Mediterranean Diet Affects Blood Circulating Lipid-Soluble Micronutrients and Inflammatory Biomarkers in a Cohort of Breast Cancer Survivors: Results from the SETA Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Dietary Assessment
2.3. Anthropometric Parameters
2.4. Biomarker Analysis
2.5. Statistical Analyses
3. Results
3.1. Characteristic of Study Population
3.2. Association of MDS with Lipid-Soluble Vitamins and Carotenoids
3.3. Association of MDS with Biomarkers Related to Inflammation
3.4. Association of MDS with Cardiometabolic and Anthropometric Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Macacu, A.; Autier, P.; Boniol, M.; Boyle, P. Active and passive smoking and risk of breast cancer: A meta-analysis. Breast Cancer Res. Treat. 2015, 154, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Michels, K.B.; Mohllajee, A.P.; Roset-Bahmanyar, E.; Beehler, G.P.; Moysich, K.B. Diet and breast cancer: A review of the prospective observational studies. Cancer 2007, 109, 2712–2749. [Google Scholar] [CrossRef]
- Grosso, G.; Bella, F.; Godos, J.; Sciacca, S.; Del Rio, D.; Ray, S.; Galvano, F.; Giovannucci, E.L. Possible role of diet in cancer: Systematic review and multiple meta-analyses of dietary patterns, lifestyle factors, and cancer risk. Nutr. Rev. 2017, 75, 405–419. [Google Scholar] [CrossRef]
- Vrieling, A.; Buck, K.; Seibold, P.; Heinz, J.; Obi, N.; Flesch-Janys, D.; Chang-Claude, J. Dietary patterns and survival in German postmenopausal breast cancer survivors. Br. J. Cancer 2013, 108, 188–192. [Google Scholar] [CrossRef] [Green Version]
- Dieli-Conwright, C.M.; Lee, K.; Kiwata, J.L. Reducing the risk of breast cancer recurrence: An evaluation of the effects and mechanisms of diet and exercise. Curr. Breast Cancer Rep. 2016, 8, 139–150. [Google Scholar] [CrossRef] [Green Version]
- World Cancer Research Fund and American Institute of Cancer Research (WCRF). Diet, Nutrition, Physical Activity and Breast Cancer Survivors; Continuous Update Report 2017, Revised 2018; WCRF: London, UK, 2018. [Google Scholar]
- Eleftheriou, D.; Benetou, V.; Trichopoulou, A.; La Vecchia, C.; Bamia, C. Mediterranean diet and its components in relation to all-cause mortality: Meta-analysis. Br. J. Nutr. 2018, 120, 1081–1097. [Google Scholar] [CrossRef]
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean diet and multiple health outcomes: An umbrella review of meta-analyses of observational studies and randomised trials. Eur. J. Clin. Nutr. 2018, 72, 30–43. [Google Scholar] [CrossRef]
- Martín-Peláez, S.; Fito, M.; Castaner, O. Mediterranean diet effects on type 2 diabetes prevention, disease progression, and related mechanisms. A review. Nutrients 2020, 12, 2236. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Schwedhelm, C.; Galbete, C.; Hoffmann, G. Adherence to mediterranean diet and risk of cancer: An up-dated systematic review and meta-analysis. Nutrients 2017, 9, 1063. [Google Scholar] [CrossRef]
- Mentella, M.C.; Scaldaferri, F.; Ricci, C.; Gasbarrini, A.; Miggiano, G.A.D. Cancer and Mediterranean diet: A review. Nutrients 2019, 11, 2059. [Google Scholar] [CrossRef] [Green Version]
- Castelló, A.; Pollán, M.; Buijsse, B.; Ruiz, A.; Casas, A.M.; Baena-Cañada, J.M.; Lope, V.; Antolín, S.; Ramos, M.; Munoz, M.; et al. Spanish Mediterranean diet and other dietary patterns and breast cancer risk: Case–control EpiGEICAM study. Br. J. Cancer 2014, 111, 1454–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toledo, E.; Salas-Salvadó, J.; Donat-Vargas, C.; Buil-Cosiales, P.; Estruch, R.; Ros, E.; Corella, D.; Fitó, M.; Hu, F.B.; Arós, F.; et al. Mediterranean diet and invasive breast cancer risk among women at high cardiovascular risk in the PREDIMED trial: A randomized clinical trial. JAMA Intern Med. 2015, 175, 1752–1760. [Google Scholar] [CrossRef]
- Al Shaikh, A.; Braakhuis, A.J.; Bishop, K.S. The mediterranean diet and breast cancer: A personalised approach. Healthcare 2019, 7, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Bo’, C.; Marino, M.; Martini, D.; Tucci, M.; Ciappellano, S.; Riso, P.; Porrini, M. Overview of human intervention studies evaluating the impact of the mediterranean diet on markers of DNA damage. Nutrients 2019, 11, 391. [Google Scholar] [CrossRef] [Green Version]
- Chow, R.; Ii, C.B.S.; Ro, V.; Chiu, L.; Lock, M. Weight changes of younger and older early breast cancer patients—A meta regression. Ann. Palliat. Med. 2021. [Google Scholar] [CrossRef]
- World Cancer Research Fund and American Institute of Cancer Research (WCRF). Diet, Nutrition, Physical Activity and Breast Cancer: A Global Perspectives. Continuous Update Project Expert Report 2018; WCRF International: London, UK, 2018; pp. 12–17. [Google Scholar]
- Skouroliakou, M.; Grosomanidis, D.; Massara, P.; Kostara, C.; Papandreou, P.; Ntountaniotis, D.; Xepapadakis, G. Serum antioxidant capacity, biochemical profile and body composition of breast cancer survivors in a randomized Mediterranean dietary intervention study. Eur. J. Nutr. 2018, 57, 2133–2145. [Google Scholar] [CrossRef]
- Ibrahim, E.M.; Al-Homaidh, A. Physical activity and survival after breast cancer diagnosis: Meta-analysis of published studies. Med. Oncol. 2011, 28, 753–765. [Google Scholar] [CrossRef]
- Bach, A.; Serra-Majem, L.; Carrasco, J.L.; Roman, B.; Ngo, J.; Bertomeu, I.; Obrador, B. The use of indexes evaluating the ad-herence to the Mediterranean diet in epidemiological studies: A review. Public Health Nutr. 2006, 9, 132–146. [Google Scholar] [CrossRef]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean diet and health status: An updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014, 17, 2769–2782. [Google Scholar] [CrossRef] [Green Version]
- Panagiotakos, D.B.; Pitsavos, C.; Stefanadis, C. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 559–568. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek pop-ulation. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [Green Version]
- Demetriou, C.A.; Hadjisavvas, A.; Loizidou, M.A.; Loucaides, G.; Neophytou, I.; Sieri, S.; Kakouri, E.; Middleton, N.; Vineis, P.; Kyriacou, K. The mediterranean dietary pattern and breast cancer risk in Greek-Cypriot women: A case-control study. BMC Cancer 2012, 12, 113. [Google Scholar] [CrossRef] [Green Version]
- Jacometo, C.B.; Osorio, J.; Socha, M.; Corrêa, M.N.; Cappelli, F.P.; Trevisi, E.; Loor, J.J. Maternal consumption of organic trace minerals alters calf systemic and neutrophil mRNA and microRNA indicators of inflammation and oxidative stress. J. Dairy Sci. 2015, 98, 7717–7729. [Google Scholar] [CrossRef]
- Skinner, J.G.; Brown, R.A.L.; Roberts, L. Bovine haptoglobin response in clinically defined field conditions. Veter. Rec. 1991, 128, 147–149. [Google Scholar] [CrossRef]
- Sunderman, F.W., Jr.; Nomoto, S. Measurement of human serum ceruloplasmin by its p-phenylenediamine oxidase activity. Clin. Chem. 1970, 16, 903–910. [Google Scholar] [CrossRef]
- Ferré, N.; Tous, M.; Paul, A.; Zamora, A.; Vendrell, J.J.; Bardaji, A.; Camps, J.; Richart, C.; Joven, J. Paraoxonase Gln-Arg(192) and Leu-Met(55) gene polymorphisms and enzyme activity in a population with a low rate of coronary heart disease. Clin. Biochem. 2002, 35, 197–203. [Google Scholar] [CrossRef]
- Bionaz, M.; Trevisi, E.; Calamari, L.; Librandi, F.; Ferrari, A.; Bertoni, G. Plasma paraoxonase, health, inflammatory conditions, and liver function in transition dairy cows. J. Dairy Sci. 2007, 90, 1740–1750. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. World Health Data Platform/GHO/Themes/BMI. Available online: https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/body-mass-index (accessed on 23 April 2021).
- WHO. World Health Data Platform/GHO/Indicator Metadata Registry List/Mean Fasting Blood Glucose. Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/mean-fasting-blood-glucose-age-standardized-estimate (accessed on 22 April 2021).
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the 3rd Report of the National Cholesterol Education Program (NCEP) expert panel on detection evaluation and treatment of high blood cholesterol in adults (Adults Treatment Panel III). JAMA 2001, 285, 2486–2496. [Google Scholar] [CrossRef] [PubMed]
- Spandrio, L. Biochimica Clinica, 2nd ed.; Sorbona: Napoli, Italy, 2005. [Google Scholar]
- Mayo Clinic Laboratories. Ceruloplasmin Serum. Available online: https://www.mayocliniclabs.com/test-catalog/Clinical+and+Interpretive/113118 (accessed on 26 March 2021).
- Del Bo, C.; Bernardi, S.; Marino, M.; Porrini, M.; Tucci, M.; Guglielmetti, S.; Cherubini, A.; Carrieri, B.; Kirkup, B.; Kroon, P.; et al. Systematic review on polyphenol intake and health outcomes: Is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern? Nutrients 2019, 11, 1355. [Google Scholar]
- Aune, D.; Chan, D.S.M.; Vieira, A.R.; Rosenblatt, D.A.N.; Vieira, R.; Greenwood, D.C.; Norat, T. Fruits, vegetables and breast cancer risk: A systematic review and meta-analysis of prospective studies. Breast Cancer Res. Treat. 2012, 134, 479–493. [Google Scholar] [CrossRef] [Green Version]
- Bakker, M.F.; Peeters, P.H.; Klaasen, V.M.; Bueno-de-Mesquita, H.B.; Jansen, E.H.; Ros, M.M.; Travier, N.; Olsen, A.; Tjøn-neland, A.; Overvad, K.; et al. Plasma carotenoids, vitamin c, tocopherols, and retinol and the risk of breast cancer in the eu-ropean prospective investigation into cancer and nutrition cohort. Am. J. Clin. Nutr. 2016, 103, 454–464. [Google Scholar] [CrossRef]
- Fallaize, R.; Forster, H.; Macready, A.L.; Walsh, M.C.; Mathers, J.C.; Brennan, L.; Gibney, E.R.; Gibney, M.J.; Lovegrove, J.A. Online dietary intake estimation: Reproducibility and validity of the food4me food frequency questionnaire against a 4-day weighed food record. J. Med. Internet Res. 2014, 16, e190. [Google Scholar] [CrossRef]
- Al-Delaimy, W.K.; van Kappel, A.L.; Ferrari, P.; Slimani, N.; Steghens, J.-P.; Bingham, S.; Johansson, I.; Wallström, P.; Overvad, K.; Tjønneland, A.; et al. Plasma levels of six carotenoids in nine european countries: Report from the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr. 2004, 7, 713–722. [Google Scholar] [CrossRef]
- Rosa, C.; Franca, C.; Vieira, S.L.; Carvalho, A.; Penna, A.; Nogueira, C.; Lessa, S.; Ramalho, A. Reduction of serum concentrations and synergy between retinol, β-carotene, and zinc according to cancer staging and different treatment modalities prior to radiation therapy in women with breast cancer. Nutrients 2019, 11, 2953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sontakke, A.N.; More, U. Changes in serum ceruloplasmin levels with commonly used methods of contraception. Indian J. Clin. Biochem. 2004, 19, 102–104. [Google Scholar] [CrossRef] [Green Version]
- D’Odorico, A.; Martines, D.; Kiechl, S.; Egger, G.; Oberhollenzer, F.; Bonvicini, P.; Sturniolo, G.C.; Naccarato, R.; Willeit, J. High plasma levels of alpha- and beta-carotene are associated with a lower risk of atherosclerosis: Results from the bruneck study. Atherosclerosis 2000, 153, 231–239. [Google Scholar] [CrossRef]
- Li, H.L.; Liu, D.P.; Liang, C.C. Paraoxonase gene polymorphisms, oxidative stress, and diseases. J. Mol. Med. 2003, 81, 766–779. [Google Scholar] [CrossRef]
- Daniels, J.-A.; Mulligan, C.; McCance, D.; Woodside, J.V.; Patterson, C.; Young, I.S.; McEneny, J. A randomised controlled trial of increasing fruit and vegetable intake and how this influences the carotenoid concentration and activities of PON-1 and LCAT in HDL from subjects with type 2 diabetes. Cardiovasc. Diabetol. 2014, 13, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freese, R.; Alfthan, G.; Jauhiainen, M.; Basu, S.; Erlund, I.; Salminen, I.; Aro, A.; Mutanen, M. High intakes of vegetables, berries, and apples combined with a high intake of linoleic or oleic acid only slightly affect markers of lipid peroxidation and lipoprotein metabolism in healthy subjects. Am. J. Clin. Nutr. 2002, 76, 950–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou-Bonafonte, J.M.; Gabás-Rivera, C.; Navarro, M.A.; Osada, J. PON1 and Mediterranean Diet. Nutrients 2015, 7, 4068–4092. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Gu, Y.; Zhang, S. Vitamin A and breast cancer survival: A systematic review and meta-analysis. Clin. Breast Cancer 2018, 18, e1389–e1400. [Google Scholar] [CrossRef] [PubMed]
- Peraita-Costa, I.; Garcia, P.C.; Morales-Suárez-Varela, M. Is there an association between β-carotene and breast cancer? A systematic review on breast cancer risk. Nutr. Cancer 2020, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Playdon, M.C.; Ziegler, R.G.; Sampson, J.N.; Stolzenberg-Solomon, R.; Thompson, H.J.; Irwin, M.L.; Mayne, S.T.; Hoover, R.N.; Moore, S. Nutritional metabolomics and breast cancer risk in a prospective study. Am. J. Clin. Nutr. 2017, 106, 637–649. [Google Scholar] [CrossRef] [PubMed]
- Eliassen, A.H.; Liao, X.; Rosner, B.; Tamimi, R.M.; Tworoger, S.S.; Hankinson, S.E. Plasma carotenoids and risk of breast cancer over 20 y of follow-up. Am. J. Clin. Nutr. 2015, 101, 1197–1205. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Luo, W.-P.; Zhang, C.-X. Fruit and vegetable intake and breast cancer prognosis: A meta-analysis of prospective cohort studies. Br. J. Nutr. 2017, 117, 737–749. [Google Scholar] [CrossRef] [Green Version]
- Heath, A.K.; Muller, D.; Brandt, P.A.V.D.; Papadimitriou, N.; Critselis, E.; Gunter, M.; Vineis, P.; Weiderpass, E.; Fagherazzi, G.; Boeing, H.; et al. Nutrient-wide association study of 92 foods and nutrients and breast cancer risk. Breast Cancer Res. 2020, 22, 1–12. [Google Scholar] [CrossRef]
MDS Quartiles | ||||||
---|---|---|---|---|---|---|
Reference Range Values | Q1 | Q2 | Q3 | Q4 | RMSE | |
MDS | - | 28.05 | 32.88 | 35.53 | 38.00 | 131.17 |
BMI, kg/m2 | 18.5–24.9 [31] | 30.8 | 29.7 | 30.2 | 29.3 | 8.35 |
Glucose, mg/dL | 70–100 [32] | 91.2 | 97.4 | 99.9 | 85.3 | 17.05 |
Insulin, µU/mL | - | 12.8 | 13.2 | 8.52 | 8.7 | 8.53 |
HOMA-IR | - | 3.06 | 3.32 | 2.26 | 1.92 | 2.44 |
TC, mg/dL | <200 [33] | 230.0 | 228.1 | 206.5 | 239.1 | 61.07 |
LDL-C, mg/dL | <100 [33] | 148.8 | 140.0 | 135.2 | 132.4 | 37.59 |
HDL-C, mg/dL | >40 [33] | 59.1 | 67.2 | 52.1 | 60.3 | 15.56 |
TAG, mg/dL | <150 [33] | 135.5 | 130.8 | 122.4 | 143.0 | 64.53 |
Vitamin D ng/mL | 20–150 [34] | 17.7 | 16.8 | 19.0 | 22.4 | 9.54 |
Lutein-Zeaxanthin, mg/L | - | 0.30 | 0.30 | 0.30 | 0.33 | 0.15 |
β-Cryptoxanthin, µg/L | - | 136.2 | 134.8 | 175.7 | 191.3 | 126.8 |
Lycopene, µg/L | - | 0.41 | 0.59 | 0.91 | 0.75 | 0.64 |
Retinol, µg/dL | 20–86 [34] | 66.9 | 58.0 | 49.8 | 50.2 | 22.45 |
Tocopherol, µg/mL | 5–20 [34] | 12.7 | 14.4 | 13.4 | 13.9 | 4.63 |
β-Carotene, µg/L | - | 320.0 a | 438.7 ab | 679.1 ab | 684.6 b | 429.01 |
Ceruloplasmin, µmol/L | 1.3–3.4 [35] | 3.42 | 3.75 | 3.55 | 3.83 | 1.05 |
Haptoglobin, g/L | 0.9–2.3 [34] | 1.06 | 1.10 | 1.10 | 1.15 | 0.27 |
Paraoxonase, U/mL | - | 182.0 | 180.0 | 171.3 | 171.5 | 32.41 |
ROM, mg H2O2/dL | - | 44.3 | 47.9 | 47.4 | 49.8 | 9.59 |
SHp, µmol/L | - | 371.1 | 346.2 | 328.6 | 384.0 | 121.4 |
FRAP, µmol/L | - | 528.9 | 503.6 | 503.7 | 471.8 | 116.4 |
MDS | LZ | β-Cryptoxanthin | Lycopene | Retinol | Tocopherol | β-Carotene | Vitamin D | |
---|---|---|---|---|---|---|---|---|
MDS | 1.000 | 0.091 | 0.190 | 0.274 * | −0.346 * | 0.054 | 0.331 ** | 0.152 |
LZ | 1.000 | 0.193 | 0.199 | 0.261 * | −0.032 | 0.188 | 0.249 * | |
β-Cryptoxanthin | 1.000 | 0.476 *** | −0.231 * | 0.369 ** | 0.484 *** | 0.324 ** | ||
Lycopene | 1.000 | −0.248 * | 0.282 * | 0.466 *** | 0.338 ** | |||
Retinol | 1.000 | −0.405 *** | −0.224 * | −0.147 | ||||
Tocopherol | 1.000 | 0.270 * | 0.269 * | |||||
β-Carotene | 1.000 | 0.359 *** | ||||||
Vitamin D | 1.000 |
MDS | Ceruloplasmin | Haptoglobin | Paraoxonase | ROMs | SHp | FRAP | |
---|---|---|---|---|---|---|---|
MDS | 1.000 | 0.110 | 0.114 | −0.096 | 0.199 | 0.012 | −0.256 * |
Ceruloplasmin | 1.000 | −0.015 | −0.022 | 0.736 ** | −0.024 | 0.1503 | |
Haptoglobin | 1.000 | −0.270 * | 0.090 | 0.076 | −0.066 | ||
Paraoxonase | 1.000 | −0.160 | 0.170 | −0.116 | |||
ROMs | 1.000 | 0.024 | 0.021 | ||||
SHp | 1.000 | 0.114 | |||||
FRAP | 1.000 |
LZ | β-Cryptoxanthin | Lycopene | Retinol | Tocopherol | β-Carotene | Vitamin D | |
---|---|---|---|---|---|---|---|
Ceruloplasmin | −0.170 | −0.116 | 0.144 | −0.044 | −0.080 | −0.101 | −0.138 |
Haptoglobin | −0.158 | 0.015 | 0.039 | −0.084 | 0.029 | 0.056 | 0.037 |
Paraoxonase | 0.171 | 0.018 | −0.018 | 0.454 *** | −0.234 * | −0.118 | −0.155 |
ROMs | −0.181 | 0.052 | 0.323 ** | −0.358 ** | 0.279 * | 0.028 | 0.083 |
SHp | −0.010 | 0.058 | 0.1445 | −0.116 | −0.039 | 0.042 | 0.002 |
FRAP | 0.033 | −0.031 | 0.063 | 0.196 | 0.052 | −0.066 | −0.092 |
MDS | BMI | Glucose | Insulin | HOMA-IR | TC | LDL-C | HDL-C | TAG | |
---|---|---|---|---|---|---|---|---|---|
MDS | 1.000 | −0.110 | −0.216 | −0.199 | −0.176 | −0.024 | −0.192 | −0.018 | 0.109 |
BMI | 1.000 | 0.261 * | 0.206 | 0.196 | 0.070 | 0.168 | −0.171 | 0.025 | |
Glucose | 1.000 | 0.403 *** | 0.553 *** | −0.002 | 0.094 | −0.147 | −0.064 | ||
Insulin | 1.000 | 0.974 *** | −0.078 | −0.088 | −0.306 ** | 0.0364 | |||
HOMA-IR | 1.000 | −0.078 | −0.088 | −0.305 ** | 0.036 | ||||
TC | 1.000 | 0.270* | 0.318 ** | 0.806 *** | |||||
LDL-C | 1.000 | −0.091 | −0.278 * | ||||||
HDL-C | 1.000 | 0.128 | |||||||
TAG | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negrati, M.; Razza, C.; Biasini, C.; Di Nunzio, C.; Vancini, A.; Dall’Asta, M.; Lovotti, G.; Trevisi, E.; Rossi, F.; Cavanna, L. Mediterranean Diet Affects Blood Circulating Lipid-Soluble Micronutrients and Inflammatory Biomarkers in a Cohort of Breast Cancer Survivors: Results from the SETA Study. Nutrients 2021, 13, 3482. https://doi.org/10.3390/nu13103482
Negrati M, Razza C, Biasini C, Di Nunzio C, Vancini A, Dall’Asta M, Lovotti G, Trevisi E, Rossi F, Cavanna L. Mediterranean Diet Affects Blood Circulating Lipid-Soluble Micronutrients and Inflammatory Biomarkers in a Cohort of Breast Cancer Survivors: Results from the SETA Study. Nutrients. 2021; 13(10):3482. https://doi.org/10.3390/nu13103482
Chicago/Turabian StyleNegrati, Mara, Claudia Razza, Claudia Biasini, Camilla Di Nunzio, Alessandra Vancini, Margherita Dall’Asta, Giorgia Lovotti, Erminio Trevisi, Filippo Rossi, and Luigi Cavanna. 2021. "Mediterranean Diet Affects Blood Circulating Lipid-Soluble Micronutrients and Inflammatory Biomarkers in a Cohort of Breast Cancer Survivors: Results from the SETA Study" Nutrients 13, no. 10: 3482. https://doi.org/10.3390/nu13103482
APA StyleNegrati, M., Razza, C., Biasini, C., Di Nunzio, C., Vancini, A., Dall’Asta, M., Lovotti, G., Trevisi, E., Rossi, F., & Cavanna, L. (2021). Mediterranean Diet Affects Blood Circulating Lipid-Soluble Micronutrients and Inflammatory Biomarkers in a Cohort of Breast Cancer Survivors: Results from the SETA Study. Nutrients, 13(10), 3482. https://doi.org/10.3390/nu13103482