Mediterranean Diet and Healthy Eating in Subjects with Prediabetes from the Mollerussa Prospective Observational Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Assessment of the Dietary Pattern
2.3. Clinical Data
2.4. Statistical Analysis
3. Results
3.1. Dietary Pattern and Prediabetes
3.2. Clinical Factors and Prediabetes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Diabetes Association. Standards of medical care in diabetes–2020. Diabetes Care 2020, 43, S212. [Google Scholar]
- Soriguer, F.; Goday, A.; Bosch-Comas, A.; Bordiú, E.; Calle-Pascual, A.; Carmena, R.; Casamitjana, R.; Castaño, L.; Castell, C.; Catalá, M.; et al. Prevalence of diabetes mellitus and impaired glucose regulation in Spain: The Di@bet.es Study. Diabetologia 2012, 55, 88–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koloverou, E.; Panagiotakos, D.; Pitsavos, C.; Chrysohoou, C.; Georgousopoulou, E.N.; Grekas, A.; Christou, A.; Chatzigeorgiou, M.; Skoumas, I.N.; Tousoulis, D.; et al. Adherence to Mediterranean diet and 10-year incidence (2002–2012) of diabetes: Correlations with inflammatory and oxidative stress biomarkers in the ATTICA cohort study. Diabetes/Metab. Res. Rev. 2016, 32, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet. N. Engl. J. Med. 2013, 368, 1279–1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burggraf, C.; Teuber, R.; Brosig, S.; Meier, T. Review of a priori dietary quality indices in relation to their construction criteria. Nutr Rev. 2018, 76, 747–764. [Google Scholar] [CrossRef] [Green Version]
- Fung, T.T.; McCullough, M.L.; Newby, P.K.; Manson, J.E.; Meigs, J.B.; Rifai, N.; Willett, W.C.; Hu, F.B. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction. Am. J. Clin. Nutr. 2005, 82, 163–173. [Google Scholar] [CrossRef]
- McCullough, M.L.; Feskanich, D.; Stampfer, M.J.; Giovannucci, E.L.; Rimm, E.B.; Hu, F.B.; Spiegelman, D.; Hunter, D.J.; Colditz, G.A.; Willett, W.C. Diet quality and major chronic disease risk in men and women: Moving toward improved dietary guidance. Am. J. Clin. Nutr. 2002, 76, 1261–1271. [Google Scholar] [CrossRef] [Green Version]
- Alfawaz, H.; Naeef, A.F.; Wani, K.; Khattak, M.N.K.; Sabico, S.; Alnaami, A.M.; Al-Daghri, N.M. Improvements in Glycemic, Micronutrient, and Mineral Indices in Arab Adults with Pre-Diabetes Post-Lifestyle Modification Program. Nutrients 2019, 11, 2775. [Google Scholar] [CrossRef] [Green Version]
- König, D.; Hörmann, J.; Predel, H.G.; Berg, A. A 12-Month Lifestyle Intervention Program Improves Body Composition and Reduces the Prevalence of Prediabetes in Obese Patients. Obes. Facts. 2018, 11, 393–399. [Google Scholar] [CrossRef]
- Gopinath, B.; Rochtchina, E.; Flood, V.M.; Mitchell, P. Diet quality is prospectively associated with incident impaired fasting glucose in older adults. Diabet. Med. 2013, 30, 557–562. [Google Scholar] [CrossRef]
- Wirström, T.; Hilding, A.; Gu, H.F.; Östenson, C.G.; Björklund, A. Consumption of whole grain reduces risk of deteriorating glucose tolerance, including progression to prediabetes. Am. J. Clin. Nutr. 2013, 97, 179–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doostvandi, T.; Bahadoran, Z.; Mozaffari-Khosravi, H.; Mirmiran, P.; Azizi, F. Food intake patterns are associated with the risk of impaired glucose and insulin homeostasis: A prospective approach in the Tehran Lipid and Glucose Study. Pub. Health Nutr. 2016, 19, 2467–2474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- den Braver, N.R.; Rutters, F.; van der Spek, A.L.J.K.; Ibi, D.; Looman, M.; Geelen, A.; Elders, P.; van der Heijden, A.A.; Brug, J.; Lakerveld, J.; et al. Adherence to a food group-based dietary guideline and incidence of prediabetes and type 2 diabetes. Eur. J. Nutr. 2020, 59, 2159–2169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Zuurmond, M.G.; Van Der Schaft, N.; Nano, J.; Wijnhoven, H.A.H.; Ikram, M.A.; Franco, O.H.; Voortman, T. Plant versus animal based diets and insulin resistance, prediabetes and type 2 diabetes: The Rotterdam Study. Eur. J. Epidemiol. 2018, 33, 883–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bantle, A.E.; Chow, L.S.; Steffen, L.M.; Wang, Q.; Hughes, J.; Durant, N.H.; Ingram, K.H.; Reis, J.P.; Schreiner, P.J. Association of Mediterranean diet and cardiorespiratory fitness with the development of pre-diabetes and diabetes: The Coronary Artery Risk Development in Young Adults (CARDIA) study. BMJ Open Diabetes Res. Care 2016, 4, e000229. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, F.; Siassi, F.; Koohdani, F.; Mahaki, B.; Qorbani, M.; Yavari, P.; Shaibu, O.M.; Sotoudeh, G. Healthy and unhealthy dietary patterns are related to pre-diabetes: A case–control study. Br. J. Nutr. 2016, 116, 874–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safabakhsh, M.; Koohdani, F.; Bagheri, F.; Siassi, F.; Khajehnasiri, F.; Sotoudeh, G. Fruit and vegetable intake and pre-diabetes: A case—Control study. Eur. J. Nutr. 2018, 57, 2953–2962. [Google Scholar] [CrossRef]
- Heikkilä, H.M.; Schwab, U.; Krachler, B.; Männikkö, R.; Rauramaa, R. Dietary associations with prediabetic states—The DR’s EXTRA Study (ISRCTN45977199). Eur. J. Clin. Nutr. 2012, 66, 819–824. [Google Scholar] [CrossRef]
- Tian, L.; Zhu, Y.; Li, P.; Chang, H.; Wang, X.; Liu, W.; Zhang, Y.-W.; Huang, G. Associations between Dietary Patterns and Impaired Fasting Glucose in Chinese Men: A Cross-Sectional Study. Nutrients 2015, 7, 8072–8089. [Google Scholar] [CrossRef] [Green Version]
- Brouwer-Brolsma, E.M.; Sluik, D.; Singh-Povel, C.M.; Feskens, E.J.M. Dairy product consumption is associated with pre-diabetes and newly diagnosed type 2 diabetes in the Lifelines Cohort Study. Br. J. Nutr. 2018, 119, 442–455. [Google Scholar] [CrossRef] [Green Version]
- Ericson, U.; Brunkwall, L.; Hellstrand, S.; Nilsson, P.M.; Orho-Melander, M. A Health-Conscious Food Pattern Is Associated with Prediabetes and Gut Microbiota in the Malmö Offspring Study. J. Nutr. 2020, 150, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.; Zainal, H.; Harun, S.N.; Ghadzi, S.M.S. Dietary assessment of pre-diabetic patients by using food frequency questionnaire. A systematic review of study quality, study outcome, study questionnaire and their relative validity and reliability. Clin. Nutr. ESPEN 2019, 29, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Filippatos, T.D.; The ATTICA Study Group; Panagiotakos, D.B.; Georgousopoulou, E.N.; Pitaraki, E.; Kouli, G.-M.; Chrysohoou, C.; Tousoulis, D.; Stefanadis, C.; Pitsavos, C. Mediterranean Diet and 10-year (2002-2012) Incidence of Diabetes and Cardiovascular Disease in Participants with Prediabetes: The ATTICA study. Rev. Diabet. Stud. 2016, 13, 226–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viscogliosi, G.; Cipriani, E.; Liguori, M.L.; Marigliano, B.; Saliola, M.; Ettorre, E.; Andreozzi, P. Mediterranean Dietary Pattern Adherence: Associations with Prediabetes, Metabolic Syndrome, and Related Microinflammation. Metab. Syndr. Relat. Disord. 2013, 11, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Ortega, E.; Franch-Nadal, J.; Castell, C.; Goday, A.; Ribas-Barba, L.; Soriguer, F.; Vendrell, J.; Casamitjana, R.; Bosch-Comas, A.; Bordiú, E.; et al. Mediterranean Diet Adherence in Individuals with Prediabetes and Unknown Diabetes: The Di@bet.es Study. Ann. Nutr. Metab. 2013, 62, 339–346. [Google Scholar] [CrossRef]
- Vilanova, M.B.; Falguera, M.; Marsal, J.R.; Rubinat, E.; Alcubierre, N.; Catelblanco, E.; Granado-Casas, M.; Miró, N.; Molló, À.; Mata-Cases, M.; et al. Prevalence, clinical features and risk assessment of pre-diabetes in Spain: The prospective Mollerussa cohort study. BMJ Open 2017, 7, e015158. [Google Scholar] [CrossRef] [Green Version]
- Falguera, M.; Vilanova, M.B.; Alcubierre, N.; Granado-Casas, M.; Marsal, J.R.; Miró, N.; Cebrian, C.; Molló, À.; Franch-Nadal, J.; Mata-Cases, M.; et al. Prevalence of pre-diabetes and undiagnosed diabetes in the Mollerussa prospective observational cohort study in a semi-rural area of Catalonia. BMJ Open 2020, 10, e033332. [Google Scholar] [CrossRef] [Green Version]
- Vioque, J.; INMA-Valencia Cohort Study; Navarrete-Muñoz, E.-M.; Gimenez-Monzó, D.; De La Hera, M.G.; Granado, F.; Young, I.; Ramón, R.; Ballester, F.; Murcia, M.; et al. Reproducibility and validity of a food frequency questionnaire among pregnant women in a Mediterranean area. Nutr. J. 2013, 12, 26. [Google Scholar] [CrossRef] [Green Version]
- Trichopoulou, A.; Kouris-Blazos, A.; Wahlqvist, M.L.; Gnardellis, C.; Lagiou, P.; Polychronopoulos, E.; Vassilakou, T.; Lipworth, L.; Trichopoulos, D. Diet and overall survival in elderly people. BMJ 1995, 311, 1457–1460. [Google Scholar] [CrossRef] [Green Version]
- US Department of Agriculture Agricultural Research Service. USDA National Nutrient Database for Standard Reference. Available online: https://www.ars.usda.gov/ (accessed on 10 October 2020).
- Palma, I.; Farran, P.; Cervera, P. Tablas de Composición de Alimentos por Medidas Caseras de Consumo Habitual en España; Mc Graw Hill Interamericana: Barcelona, Spain, 2008. [Google Scholar]
- Royal Society of Chemistry. Food Standards Agency McCance and Widdowson’s The Composition of Foods; Sixth Summ; Royal Society of Chemistry: Cambridge, UK, 2002. [Google Scholar]
- Roman-Viñas, B.; Serra-Majem, L.; Hagströmer, M.; Ribas-Barba, L.; Sjöström, M.; Segura-Cardona, R. International Physical Activity Questionnaire: Reliability and validity in a Spanish population. Eur. J. Sport Sci. 2010, 10, 297–304. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 10 November 2020).
- Ahmad, S.; Demler, O.V.; Sun, Q.; Moorthy, M.V.; Li, C.; Lee, I.-M.; Ridker, P.M.; Manson, J.E.; Hu, F.B.; Fall, T.; et al. Association of the Mediterranean Diet With Onset of Diabetes in the Women’s Health Study. JAMA Netw. Open 2020, 3, e2025466. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.; Lecube, A.; Hernández, M.; González, J.; Purroy, F.; Rius, F.; Pamplona, R.; Farràs, C.; Gutiérrez-Carrasquilla, L.; Fernandez, E.; et al. Dissimilar Impact of a Mediterranean Diet and Physical Activity on Anthropometric Indices: A Cross-Sectional Study from the ILERVAS Project. Nutrient 2019, 11, 1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forouhi, N.G.; Koulman, A.; Sharp, S.J.; Imamura, F.; Kröger, J.; Schulze, M.B.; Crowe, F.L.; Huerta, J.M.; Guevara, M.; Beulens, J.W.J.; et al. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: The EPIC-InterAct case-cohort study. Lancet Diabetes Endocrinol. 2014, 2, 810–818. [Google Scholar] [CrossRef] [Green Version]
- Park, K.S.; Hwang, S.Y. Lifestyle-related predictors affecting prediabetes and diabetes in 20-30-year-old young Korean adults. Epidemiol. Health 2020, 42, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, M.; Giráldez-García, C.; Carrillo, L.; Serrano, R.; García-Soidán, F.; Artola, S.; Franch-Nadal, J.; Díez-Espino, J.; Loiola, P.E.; Millaruelo-Trillo, J.M.; et al. Modifiable risk factors associated with prediabetes in men and women: A cross-sectional analysis of the cohort study in primary health care on the evolution of patients with prediabetes (PREDAPS-Study). BMC Fam. Pr. 2015, 16, 5. [Google Scholar] [CrossRef] [Green Version]
- Hemmingsen, B.; Gimenez-Perez, G.; Mauricio, D.; Figuls, M.R.I.; Metzendorf, M.-I.; Richter, B. Diet, physical activity or both for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2017, 12, CD003054. [Google Scholar] [CrossRef] [Green Version]
- Vioque, J.; Gonzalez, L. Validez de la evaluación de la ingesta dietética. In Nutrición y Salud Pública. Métodos, Bases Científicas y Aplicaciones; Majem, L.S., Bartrina, J.A., Eds.; Masson-Elsevier: Barcelona, Spain, 2006; pp. 199–210. ISBN 84-458-1528-8. [Google Scholar]
Characteristics | Normal Glucose Tolerance (n = 319) | Prediabetes (n = 216) | p |
---|---|---|---|
Age (years) | 47.5 (12.8) | 54.8 (12.2) | <0.001 |
Educational level | 0.001 | ||
Non university | 269 (85.1) | 204 (94.4) | |
Graduate or higher | 47 (14.9) | 12 (5.6) | |
Tobacco exposure | 164 (51.4) | 118 (54.6) | 0.520 |
Regular physical activity | 240 (76.2) | 134 (62.0) | 0.001 |
BMI (Kg/m2) | 25.3 (4.3) | 27.5 (4.8) | <0.001 |
Waist (cm) | 92.0 (11.9) | 97.0 (12.4) | <0.001 |
SBP (mmHg) | 119.0 (16.3) | 126.0 (16.6) | <0.001 |
DBP (mmHg) | 75.7 (10.1) | 78.3 (9.9) | 0.004 |
Hypertension | 42 (13.2) | 48 (22.2) | 0.009 |
Dyslipidemia | 51 (16.0) | 71 (32.9) | <0.001 |
HbA1c (%) | 5.3 (0.3) | 5.8 (0.3) | <0.001 |
HbA1c (mmol/mol) | 33.8 (2.8) | 40.0 (3.1) | <0.001 |
Total cholesterol (mg/dL) | 198.0 (38.1) | 205.0 (33.1) | 0.021 |
HDL-cholesterol (mg/dL) | 58.5 (14.9) | 58.9 (14.4) | 0.760 |
LDL-cholesterol (mg/dL) | 120.0 (31.1) | 125.0 (30.0) | 0.054 |
Triglycerides (mg/dL) | 105.0 (91.6) | 112.0 (64.3) | 0.343 |
Variables | Normal Glucose Tolerance | Prediabetes | p Overall 1 | ||||||
---|---|---|---|---|---|---|---|---|---|
All (n = 319) | Men (n = 136) | Women (n = 183) | p Men vs. Women | All (n = 216) | Men (n = 88) | Women (n = 128) | p Men vs. Women | ||
aMED | 3.2 (1.8) | 3.0 (1.8) | 3.3 (1.8) | 0.140 | 3.4 (1.8) | 2.9 (1.5) | 3.7 (1.9) | 0.001 | 0.164 |
aMED (tertiles) | 0.163 | 0.018 | 0.189 | ||||||
T1 [0–3) | 124 (38.9) | 61 (44.9) | 63 (34.4) | 68 (31.4) | 34 (38.6) | 34 (26.6) | |||
T2 [3–5) | 120 (37.6) | 47 (34.6) | 73 (39.9) | 87 (40.3) | 38 (43.2) | 49 (38.3) | |||
T3 [5–8] | 75 (23.5) | 28 (20.6) | 47 (25.7) | 61 (28.2) | 16 (18.2) | 45 (35.2) | |||
aHEI | 38.6 (7.3) | 37.1 (7.9) | 39.8 (6.6) | 0.001 | 38.7 (6.7) | 36.1 (6.2) | 40.5 (6.9) | <0.001 | 0.877 |
aHEI (tertiles) | 0.001 | <0.001 | 0.431 | ||||||
T1 [20–36) | 113 (35.4) | 64 (47.1) | 49 (26.8) | 66 (30.6) | 39 (44.3) | 27 (21.1) | |||
T2 [36–43) | 112 (35.1) | 42 (30.9) | 70 (38.3) | 86 (38.9) | 35 (39.8) | 51 (39.8) | |||
T3 [43–64] | 94 (29.5) | 30 (22.1) | 64 (35.0) | 64 (29.6) | 14 (15.9) | 50 (39.1) |
Variables | Crude OR (95% CI) | Adjusted OR (95% CI) | p | Crude OR (95% CI) | Adjusted OR (95% CI) | p |
---|---|---|---|---|---|---|
aMED moderate [3–5) | 1.32 (0.88–1.98) | 1.19 (0.75–1.87) | 0.460 | |||
aMED high [5–8] | 1.48 (0.95–2.32) | 1.26 (0.75–2.10) | 0.379 | |||
aHEI moderate [36–43) | 1.31 (0.87–1.99) | 1.32 (0.83–2.10) | 0.246 | |||
aHEI high [43–64] | 1.17 (0.75–1.81) | 0.87 (0.52–1.46) | 0.592 | |||
Age (years) | 1.05 (1.03–1.06) | 1.04 (1.02–1.05) | <0.001 | 1.05 (1.03–1.06) | 1.04 (1.02–1.06) | <0.001 |
Sex (women) | 1.08 (0.76–1.53) | 1.14 (0.78–1.69) | 0.503 | 1.08 (0.76–1.53) | 1.19 (0.80–1.77) | 0.403 |
Body mass index (Kg/m2) | 1.11 (1.07–1.16) | 1.09 (1.05–1.14) | <0.001 | 1.11 (1.07–1.16) | 1.09 (1.05–1.14) | <0.001 |
Educational level, graduate or higher | 0.34 (0.17–0.65) | 0.51 (0.24–1.01) | 0.061 | 0.34 (0.17–0.65) | 0.54 (0.25–1.06) | 0.083 |
Hypertension | 1.88 (1.19–2.97) | 0.87 (0.50–1.53) | 0.638 | 1.88 (1.19–2.97) | 0.90 (0.51–1.58) | 0.720 |
Dyslipidemia | 2.57 (1.70–3.89) | 1.89 (1.19–3.00) | 0.007 | 2.57 (1.70–3.89) | 2.02 (1.27–3.22) | 0.003 |
Physical activity | 0.51 (0.35–0.75) | 0.48 (0.31–0.72) | <0.001 | 0.51 (0.35–0.75) | 0.49 (0.32–0.74) | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falguera, M.; Castelblanco, E.; Rojo-López, M.I.; Vilanova, M.B.; Real, J.; Alcubierre, N.; Miró, N.; Molló, À.; Mata-Cases, M.; Franch-Nadal, J.; et al. Mediterranean Diet and Healthy Eating in Subjects with Prediabetes from the Mollerussa Prospective Observational Cohort Study. Nutrients 2021, 13, 252. https://doi.org/10.3390/nu13010252
Falguera M, Castelblanco E, Rojo-López MI, Vilanova MB, Real J, Alcubierre N, Miró N, Molló À, Mata-Cases M, Franch-Nadal J, et al. Mediterranean Diet and Healthy Eating in Subjects with Prediabetes from the Mollerussa Prospective Observational Cohort Study. Nutrients. 2021; 13(1):252. https://doi.org/10.3390/nu13010252
Chicago/Turabian StyleFalguera, Mireia, Esmeralda Castelblanco, Marina Idalia Rojo-López, Maria Belén Vilanova, Jordi Real, Nuria Alcubierre, Neus Miró, Àngels Molló, Manel Mata-Cases, Josep Franch-Nadal, and et al. 2021. "Mediterranean Diet and Healthy Eating in Subjects with Prediabetes from the Mollerussa Prospective Observational Cohort Study" Nutrients 13, no. 1: 252. https://doi.org/10.3390/nu13010252
APA StyleFalguera, M., Castelblanco, E., Rojo-López, M. I., Vilanova, M. B., Real, J., Alcubierre, N., Miró, N., Molló, À., Mata-Cases, M., Franch-Nadal, J., Granado-Casas, M., & Mauricio, D. (2021). Mediterranean Diet and Healthy Eating in Subjects with Prediabetes from the Mollerussa Prospective Observational Cohort Study. Nutrients, 13(1), 252. https://doi.org/10.3390/nu13010252