treatment of Cardiovascular Disorders. Mitochondrial. Dyn. Cardiovasc. Med. 2017, 982, 621–646. [Google Scholar]
- Sánchez-Villamil, J.P.; D’Annunzio, V.; Finocchietto, P.; Holod, S.; Rebagliati, I.; Pérez, H.; Peralta, J.G.; Gelpi, R.J.; Poderoso, J.J.; Carreras, M.C. Cardiac-Specific Overexpression of Thioredoxin 1 Attenuates Mitochondrial and Myocardial Dysfunction in Septic Mice. Int. J. Biochem. Cell Biol. 2016, 81, 323–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kornfeld, O.S.; Hwang, S.; Disatnik, M.-H.; Chen, C.-H.; Qvit, N.; Mochly-Rosen, D. Mitochondrial Reactive Oxygen Species at the Heart of the Matter: New Therapeutic Approaches for Cardiovascular Diseases. Circ. Res. 2015, 116, 1783–1799. [Google Scholar] [CrossRef]
- Laviola, L.; Orlando, M.R.; Incalza, M.A.; Caccioppoli, C.; Melchiorre, M.; Leonardini, A.; Cignarelli, A.; Tortosa, F.; Labarbuta, R.; Martemucci, S.; et al. TNFα Signals via p66Shc to Induce E-Selectin, Promote Leukocyte Transmigration and Enhance Permeability in Human Endothelial Cells. PLoS ONE 2013, 8, e81930. [Google Scholar]
- Paneni, F.; Costantino, S.; Cosentino, F. p66Shc-Induced Redox Changes Drive Endothelial Insulin Resistance. Atherosclerosis 2014, 236, 426–429. [Google Scholar] [CrossRef] [PubMed]
- Kuwabara, Y.; Nishino, T.; Okamoto, K.; Matsumura, T.; Eger, B.T.; Pai, E.F.; Nishino, T. Unique Amino Acids Cluster for Switching from the Dehydrogenase to Oxidase form of Xanthine Oxidoreductase. Proc. Natl. Acad. Sci. USA 2003, 100, 8170–8175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNally, J.S.; Davis, M.E.; Giddens, D.P.; Saha, A.; Hwang, J.; Dikalov, S.; Jo, H.; Harrison, D.G. Role of Xanthine Oxidoreductase and NAD(P)H Oxidase in Endothelial Superoxide Production in Response to Oscillatory Shear Stress. Am. J. Physiol. Circ. Physiol. 2003, 285, H2290–H2297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabet, F.; Touyz, R.M. Reactive Oxygen Species, Oxidative Stress, and Vascular Biology in Hypertension; Elsevier: Amsterdam, The Netherlands, 2007; pp. 337–347. [Google Scholar]
- Moris, D.; Spartalis, M.; Tzatzaki, E.; Spartalis, E.; Karachaliou, G.-S.; Triantafyllis, A.S.; Karaolanis, G.I.; Tsilimigras, D.I.; Theocharis, S. The Role of Reactive Oxygen Species in Myocardial Redox Signaling and Regulation. Ann. Transl. Med. 2017, 5, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Förstermann, U.; Sessa, W. Nitric Oxide Synthases: Regulation and Function. Eur. Hear. J. 2011, 33, 829–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibi, M.; Yabe-Nishimura, C. The Role of Reactive Oxygen Species in the Pathogenic Pathways of Depression; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–16. [Google Scholar]
- Heymes, C.; Bendall, J.K.; Ratajczak, P.; Cave, A.C.; Samuel, J.L.; Hasenfuss, G.; Shah, A.M. Increased Myocardial NADPH oxidase Activity in Human Heart Failure. J. Am. Coll. Cardiol. 2003, 41, 2164–2171. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.Y.; Luo, J.Y.; Wang, L.; Huang, Y. MicroRNAs Regulating Reactive Oxygen Species in Cardiovascular Diseases. Antioxid. Redox. Signal. 2018, 29, 1092–1107. [Google Scholar] [CrossRef]
- Engedal, N.; Žerovnik, E.; Rudov, A.; Galli, F.; Olivieri, F.; Procopio, A.D.; Albertini, M.C. From Oxidative Stress Damage to Pathways, Networks, and Autophagy via MicroRNAs. Oxid. Med. Cell. Longev. 2018, 2018, 4968321. [Google Scholar] [CrossRef]
- Farías, J.G.; Molina, V.M.; Carrasco, R.A.; Zepeda, A.B.; Figueroa, E.; Letelier, P.; Castillo, R.L. Antioxidant Therapeutic Strategies for Cardiovascular Conditions Associated with Oxidative Stress. Nutrients 2017, 9, 966. [Google Scholar] [CrossRef]
- Sekhon, M.S.; Ainslie, P.N.; Griesdale, D.E. Clinical Pathophysiology of Hypoxic Ischemic Brain Injury after Cardiac Arrest: A “two-hit” Model. Critical. Care. 2017, 21, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Xu, W.; Liu, C.; Liu, P.; Li, P.; Wang, K. Reactive Oxygen Species Related Noncoding RNAs as Regulators of Cardiovascular Diseases. Int. J. Biol. Sci. 2019, 15, 680. [Google Scholar] [CrossRef] [Green Version]
- Racine, R.A.; Deckelbaum, R.J. Sources of the Very-Long-Chain Unsaturated Omega-3 Fatty Acids: Eeicosapentaenoic Acid and Docosahexaenoic acid. Curr. Opin. Clin. Nutr. Metab. Care. 2007, 10, 123–128. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Wu, J.H. Omega-3 Fatty Acids and Cardiovascular Disease: Effects on Risk Factors, Molecular Pathways, and Clinical Events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef] [Green Version]
- Jahangiri, A.; Leifert, W.R.; Kind, K.L.; McMurchie, E.J. Dietary Fish Oil Alters Cardiomyocyte Ca2+ Dynamics and Antioxidant Status. Free. Radic. Biol. Med. 2006, 40, 1592–1602. [Google Scholar] [CrossRef]
- Calò, L.; Martino, A.; Tota, C. The Anti-Arrhythmic Effects of n-3 PUFAs. Int. J. Cardiol. 2013, 170, S21–S27. [Google Scholar] [CrossRef]
- Balakumar, P.; Taneja, G. Fish Oil and Vascular Endothelial Protection: Bench to Bedside. Free. Radic. Biol. Med. 2012, 53, 271–279. [Google Scholar] [CrossRef]
- Deanfield, J.E.; Halcox, J.P.; Rabelink, T.J. Endothelial Function and Dysfunction: Testing and Clinical Relevance. Circulation 2007, 115, 1285–1295. [Google Scholar] [CrossRef]
- Das, U.N. Essential Fatty Acids and Their Metabolites Could Function as Endogenous HMG-CoA Reductase and ACE Enzyme Inhibitors, Anti-Arrhythmic, Anti-Hypertensive, Anti-Atherosclerotic, Anti-Inflammatory, Cytoprotective, and Cardioprotective Molecules. Lipids. Health. Dis. 2008, 7, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Liang, X.; Wang, L.; Lu, X.; Huang, J.; Cao, J.; Gu, D. Effect of Omega-3 Fatty Acids Supplementation on Endothelial Function: A Meta-Analysis of Randomized Controlled Trials. Atherosclerosis 2012, 221, 536–543. [Google Scholar] [CrossRef]
- Merino, J.; Sala-Vila, A.; Kones, R.; Ferre, R.; Plana, N.; Girona, J.; Masana, L. Increasing Long-Chain n-3PUFA Consumption Improves Small Peripheral Artery Function in Patients at Intermediate–High Cardiovascular Risk. J. Nutr. Biochem. 2014, 25, 642–646. [Google Scholar] [CrossRef]
- Van den Elsen, L.W.; Spijkers, L.J.; Van den Akker, R.F.; Van Winssen, A.M.; Balvers, M.; Wijesinghe, D.S.; Peters, S.L. Dietary Fish Oil Improves Endothelial Function and Lowers Blood Pressure via Suppression of Sphingolipid-Mediated Contractions in Spontaneously Hypertensive Rats. J. Hypertens. 2014, 32, 1050. [Google Scholar] [CrossRef] [Green Version]
- Mori, T.A.; Bao, D.Q.; Burke, V.; Puddey, I.B.; Beilin, L.J. Docosahexaenoic Acid But Not Eicosapentaenoic Acid Lowers Ambulatory Blood Pressure and Heart Rate in Humans. Hypertension 1999, 34, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Chanutin, A.; Guy, L.P. The Fate of Creatine When Administered to Man. J. Biol. Chem. 1926, 67, 29–41. [Google Scholar] [CrossRef]
- Sestili, P.; Martinelli, C.; Colombo, E.; Barbieri, E.; Potenza, L.; Sartini, S.; Fimognari, C. Creatine as an Antioxidant. Amino Acids 2011, 40, 1385–1396. [Google Scholar] [CrossRef]
- Clarke, H.; Kim, D.H.; Meza, C.A.; Ormsbee, M.J.; Hickner, R.C. The Evolving Applications of Creatine Supplementation: Could Creatine Improve Vascular Health? Nutrients 2020, 12, 2834. [Google Scholar] [CrossRef]
- Santacruz, L.; Arciniegas, A.J.L.; Darrabie, M.; Mantilla, J.G.; Baron, R.M.; Bowles, D.E.; Jacobs, D.O. Hypoxia Decreases Creatine Uptake in Cardiomyocytes, while Creatine Supplementation Enhances HIF Activation. Physiol. Rep. 2017, 5, e13382. [Google Scholar] [CrossRef]
- Matthews, R.T.; Yang, L.; Jenkins, B.G.; Ferrante, R.J.; Rosen, B.R.; Kaddurah-Daouk, R.; Beal, M.F. Neuroprotective Effects of Creatine and Cyclocreatine in Animal Mmodels of Huntington’s Disease. J. Neurosci. 1998, 18, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, R. Creatine Supplementation Decreases Oxidative DNA Damage and Lipid Peroxidation Induced by a Single Bout of Resistance Exercise. J. Strength Cond. Res. 2011, 25, 3448–3455. [Google Scholar] [CrossRef]
- Clarke, H.; Hickner, R.C.; Ormsbee, M.J. The Potential Role of Creatine in Vascular Health. Nutrients 2021, 13, 857. [Google Scholar] [CrossRef]
- Ascensão, A.; Magalhães, J.; Soares, J.; Oliveira, J.; Duarte, J.A. Exercise and Cardiac Oxidative Stress. Rev. Port. Cardiol. 2003, 22, 651–678. [Google Scholar]
- Piña, I.L.; Apstein, C.S.; Balady, G.J.; Belardinelli, R.; Chaitman, B.R.; Duscha, B.D.; Fletcher, B.J.; Fleg, J.L.; Myers, J.N.; Sullivan, M.J. Exercise and heart failure: A statement from the American Heart Association Committee on exercise, rehabilitation, and prevention. Circulation 2003, 107, 1210–1225. [Google Scholar] [CrossRef]
- Kappus, R.M.; Bunsawat, K.; Rosenberg, A.J.; Fernhall, B. No Evidence of Racial Differences in Endothelial Function and Exercise Blood Flow in Young, Healthy Males Following Acute Antioxidant Supplementation. Endoscopy 2017, 38, 193–200. [Google Scholar] [CrossRef]
- Lawrenson, L.; Poole, J.G.; Kim, J.; Brown, C.; Patel, P.; Richardson, R.S. Vascular and Metabolic Response to Isolated Small Muscle Mass Exercise: Effect of Age. Am. J. Physiol. Heart Circ. Physiol. 2003, 285, H1023–H1031. [Google Scholar] [CrossRef] [Green Version]
- Tofas, T.; Draganidis, D.; Deli, C.K.; Georgakouli, K.; Fatouros, I.G.; Jamurtas, A.Z. Exercise-Induced Regulation of Redox Status in Cardiovascular Diseases: The Role of Exercise Training and Detraining. Antioxidants 2019, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Radak, Z.; Torma, F.; Berkes, I.; Goto, S.; Mimura, T.; Posa, A.; Balogh, L.; Boldogh, I.; Suzuki, K.; Higuchi, M.; et al. Exercise Effects on Physiological Function During Aging. Free. Radic. Biol. Med. 2018, 132, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Podgórska, K.; Derkacz, A.; Szahidewicz-Krupska, E.; Jasiczek, J.; Dobrowolski, P.; Radziwon-Balicka, A.; Doroszko, A. Effect of regular aerobic activity in young healthy athletes on profile of endothelial function and platelet activity. Biomed. Res. Int. 2017, 2017, 8715909. [Google Scholar] [CrossRef]
- Webb, R.; Hughes, M.G.; Thomas, A.W.; Morris, K. The Ability of Exercise-Associated Oxidative Stress to Trigger Redox-Sensitive Signalling Responses. Antioxidants 2017, 6, 63. [Google Scholar] [CrossRef] [Green Version]
- Lum, H.; Roebuck, K.A. Oxidant Stress and Endothelial Cell Dysfunction. Am. J. Physiol. Physiol. 2001, 280, C719–C741. [Google Scholar] [CrossRef]
- Higashi, Y.; Maruhashi, T.; Noma, K.; Kihara, Y. Oxidative Stress and Endothelial Dysfunction: Clinical Evidence and Thera-peutic Implications. Trends. Cardiovasc. Med. 2014, 24, 165–169. [Google Scholar] [CrossRef]
- Zhang, D.X.; Gutterman, D.D. Mitochondrial Reactive Oxygen Species-Mediated Signaling in Endothelial Cells. Am. J. Physiol. Circ. Physiol. 2007, 292, H2023–H2031. [Google Scholar] [CrossRef]
- Cai, H.; Harrison, D.G. Endothelial Dysfunction in Cardiovascular Diseases: The Role of Oxidant Stress. Circ. Res. 2000, 87, 840–844. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.; Lei, H.; Qin, H.; Xia, Y. Molecular Mechanisms of Endothelial NO Synthase Uncoupling. Curr. Pharm. Des. 2014, 20, 3548–3553. [Google Scholar] [CrossRef]
- Vanhoutte, P.M.; Shimokawa, H.; Tang, E.H.C.; Feletou, M. Endothelial dysfunction and vascular disease. Acta. Physiol. 2009, 196, 193–222. [Google Scholar] [CrossRef] [Green Version]
- De Caterina, R. Endothelial Dysfunctions: Common Denominators in Vascular Disease. Curr. Opin. Lipidol. 2000, 11, 9–23. [Google Scholar] [CrossRef]
- Li, H.; Horke, S.; Förstermann, U. Oxidative Stress in Vascular Disease and its Pharmacological Prevention. Trends. Pharmacol. Sci. 2013, 34, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.J.; Pagan, L.U.; Okoshi, M.P. Non-Pharmacological Treatment of Cardiovascular Disease| Importance of Physical Exercise. SciELO Brazil 2019, 113, 9–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wolin, M.S.; Hintze, T.H. Chronic Exercise Enhances Endothelium-Mediated Dilation of Epicardial Coronary Artery in Conscious Dogs. Circ. Res. 1993, 73, 829–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niebauer, J.; Cooke, J. Cardiovascular Effects of Exercise: Role of Endothelial Shear Stress. J. Am. Coll. Cardiol. 1996, 28, 1652–1660. [Google Scholar] [CrossRef] [Green Version]
- Doroszko, A.; Andrzejak, R.; Szuba, A. Role of the Nitric Oxide Metabolic Pathway and Prostanoids in the Pathogenesis of Endothelial Dysfunction and Essential Hypertension in Young Men. Hypertens. Res. 2011, 34, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Paravicini, T.M.; Touyz, R.M. Redox Signaling in Hypertension. Cardiovasc. Res. 2006, 71, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.K.; Matchkov, V.V. Hypertension and Physical Exercise: The Role of Oxidative Stress. Medicina 2016, 52, 19–27. [Google Scholar] [CrossRef]
- Hegde, S.M.; Solomon, S.D. Influence of Physical Activity on Hypertension and Cardiac Structure and Function. Curr. Hypertens. Rep. 2015, 17, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Machida, K. Effectiveness of Lower-Level Voluntary Exercise in Disease Prevention of Mature Rats. Graefe’s. Arch. Clin. Exp. Ophthalmol. 1995, 71, 240–244. [Google Scholar] [CrossRef]
- Cook, M.D.; Heffernan, K.S.; Ranadive, S.; Woods, J.A.; Fernhall, B. Effect of Resistance Training on Biomarkers of Vascular Function and Oxidative Stress in Young African-American and Caucasian men. J. Hum. Hypertens. 2013, 27, 388–392. [Google Scholar] [CrossRef] [Green Version]
- Roque, F.R.; Briones, A.M.; García-Redondo, A.B.; Galán, M.; Martínez-Revelles, S.; Avendaño, M.S.; Cachofeiro, V.; Fernandes, T.; Vassallo, D.V.; Oliveira, E.M.; et al. Aerobic Exercise Reduces Oxidative Stress and Improves Vascular Changes of Small Mesenteric and Coronary Arteries in Hypertension. Br. J. Pharmacol. 2013, 168, 686–703. [Google Scholar] [CrossRef] [Green Version]
- Michishita, R.; Ohta, M.; Ikeda, M.; Jiang, Y.; Yamato, H. An Exaggerated Blood Pressure Response to Exercise is Associated with the Dietary Sodium, Potassium, and Antioxidant Vitamin Intake in Normotensive Subjects. Clin. Exp. Hypertens. 2018, 41, 152–159. [Google Scholar] [CrossRef]
- Tropea, T.; Greenwood, S.L.; Sibley, C.P.; Cottrell, E.C. Grape Seed Extract Polyphenols Improve Resistance Artery Function in Pregnant eNOS–/–Mice. Front. Physiol. 2020, 11, 588000. [Google Scholar] [CrossRef]
- Ardalani, H.; Jandaghi, P.; Meraji, A.; Moghadam, M.H. The Effect of Cynara Scolymus on Blood Pressure and BMI in Hyper-tensive Patients: A Randomized, Double-blind, Placebo-Controlled, Clinical Trial. Complementary Med. Res. 2020, 27, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Banday, A.A.; Lokhandwala, M.F. Oxidative Stress Impairs cGMP-Dependent Protein Kinase Activation and Vasodilator-Stimulated Phosphoprotein Serine-Phosphorylation. Clin. Exp. Hypertens. 2019, 41, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-C.; Hsu, C.-C.; Fu, T.-C.; Wang, J.-S. A Randomized Controlled Trial of Enhancing Hypoxia-Mediated Right Cardiac Mechanics and Reducing Afterload after High Intensity Interval Training in Sedentary Men. Sci. Rep. 2021, 11, 1–14. [Google Scholar]
- Omar, J.S.; Jaradat, N.; Qadoumi, M.; Qadoumi, A.N. Regular Swimming Exercise Improves Metabolic Syndrome Risk Factors: A Quasi-Experimental Study. BMC. Sports. Sci. Med. Rehabil. 2021, 13, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Waclawovsky, G.; Boll, L.F.C.; Eibel, B.; Alegretti, A.P.; Spagnol, F.; De Paoli, J.; Wajner, S.; Marschner, R.A.; Schaun, M.I.; Lehnen, A.M. Individuals with Controlled Hypertension Show Endothelial Integrity Following a Bout of Moderate-Intensity Exercise: Randomized Clinical Trial. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Wray, D.W.; Uberoi, A.; Lawrenson, L.; Bailey, D.M.; Richardson, R.S. Oral Antioxidants and Cardiovascular Health in the Exer-cise-Trained and Untrained Elderly: A Radically Different Outcome. Clin. Sci. 2009, 116, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Hemati, F.; Rahmani, A.; Asadollahi, K.; Soleimannejad, K.; Khalighi, Z. Effects of complementary creatine monohydrate and physical training on inflammatory and endothelial dysfunction markers among heart failure patients. Asian. J. Sports. Med. 2016, 7, e28578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Reference | Subject | Antioxidant Supplementation | Physical Activity | Result |
---|---|---|---|---|
Michishta et al. (2019) [108] | Normotensive men and women without heart disease | Vitamin E, Sodium and Potassium | Graded exercise test | ↑ SBP |
Tropea et al. (2020) [109] | Pregnant mice | GSEP | - | ↑ resistance artery function |
Ardalani et al. (2020) [110] | Hypertensive patients | E. Scolymus powder (500 mg twice daily) | - | ↑ BMI and SBP |
Banday et al. (2019) [111] | Male SD rats | BSO and T | - | ↑ BMI and SBP |
YC Huang et al. (2021) [112] | Young and healthy sedentary males | - | HIIT and MICT 30 min/day (total six weeks) | ↓ pulmonary vascular resistance with HIIT |
Omar, J.S et al. (2021) [113] | Both gender with HTN and T2DM | - | Regular swimming (6 weeks) | ↑ HDL, LDL, SBP, and DBP |
Waclawovsky, G et al. (2021) [114] | Hypertensive males | - | AE, RE and CE | ↔ in oxidative stress and FMD |
Wray DW et al. (2009) [115] | Older mildly hypertensive men | Vitamin E, C and α-lipoic acid | Knee-extensor exercise | ↔ in BP, FMD. But exercise ↑ DBP, SBP and FMD |
Dewell et al. (2011) [115] | Healthy adults with ≥one elevated risk factor | Antioxidant pills mixed (Vitamin C, E, Selenium and beta carotene) | - | ↔ in inflammatory markers |
Hemati et al. (2016) [116] | Heart failure patient | Creaine monohydrate (5 g/day) | 8 weeks, 3 times/week Aerobic exercise (20–40 min with 60–80% heart rate) | ↓ IL-6, hs-CRP p-selection, VCAM-I levels |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valaei, K.; Taherkhani, S.; Arazi, H.; Suzuki, K. Cardiac Oxidative Stress and the Therapeutic Approaches to the Intake of Antioxidant Supplements and Physical Activity. Nutrients 2021, 13, 3483. https://doi.org/10.3390/nu13103483
Valaei K, Taherkhani S, Arazi H, Suzuki K. Cardiac Oxidative Stress and the Therapeutic Approaches to the Intake of Antioxidant Supplements and Physical Activity. Nutrients. 2021; 13(10):3483. https://doi.org/10.3390/nu13103483
Chicago/Turabian StyleValaei, Kosar, Shima Taherkhani, Hamid Arazi, and Katsuhiko Suzuki. 2021. "Cardiac Oxidative Stress and the Therapeutic Approaches to the Intake of Antioxidant Supplements and Physical Activity" Nutrients 13, no. 10: 3483. https://doi.org/10.3390/nu13103483
APA StyleValaei, K., Taherkhani, S., Arazi, H., & Suzuki, K. (2021). Cardiac Oxidative Stress and the Therapeutic Approaches to the Intake of Antioxidant Supplements and Physical Activity. Nutrients, 13(10), 3483. https://doi.org/10.3390/nu13103483