Trace Mineral Intake and Deficiencies in Older Adults Living in the Community and Institutions: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources, Search Strategy and Selection Criteria
2.2. Quality Assessment and Data Extraction
2.3. Data Analysis
3. Results
3.1. Inadequacies of Older Adults Living in the Community
3.1.1. Iron
3.1.2. Zinc
3.1.3. Selenium
3.1.4. Iodine
3.1.5. Copper
3.2. Significant Levels of Inadequacy in Older Adults Living in Institutions
3.2.1. Iron
3.2.2. Copper
3.2.3. Selenium
3.2.4. Zinc
3.2.5. Iodine
4. Discussion
4.1. Selenium
4.2. Iodine
4.3. Zinc
4.4. Copper
5. Strengths and Limitations of the Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization (WHO). Ageing and Life Course. 2018. Available online: http://www.who.int/ageing/en/ (accessed on 15 March 2019).
- Ahmed, T.; Haboubi, N. Assessment and management of nutrition in older people and its importance to health. Clin. Interv. Aging 2010, 5, 207–216. [Google Scholar] [PubMed] [Green Version]
- Wysokiński, A.; Sobów, T.; Kłoszewska, I.; Kostka, T. Mechanisms of the anorexia of aging-a review. Age 2015, 37, 81. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.; Gaudreau, P.; Payette, H. A scoping review of anorexia of aging correlates and their relevance to population health interventions. Appetite 2016, 105, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Cereda, E.; Pedrolli, C.; Klersy, C.; Bonardi, C.; Quarleri, L.; Cappello, S.; Turri, A.; Rondanelli, M.; Caccialanza, R. Nutritional status in older persons according to healthcare setting: A systematic review and meta-analysis of prevalence data using MNA®. Clin. Nutr. Edinb. Scotl. 2016, 35, 1282–1290. [Google Scholar] [CrossRef] [PubMed]
- Payette, H.; Coulombe, C.; Boutier, V.; Gray-Donald, K. Nutrition risk factors for institutionalization in a free-living functionally dependent elderly population. J. Clin. Epidemiol. 2000, 53, 579–587. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Micronutrient Deficiency. Published Online at OurWorldInData.org. 2020. Available online: https://ourworldindata.org/micronutrient-deficiency (accessed on 13 January 2020).
- Ter Borg, S.; Verlaan, S.; Hemsworth, J.; Mijnarends, D.M.; Schols, J.M.G.A.; Luiking, Y.C.; de Groot, L.C.P.G.M. Micronutrient intakes and potential inadequacies of community-dwelling older adults: A systematic review. Br. J. Nutr. 2015, 113, 1195–1206. [Google Scholar] [CrossRef]
- Semba, R.D.; Bartali, B.; Zhou, J.; Blaum, C.; Ko, C.-W.; Fried, L.P. Low serum micronutrient concentrations predict frailty among older women living in the community. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 594–599. [Google Scholar] [CrossRef]
- Bartali, B.; Frongillo, E.A.; Bandinelli, S.; Lauretani, F.; Semba, R.D.; Fried, L.P.; Ferrucci, L. Low Nutrient Intake Is an Essential Component of Frailty in Older Persons. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 589–593. [Google Scholar]
- Wyka, J.; Biernat, J.; Mikołajczak, J.; Piotrowska, E. Assessment of dietary intake and nutritional status (MNA) in Polish free-living elderly people from rural environments. Arch. Gerontol. Geriatr. 2012, 54, 44–49. [Google Scholar] [CrossRef]
- Zhu, K.; Devine, A.; Suleska, A.; Tan, C.Y.; Toh, C.Z.J.; Kerr, D.; Prince, R.L. Adequacy and change in nutrient and food intakes with aging in a seven-year cohort study in elderly women. J. Nutr. Health Aging 2010, 14, 723–729. [Google Scholar] [CrossRef]
- Jiménez-Redondo, S.; Beltrán de Miguel, B.; Gavidia Banegas, J.; Guzmán Mercedes, L.; Gómez-Pavón, J.; Cuadrado Vives, C. Influence of nutritional status on health-related quality of life of non-institutionalized older people. J. Nutr. Health Aging 2014, 18, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Engelheart, S.; Akner, G. Dietary intake of energy, nutrients and water in elderly people living at home or in nursing home. J. Nutr. Health Aging 2015, 19, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Roussel, A.-M.; Andriollo-Sanchez, M.; Ferry, M.; Bryden, N.A.; Anderson, R.A. Food chromium content, dietary chromium intake and related biological variables in French free-living elderly. Br. J. Nutr. 2007, 98, 326–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumartheray, E.W.; Krieg, M.-A.; Cornuz, J.; Whittamore, D.R.; Lanham-New, S.A.; Burckhardt, P. Energy and nutrient intake of Swiss women aged 75–87 years. J. Hum. Nutr. Diet. 2006, 19, 431–435. [Google Scholar] [CrossRef]
- Li, W.; Youssef, G.; Procter-Gray, E.; Olendzki, B.; Cornish, T.; Hayes, R.; Churchill, L.; Kane, K.; Brown, K.; Magee, M.F. Racial Differences in Eating Patterns and Food Purchasing Behaviors among Urban Older Women. J. Nutr. Health Aging 2017, 21, 1190–1199. [Google Scholar] [CrossRef] [Green Version]
- Destefani, S.A.; Corrente, J.E.; Paiva, S.A.R.; da Silva Mazeto, G.M.F. Prevalence of iodine intake inadequacy in elderly Brazilian women. A cross-sectional study. J. Nutr. Health Aging 2015, 19, 137–140. [Google Scholar] [CrossRef] [Green Version]
- Feart, C.; Alles, B.; Merle, B.; Samieri, C.; Barberger-Gateau, P. Adherence to a Mediterranean diet and energy, macro-, and micronutrient intakes in older persons. J. Physiol. Biochem. 2012, 68, 691–700. [Google Scholar] [CrossRef] [Green Version]
- Martínez Tomé, M.J.; Rodríguez, A.; Jiménez, A.M.; Mariscal, M.; Murcia, M.A.; García-Diz, L. Food habits and nutritional status of elderly people living in a Spanish Mediterranean city. Nutr. Hosp. 2011, 26, 1175–1182. [Google Scholar] [CrossRef]
- Ocke, M.C.; Buurma-Rethans, E.J.M.; De Boer, E.J.; Wilson-Van den Hooven, C.; Etemad-Ghameslou, Z.; Drijvers, J.J.M.M.; Van Rossum, C.T.M. Diet of Community-Dwelling Older Adults: Dutch national food consumption survey older adults 2010–2012; National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport: Bildhofen, The Netherlands, 2013; Volume 127. [Google Scholar]
- Sette, S.; Le Donne, C.; Piccinelli, R.; Arcella, D.; Turrini, A.; Leclercq, C. INRAN-SCAI 2005-6 Study Group. The third Italian National Food Consumption Survey, INRAN-SCAI 2005-06—Part 1: Nutrient intakes in Italy. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 922–932. [Google Scholar] [CrossRef]
- Biró, L.; Szeitz-Szabó, M.; Biró, G.; Sali, J. Dietary survey in Hungary, 2009. Part II: Vitamins, macro- and microelements, food supplements and food allergy. Acta Aliment. 2011, 40, 301–312. [Google Scholar] [CrossRef]
- National Diet and Nutrition Survey (NDNS). Results from Years 7 and 8 (Combined). 2018. Available online: https://www.gov.uk/government/statistics/ndns-results-from-years-7-and-8-combined (accessed on 17 March 2019).
- U.S. Department of Agriculture, Agricultural Research Service. Nutrient intakes from Food: Mean Amounts Consumed Per Individual, By Gender and Age, What We Eat in AMERICA, NHANES 2019. 2015–2016. Available online: http://www.ars.usda.gov/ba/bhnrc/fsrg (accessed on 26 March 2019).
- National Adult Nutrition Survey (NANS) 2008–2010. Available online: http://www.iuna.net (accessed on 28 March 2019).
- González, S.; Huerta, J.M.; Fernández, S.; Patterson, E.M.; Lasheras, C. Food intake and serum selenium concentration in elderly people. Ann. Nutr. Metab. 2006, 50, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Rakıcıoğlu, N.; Aksoy, B.; Tamer, F.; Yıldız, E.A.; Samur, G.; Pekcan, G.; Besler, H.T. Nutritional status and eating habits of the institutionalised elderly in Turkey: A follow-up study. J. Hum. Nutr. Diet. 2016, 29, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Barrés, S.; Martín, N.; Canela, T.; García-Barco, M.; Basora, J.; Arija, V.; Project Atdom-Nut Group. Dietary intake in the dependent elderly: Evaluation of the risk of nutritional deficit. J. Hum. Nutr. Diet. 2016, 29, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Woods, J.L.; Walker, K.Z.; Iuliano Burns, S.; Strauss, B.J. Malnutrition on the menu: Nutritional status of institutionalised elderly Australians in low-level care. J. Nutr. Health Aging 2009, 13, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Iuliano, S.; Olden, A.; Woods, J. Meeting the nutritional needs of elderly residents in aged-care: Are we doing enough? J. Nutr. Health Aging 2013, 17, 503–508. [Google Scholar] [CrossRef]
- Lengyel, C.O.; Whiting, S.J.; Zello, G.A. Nutrient inadequacies among elderly residents of long-term care facilities. Can. J. Diet. Pract. Res. 2008, 69, 82–88. [Google Scholar] [CrossRef]
- Lopez-Contreras, M.J.; Zamora-Portero, S.; Lopez, M.A.; Marin, J.F.; Zamora, S.; Perez-Llamas, F. Dietary intake and iron status of institutionalized elderly people: Relationship with different factors. J. Nutr. Health Aging 2010, 14, 816–821. [Google Scholar] [CrossRef]
- Leslie, W.S.; Lean, M.E.J.; Woodward, M.; Wallace, F.A.; Hankey, C.R. Unidentified under-nutrition: Dietary intake and anthropometric indices in a residential care home population. J. Hum. Nutr. Diet. 2006, 19, 343–347. [Google Scholar] [CrossRef]
- Aghdassi, E.; McArthur, M.; Liu, B.; McGeer, A.; Simor, A.; Allard, J.P. Dietary intake of elderly living in Toronto long-term care facilities: Comparison to the dietary reference intake. Rejuvenation Res. 2007, 10, 301–309. [Google Scholar] [CrossRef]
- Rodríguez-Rejón, A.I.; Ruiz-López, M.D.; Artacho, R. Dietary Intake and Associated Factors in Long-Term Care Homes in Southeast Spain. Nutrients 2019, 11, 266. [Google Scholar] [CrossRef] [Green Version]
- Assis, B.S.; Jairza, J.M.B.-M.; Lopes, J.A.; Roriz, A.K.C.; Melo, A.L.; Previdell, A.; Aquino, R.D.C.; Ramos, L.B. Micronutrient intake in elderly living in nursing homes. Nutr. Hosp. 2018, 35, 59–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Institute of Medicine. Using the Estimated Average Requirement for Nutrient Assessment of Groups. In DRI Dietary Reference Intakes: Applications in Dietary Assessment; National Academies Press (US): Washington, DC, USA, 2000. [Google Scholar]
- Roman Viñas, B.; Ribas Barba, L.; Ngo, J.; Gurinovic, M.; Novakovic, R.; Cavelaars, A.; de Groot, L.C.P.G.M.; van’t Veer, P.; Matthys, C.; Serra Majem, L. Projected prevalence of inadequate nutrient intakes in Europe. Ann. Nutr. Metab. 2011, 59, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Stoffaneller, R.; Morse, N.L. A Review of Dietary Selenium Intake and Selenium Status in Europe and the Middle East. Nutrients 2015, 7, 1494–1537. [Google Scholar] [CrossRef] [PubMed]
- De Jong, N.; Gibson, R.S.; Thomson, C.D.; Ferguson, E.L.; McKenzie, J.E.; Green, T.J.; Horwath, C.C. Selenium and Zinc Status Are Suboptimal in a Sample of Older New Zealand Women in a Community-Based Study. J. Nutr. 2001, 131, 2677–2684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semba, R.; Ricks, M.; Ferrucci, L.; Xue, Q.-L.; Guralnik, J.; Fried, L. Low serum selenium is associated with anemia among older adults in the United States. Eur. J. Clin. Nutr. 2009, 63, 93–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillatt, A.P.; Patias, R.S.; Berlezi, E.M.; Schneider, R.H.; Pillatt, A.P.; Patias, R.S.; Berlezi, E.M.; Schneider, R.H. Which factors are associated with sarcopenia and frailty in elderly persons residing in the community? Rev. Bras. Geriatr. E Gerontol. 2018, 21, 755–766. [Google Scholar] [CrossRef]
- Bonnefoy, M.; Berrut, G.; Lesourd, B.; Ferry, M.; Gilbert, T.; Guérin, O.; Hanon, O.; Jeandel, C.; Paillaud, E.; Raynaud-Simon, A.; et al. Frailty and nutrition: Searching for evidence. J. Nutr. Health Aging 2015, 19, 250–257. [Google Scholar] [CrossRef]
- Wham, C.; Teh, R.; Moyes, S.A.; Rolleston, A.; Muru-Lanning, M.; Hayman, K.; Adamson, A.; Kerse, N. Macronutrient intake in advanced age: Te Puāwaitanga o Ngā Tapuwae Kia ora Tonu, Life and Living in Advanced Age: A Cohort Study in New Zealand (LiLACS NZ). Br. J. Nutr. 2016, 116, 1103–1115. [Google Scholar] [CrossRef] [Green Version]
- Rønnow Schacht, S.; Vendelbo Lind, M.; Bechshøft, R.L.; Højfeldt, G.; Reitelseder, S.; Jensen, T.; Pernille Jespersen, A.; Sandris Nielsen, D.; Holm, L.; Tetens, I. Investigating Risk of Suboptimal Macro and Micronutrient Intake and Their Determinants in Older Danish Adults with Specific Focus on Protein Intake-A Cross-Sectional Study. Nutrients 2019, 11, 795. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.S.; Begum, M.N. Adequacy of nutrient intake among elderly persons receiving home care. J. Nutr. Elder. 2008, 27, 65–82. [Google Scholar] [CrossRef]
- Jayanama, K.; Theou, O.; Blodgett, J.M.; Cahill, L.; Rockwood, K. Frailty, nutrition-related parameters, and mortality across the adult age spectrum. BMC Med. 2018, 16, 188. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.C.; MacDonell, S.O.; Gray, A.R.; Reid, M.R.; Barr, D.J.; Thomson, C.D.; Houghton, L.A. Iodine Status of New Zealand Elderly Residents in Long-Term Residential Care. Nutrients 2016, 8, 445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bielecka-Dabrowa, A.; Mikhailidis, D.P.; Rysz, J.; Banach, M. The mechanisms of atrial fibrillation in hyperthyroidism. Thyroid Res. 2009, 2, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francis, N.J.; Atrial, J. Fibrillation and Hyperthyroidism. Indian Pacing Electrophysiol. J. 2005, 5, 305–311. [Google Scholar]
- Fernando, S. Iodine Status in the Elderly: Association with Milk Intake and Other Dietary Habits. J. Nutr. Health Food Sci. 2016, 5, 1–5. [Google Scholar] [CrossRef]
- Boelaert, K. Thyroid dysfunction in the elderly. Nat. Rev. Endocrinol. 2013, 9, 194–204. [Google Scholar] [CrossRef]
- Ji, C.; Lu, T.; Dary, O.; Legetic, B.; Campbell, N.R.; Cappuccio, F.P. Sub-Group for Research and Surveillance of the PAHO–WHO Regional Expert Group for Cardiovascular Disease Prevention through Population-wide Dietary Salt Reduction. Systematic review of studies evaluating urinary iodine concentration as a predictor of 24-hour urinary iodine excretion for estimating population iodine intake. Rev. Panam. Salud Publica Pan Am. J. Public Health 2015, 38, 73–81. [Google Scholar]
- Buchanan, L.; Charlton, K.; Roodenrys, S.; Cocuz, D.; Pendergast, T.; Ma, G. Iodine status not associated with cognitive functioning in older Australians. J. Nutr. Intermed. Metab. 2016, 4, 32–33. [Google Scholar] [CrossRef]
- Olmedo Carrillo, P.; García Fuentes, E.; Gutiérrez Alcántara, C.; Serrano Quero, M.; Moreno Martínez, M.; Ureña Fernández, T.; Santiago Fernández, P. Assessment of iodine nutritional status in the general population in the province of Jaén. Endocrinol. Nutr. Organo Soc. Esp. Endocrinol. Nutr. 2015, 62, 373–379. [Google Scholar] [CrossRef]
- Müller, K.; Krohn, K.; Eszlinger, M.; Ludgate, M.; Führer, D. Effect of iodine on early stage thyroid autonomy. Genomics 2011, 97, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Eastman, C.J.; Zimmermann, M.B. The Iodine Deficiency Disorders. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., Dungan, K., Grossman, A., Hershman, J.M., Kaltsas, G., Koch, C., Kopp, P., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Sales, M.C.; de Oliveira, L.P.; de Araújo Cabral, N.L.; de Sousa, S.E.S.; das Graças Almeida, M.; Lemos, T.M.A.M.; de Oliveira Lyra, C.; de Lima, K.C.; Sena-Evangelista, K.C.M.; de Fatima Campos Pedrosa, L. Plasma zinc in institutionalized elderly individuals: Relation with immune and cardiometabolic biomarkers. J. Trace Elem. Med. Biol. 2018, 50, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Meunier, N.; O’Connor, J.M.; Maiani, G.; Cashman, K.D.; Secker, D.L.; Ferry, M.; Roussel, A.M.; Coudray, C. Importance of zinc in the elderly: The ZENITH study. Eur. J. Clin. Nutr. 2005, 59, S1–S4. [Google Scholar] [CrossRef] [PubMed]
- Power, S.E.; Jeffery, I.B.; Ross, R.P.; Stanton, C.; O’Toole, P.W.; O’Connor, E.M.; Fitzgerald, G.F. Food and nutrient intake of Irish community-dwelling elderly subjects: Who is at nutritional risk? J. Nutr. Health Aging 2014, 18, 561–572. [Google Scholar] [CrossRef]
- Keller, H.H.; Lengyel, C.; Carrier, N.; Slaughter, S.E.; Morrison, J.; Duncan, A.M.; Steele, C.M.; Duizer, L.; Brown, K.S.; Chaudhury, H.; et al. Prevalence of inadequate micronutrient intakes of Canadian long-term care residents. Br. J. Nutr. 2018, 119, 1047–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, D.S.; Daudu, P.A.; Taylor, P.C.; Mackey, B.E.; Turnlund, J.R. Effects of low-copper diets on human immune response. Am. J. Clin. Nutr. 1995, 62, 412–416. [Google Scholar] [CrossRef]
- Klevay, L.M. Ischemic heart disease as deficiency disease. Cell. Mol. Biol. 2004, 50, 877–884. [Google Scholar]
- Drewnowski, A.; Shultz, J.M. Impact of aging on eating behaviors, food choices, nutrition, and health status. J. Nutr. Health Aging 2001, 5, 75–79. [Google Scholar]
- Bloom, I.; Lawrence, W.; Barker, M.; Baird, J.; Dennison, E.; Sayer, A.A.; Cooper, C.; Robinson, S. What influences diet quality in older people? A qualitative study among community-dwelling older adults from the Hertfordshire Cohort Study, UK. Public Health Nutr. 2017, 20, 2685–2693. [Google Scholar] [CrossRef] [Green Version]
- Conklin, A.I.; Forouhi, N.G.; Surtees, P.; Khaw, K.-T.; Wareham, N.J.; Monsivais, P. Social relationships and healthful dietary behaviour: Evidence from over-50s in the EPIC cohort, UK. Soc. Sci. Med. 2014, 100, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Kossioni, A.E. The Association of Poor Oral Health Parameters with Malnutrition in Older Adults: A Review Considering the Potential Implications for Cognitive Impairment. Nutrients 2018, 10, 1709. [Google Scholar] [CrossRef] [Green Version]
- Pilgrim, A.L.; Robinson, S.M.; Sayer, A.A.; Roberts, H.C. An overview of appetite decline in older people. Nurs. Older People 2015, 27, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Wright, D.M.; Rosato, M.; O’Reilly, D. Which long-term illnesses do patients find most limiting? A census-based cross-sectional study of 340,000 people. Int. J. Public Health 2017, 62, 939–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shatenstein, B. Impact of health conditions on food intakes among older adults. J. Nutr. Elder. 2008, 27, 333–361. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, S.S. Influence of medications on taste and smell. World J. Otorhinolaryngol. 2018, 4, 84–91. [Google Scholar] [CrossRef]
- Host, A.; McMahon, A.-T.; Walton, K.; Charlton, K. Factors Influencing Food Choice for Independently Living Older People—A Systematic Literature Review. J. Nutr. Gerontol. Geriatr. 2016, 35, 67–94. [Google Scholar] [CrossRef]
- Van den Heuvel, E.; Newbury, A.; Appleton, K.M. The Psychology of Nutrition with Advancing Age: Focus on Food Neophobia. Nutrients 2019, 11, 151. [Google Scholar] [CrossRef] [Green Version]
- Hickson, M. Malnutrition and ageing. Postgrad. Med. J. 2006, 82, 2–8. [Google Scholar] [CrossRef]
- Johnson, C.S. Nutritional considerations for bereavement and coping with grief. J. Nutr. Health Aging 2002, 6, 171–176. [Google Scholar]
- Kamphuis, C.B.; de Bekker-Grob, E.W.; van Lenthe, F.J. Factors affecting food choices of older adults from high and low socioeconomic groups: A discrete choice experiment. Am. J. Clin. Nutr. 2015, 101, 768–774. [Google Scholar] [CrossRef]
- Welch, R.M. The impact of mineral nutrients in food crops on global human health. Plant Soil 2002, 247, 83–90. [Google Scholar] [CrossRef]
- Barciela-Alonso, M.C.; Bermejo-Barrera, P. Variation of food mineral content during industrial and culinary processing. In Handbook of Mineral: Elements in Food; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 163–176. [Google Scholar] [CrossRef]
- Sebastian, R.S.; Cleveland, L.E.; Goldman, J.D.; Moshfegh, A.J. Older Adults Who Use Vitamin/Mineral Supplements Differ from Nonusers in Nutrient Intake Adequacy and Dietary Attitudes. J. Am. Diet. Assoc. 2007, 107, 1322–1332. [Google Scholar] [CrossRef] [PubMed]
- Fabian, E.; Bogner, M.; Kickinger, A.; Wagner, K.H.; Elmadfa, I. Vitamin status in elderly people in relation to the use of nutritional supplements. J. Nutr. Health Aging 2012, 16, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.L.; Gahche, J.J.; Lentino, C.V.; Dwyer, J.T.; Engel, J.S.; Thomas, P.R.; Betz, J.M.; Sempos, C.T.; Picciano, M.F. Dietary supplement use in the United States, 2003–2006. J. Nutr. 2011, 141, 261–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millen, A.E.; Dodd, K.W.; Subar, A.F. Use of vitamin, mineral, nonvitamin, and nonmineral supplements in the United States: The 1987, 1992, and 2000 National Health Interview Survey results. J. Am. Diet. Assoc. 2004, 104, 942–950. [Google Scholar] [CrossRef]
- Park, K.; Harnack, L.; Jacobs, D.R. Trends in dietary supplement use in a cohort of postmenopausal women from Iowa. Am. J. Epidemiol. 2009, 169, 887–892. [Google Scholar] [CrossRef] [Green Version]
- Schwab, S.; Heier, M.; Schneider, A.; Fischer, B.; Huth, C.; Peters, A.; Thorand, B. The use of dietary supplements among older persons in southern Germany—Results from the KORA-age study. J. Nutr. Health Aging 2014, 18, 510–519. [Google Scholar] [CrossRef]
- Shakur, Y.A.; Tarasuk, V.; Corey, P.; O’Connor, D.L. A comparison of micronutrient inadequacy and risk of high micronutrient intakes among vitamin and mineral supplement users and nonusers in Canada. J. Nutr. 2012, 142, 534–540. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.-S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36. [Google Scholar] [CrossRef]
- Doets, E.L.; de Wit, L.S.; Dhonukshe-Rutten, R.A.M.; Cavelaars, A.E.J.M.; Raats, M.M.; Timotijevic, L.; Brzozowska, A.; Wijnhoven, T.M.A.; Pavlovic, M.; Totland, T.H.; et al. Current micronutrient recommendations in Europe: Towards understanding their differences and similarities. Eur. J. Nutr. 2008, 47, 17–40. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Studies reporting dietary intake of at least one trace minerals as mean and standard deviation | Studies including supplement intake as a part of the dietary intake data analysis |
Studies including community dwelling or institutionalized older adults aged 60 and over | Studies including enteral parenteral feeding data as well as adjusted data |
Studies having cross sectional or cohort study design | Studies including overall (both sexes together) trace mineral intake data |
Studies clearly defined dietary intake method and coming from Western countries | Studies including hospitalized patients |
Full text articles published in English language |
Participant Characteristics | Supplement Intake | ||||||||
---|---|---|---|---|---|---|---|---|---|
Author | Study Year | Country | Study Design | Quality Score | Age (Years) | Subjects (n) | Dietary Assessment Method | Reported | Included in the Analysis |
(Wyka et al. [11]) | NA | Poland | Cross-sectional | Moderate | ≥60 | 174 Female 64 Male | 24HR | Not mentioned | Not mentioned |
(Zhu et al. [12]) | NA | Australia | Longitudinal | High | 70–85 | 911 female | FFQ | Excluded | No |
(Jiménez-Redondo et al. [13]) | 2011 | Spain | Cross-sectional | Moderate | ≥80 | 53 female 30 male | 24HR | Not mentioned | Not mentioned |
(Engelheart and Akner. [14]) | 2002–2010 | Sweden | Observational | Moderate | 64–100 | 84 Female 52 Male | 3-4 d DR | Excluded | No |
(Roussel et al. [15]) | NA | France | Cross-sectional | Moderate | 70–85 | 8 Female 4 Male | 3 d DR | Excluded | No |
(Dumartheray et al. [16]) | 2004 | Switzerland | Prospective | Moderate | 75–87 | 401 Female | FFQ | Not mentioned | Not mentioned |
(Li et al. [17]) | 2014–2015 | USA | Cross-sectional | Moderate | ≥65 | 97 Female | 3×24HR | Not mentioned | Not mentioned |
(Destefani et al. [18]) | NA | Brazil | Cross-sectional | Moderate | ≥60 | 135 Female | 2×24HR | Not mentioned | Not mentioned |
(Feart et al. [19]) | 2001–2002 | France | Prospective | Moderate | ≥65 | 988 Female, 607 Male | 24HR-FFQ | Not mentioned | Not mentioned |
(Martínez Tomé et al. [20]) | NA | Spain | Cross-sectional | Moderate | 65–89 | 117 Female, 83 Male | 2×24HR | Not mentioned | Not mentioned |
(Ocke et al. [21]) | 2010–2012 | The Netherlands | National Survey | High | ≥70 | 366 Female, 373 Male | 2×24HR | Yes | No |
(Sette et al. [22]) | 2005–2006 | Italy | National Survey | Moderate | ≥65 | 316 Female, 202 Male | 3 d DR | Yes | No |
(Biró et al. [23]) | 2009 | Hungary | National Survey | Moderate | >60 | 475 Female, 270 Male | 3 d DR | Yes | No |
(National Diet and Nutrition Survey [24]) | 2014–2016 | UK | National Survey | Moderate | ≥65 | 194 Female, 141 Male | 4 d DR | Yes | No |
(USDA et al. [25]) | 2015–2016 | USA | National Survey | High | ≥70 | 414 Female, 418 Male | 2×24HR | Excluded | No |
(NANS [26]) | 2008–2010 | Ireland | National Survey | Moderate | ≥65 | 120 Female, 106 Male | 4 d DR | YES | No |
Supplement Intake | |||||||||
---|---|---|---|---|---|---|---|---|---|
Author | Study Year | Country | Study Design | Quality Score | Age (Years) | Subjects (n) | Dietary Assessment Method | Reported | Included in the Analysis |
(González et al. [27]) | NA | Spain | Cross-sectional | Moderate | 60–80 | 125 Female, 80 Male | FFQ | Not mentioned | Not mentioned |
(Rakıcıoğlu et al. [28]) | 2007–2009 | Turkey | Longitudinal study | Moderate | ≥65 | 45 Female, 57 Male | 24HR | Not mentioned | Not mentioned |
(Fernández-Barrés et al. [29]) | NA | Spain | Cross-sectional | High | ≥65 | 128 Female, 62 Male | FFQ | Excluded | No |
(Woods et al. [30]) | NA | Australia | Cross-sectional | Moderate | ≥65 | 72 Female, 23 Male | 3 d weighed DR | Yes | No |
(Iuliano et al. [31]) | NA | Australia | Cross-sectional | Moderate | 67–99 | 151 Female 48 Male | 3–6 d weighed DR | Yes | Not included |
(Lengyel et al. [32]) | 1999 | Canada | Cross-sectional | Moderate | ≥65 | 31 Female, 17 Male | 3 d weighed DR | Not mentioned | Not mentioned |
(Lopez-Contreras et al. [33]) | NA | Spain | Cross-sectional | Moderate | 65–96 | 151 Female, 101 Male | 4 d weighed DR | Not mentioned | Not mentioned |
(Leslie et al. [34]) | 2002–2003 | UK | Cross-sectional | Moderate | 84–100 | 21 Female, 14 Male | 3 d weighed DR | Yes | Not included mineral intake analysis |
(Aghdassi et al. [35]) | 1997–1999 | Canada | Cross-sectional | Moderate | ≥65 | 299 Female, 108 Male | 3 d DR | Excluded | No |
(Engelheart and Akner [14]) | 2002–2010 | Sweden | Observational | Moderate | 66–103 | 93 Female, 35 Male | 3 d DR, 5 d weighed DR | Excluded | No |
(Rodríguez-Rejón et al. [36]) | 2013–2016 | Spain | Cross-sectional | Moderate | ≥70 | 187 Female, 62 Male | 7 d weighed DR | Not mentioned | Not mentioned |
Assis et al. [37] | NA | Brazil | Cross-sectional | Moderate | ≥60 | 157 Female, 59 Male | 6 d weighed DR | Not mentioned | Not mentioned |
Reference | Country | Subjects (n) | Iron (Mean ± SD) % EAR: 5 mg/day | Zinc (Mean ± SD) % EAR: 6.8 mg/day | Selenium (Mean ± SD) % EAR: 45 μg/day | Iodine (Mean ± SD) % EAR: 95 μg/day | Copper (Mean ± SD) % EAR: 0.7 mg/day | Molybdenum (Mean ± SD) % EAR: 34 μg/day | Chromium (Mean ± SD) AI: 20 μg/day | Manganese (Mean ± SD) AI: 1.8 mg/day |
---|---|---|---|---|---|---|---|---|---|---|
(Wyka et al. [11]) | Poland | 174 | (7.2 ± 2.9) 23% | - | - | - | - | - | - | |
(Zhu et al. [12]) | Australia | 911 | (12.3 ± 4.4) 5% | (10.6 ± 3.5) 14% | - | - | - | - | - | - |
(Jiménez-Redondo et al. [13]) | Spain | 53 | (9.3 ± 3.2) 9% | (7.2 ± 3.7) 46% | (62.3 ± 35.8) 32% | - | - | - | - | - |
(Engelheart and Akner [14]) | Sweden | 84 | (8 ± 2) 7% | (8 ± 2) 28% | (28 ± 10) 96% | - | - | - | - | - |
(Roussel et al. [15]) | France | 8 | - | - | - | - | - | - | (42.74 ± 14.67) | - |
(Dumartheray et al. [16]) | Swiss | 401 | (11.6 ± 3.7) 4% | - | - | - | - | - | - | - |
(Li et al. [17]) | USA | 97 | (11.3 ± 4.8) 10% | - | - | - | - | - | - | - |
(Destefani et al. [18]) | Brazil | 135 | - | - | - | (100.7 ± 39.2) 44% | - | - | - | - |
(Feart et al. [19]) | France | 988 | (9.7 ± 4.9) 17% | (7.7 ± 7.4) 45% | - | - | - | - | - | - |
(Martínez Tomé et al. [20]) | Spain | 117 | (18.6 ± 5.4) 1% | (11.9 ± 2.8) 4% | - | - | (1.5 ± 0.6) 9% | - | - | (3.4 ± 0.9) |
(Ocke et al. [21]) | The Netherlands | 366 | (9.1 ± 2.9) 8% | (9.7 ± 3.3) 19% | (42.1 ± 16.3) 57% | (146 ± 49) 15% | (1 ± 0.3) 16% | - | - | - |
(Sette et al. [22]) | Italy | 316 | (10.0 ± 3.0) 5% | (9.9 ± 2.9) 14% | - | - | - | - | - | - |
(Biró et al. [23]) | Hungary | 475 | (9.2 ± 2.4) 4% | (7.0 ± 1.9) 46% | - | - | (0.9 ± 0.4) 31% | - | (55.6 ± 23.0) | (2.2 ± 3.4) |
(National Diet and Nutrition Survey [24]) | UK | 194 | (8.4 ± 3.0) 13% | (7.1 ± 2.4) 45% | (38 ± 16) 67% | (147 ± 64) 21% | - | - | - | - |
(USDA et al. [25]) | USA | 414 | (11.5 ± 11.2) 28% | (8.2 ± 8.3) 43% | (84.5 ± 57.2) 25% | (1 ± 0.8) 35% | - | - | - | |
(NANS [26]) | Ireland | 120 | (10 ± 3.7) 9% | (8 ± 2.6) 33% | - | - | (1. ± 0.7) 33% | - | - | (3.6 ± 1.9) |
Pool Mean Pool STANDARD DEVIATION Pool PERCENTAGE BELOW EAR | 10.5 5.6 11% | 8.8 5.1 31% | 57.1 37.7 49% | 137.5 52 22% | 1 0.6 27% | - - - | 55.4 22.9 - | 2.6 2.9 - |
Reference | Country | Subject (n) | Iron (Mean ± SD) % EAR: 6 mg/day | Zinc (Mean ± SD) % EAR: 9.4 mg/day | Selenium (Mean ± SD) % EAR: 45 μg/day | Iodine (Mean ± SD) % EAR: 95 μg/day | Copper (Mean ± SD) % EAR: 0.7 mg/day | Molybdenum (Mean ± SD) % EAR: 34 μg/day | Chromium (Mean ± SD) AI: 30 μg/day | Manganese (Mean ± SD) AI: 2.3 mg/day |
---|---|---|---|---|---|---|---|---|---|---|
(Wyka et al. [11]) | Poland | 64 | (10.3 ± 7) 27% | - | - | - | - | - | - | - |
(Jiménez-Redondo et al. [13]) | Spain | 30 | (10.8 ± 3.0) 5% | (7.3 ± 2.1) 84% | (76.5 ± 29.5) 14% | - | - | - | - | - |
(Engelheart and Akner [14]) | Sweden | 52 | (9 ± 3) 15% | (9 ± 2) 58% | (34 ± 13) 80% | - | - | - | - | - |
(Roussel et al. [15]) | France | 4 | - | - | - | - | - | - | (35.18 ± 10.88) | - |
(Feart et al. [19]) | France | 607 | (13.3 ± 6.2) 12% | (7.0 ± 5.3) 67% | - | - | - | - | - | - |
(Martínez Tomé et al. [20]) | Spain | 83 | (16.4 ± 5.3) 3% | (10.4 ± 3.3) 38% | - | - | (1.1 ± 0.4) 16% | - | - | (3.2 ± 1) |
(Ocke et al. [21]) | The Netherlands | 373 | (11.4 ± 4.2) 10% | (11.1 ± 3.6) 32% | (49 ± 21) 42% | (172.2 ± 55) 8% | (1.2 ± 0.5) 16% | - | - | - |
(Sette et al. [22]) | Italy | 202 | (13.2 ± 3.8) 3% | (12.2 ± 3.2) 19% | - | - | - | - | - | |
(Biró et al. [23]) | Hungary | 270 | (11.1 ± 3.0) 4% | (8.8 ± 2.5) 59% | - | - | (1.1 ± 0.4) 16% | - | (59.5 ± 24.3) | (2.4 ± 0.8) |
(National Diet and Nutrition Survey [24]) | UK | 141 | (10.6 ± 3.3) 8% | (8.8 ± 2.7) 59% | (50 ± 2) 41% | (186 ± 84) 14% | - | - | - | - |
(USDA et al. [25]) | USA | 418 | (16.2 ± 19.8) 30% | (11.7 ± 11.7) 42% | (107.9 ± 104.9) 27% | - | (1.2 ± 1) 31% | - | - | - |
(NANS [26]) | Ireland | 106 | (11.7 ± 4.6) 11% | (9.4 ± 3.1) 50% | - | - | (1.1 ± 0.5) 21% | - | (4 ± 1) | |
MEAN (total)) STANDARD DEVIATION (total) PERCENTAGE BELOW EAR (total) | 12.9 9.4 13% | 9.6 6.1 49% | 73.5 69.4 37% | 176 64.2 10% | 1.16 0.69 21% | - -- | 59.1 24.1 - | 2.9 0.8 - |
Reference | Country | Subjects (n) | Iron (Mean ± SD) % EAR: 5 mg/day | Zinc (Mean ± SD) % EAR: 6.8 mg/day | Selenium (Mean ± SD) % EAR: 45 μg/day | Iodine (Mean ± SD) % EAR: 95 μg/day | Copper (Mean ± SD) % EAR: 0.7 mg/day | Molybdenum (Mean ± SD) % EAR: 34 μg/day | Chromium (Mean ± SD) AI: 20 μg/day | Manganese (Mean ± SD) AI: 1.8 mg/day |
---|---|---|---|---|---|---|---|---|---|---|
(González et al. [27]) | Spain | 125 | - | - | (94.4 ± 23.6) 25% | - | - | - | - | - |
(Rakıcıoğlu et al. [28]) | Turkey | 45 | (9.5 ± 4.0) 13% | (8.8 ± 3.8) 30% | - | - | - | - | - | - |
(Fernández-Barrés et al. [29]) | Spain | 128 | (6.9 ± 1.7) 13% | - | - | - | - | - | - | - |
(Woods et al. [30]) | Australia | 72 | (8.2 ± 1.9) 5% | (6.6 ± 1.3) 56% | - | - | - | - | - | - |
(Iuliano et al. [31]) | Australia | 151 | (7.7 ± 2.2) 11% | (7.1 ± 1.8) 43% | - | (92.1 ± 27.8) 54% | - | - | - | - |
(Lengyel et al. [32] | Canada | 31 | (9.4 ± 2.7) 5% | (5.6 ± 2.3) 70% | - | - | - | - | - | - |
(Lopez-Contreras et al. [33]) | Spain | 151 | (11.5 ± 3.5) 3% | - | - | - | - | - | - | - |
(Leslie et al. [34]) | UK | 21 | - | (5.7 ± 1.4) 79% | - | - | - | - | - | - |
(Aghdassi et al. [35]) | Canada | 299 | (10.7 ± 3.6) 6% | (8.2 ± 2.7) 30% | - | - | (1.1 ± 0.5) 21% | - | - | - |
(Engelheart and Akner [14]) | Sweden | 93 | (6 ± 2) 31% | (7 ± 2) 46% | (27 ± 8) 98% | - | - | - | - | - |
(Rodríguez-Rejón et al. [36]) | Spain | 187 | (7.27 ± 1.78) 10% | (5.64 ± 1.78) 74% | (44.27 ± 20.24) 52% | (29.89 ± 28.72) 98% | (0.78 ± 0.23) 36% | - | - | - |
(Assis et al. [37]) | Brazil | 157 | (9.7 ± 2.33) 2% | (6.16 ± 1.95) 63% | (50.8 ± 18.19) 37% | - | - | - | - | - |
MEAN (Pool) STANDARD DEVIATION (Pool) PERCENTAGE BELOW EAR (Pool) | 6.5 2.7 9% | 7 2.2 50% | 54.4 19.1 44% | 57.7 28.3 78% | 0.98 0.4 27% | - | - | - |
Reference | Country | Subject (n) | Iron (Mean ± SD) % EAR: 6 mg/day | Zinc (Mean ± SD) % EAR: 9.4 mg/day | Selenium (Mean ± SD) % EAR: 45 μg/day | Iodine (Mean ± SD) % EAR: 95 μg/day | Copper (Mean ± SD) % EAR: 0.7 mg/day | Molybdenum (Mean ± SD) % EAR: 34 μg/day | Chromium (Mean ± SD) AI: 30 μg/day | Manganese (Mean ± SD) AI: 2.3 mg/day |
---|---|---|---|---|---|---|---|---|---|---|
(González et al. [27]) | Spain | 80 | - | - | (107.1 ± 32.2) 3% | - | - | - | - | - |
(Rakıcıoğlu et al. [28]) | Turkey | 57 | (12.5 ± 4.5) 7% | (11.2 ± 4.1) 33% | - | - | - | - | - | - |
(Fernández-Barrés et al. [29]) | Spain | 62 | (7.4 ± 2.5) 29% | - | - | - | - | - | ||
(Woods et al. [30]) | Australia | 23 | (10.8 ± 4.1) 12% | (8.7 ± 2.2) 63% | - | - | - | - | - | - |
(Iuliano et al. [31]) | Australia | 48 | (9.7 ± 3.9) 17% | (8.8 ± 2.5) 59% | - | (114.7 ± 34.1) 28% | - | - | - | - |
(Lengyel et al. [32]) | Canada | 17 | (12.2 ± 3.3) 3% | (7.5 ± 2.3) 80% | - | - | - | - | - | - |
(Lopez-Contreras et al. [33]) | Spain | 101 | (13.6 ± 4.4) 4% | - | - | - | - | - | - | - |
(Leslie et al. [34]) | UK | 14 | - | (6.2 ± 1.8) 96% | - | - | - | - | - | - |
(Aghdassi et al. [35]) | Canada | 108 | (11.1 ± 3.5) 7% | (8.5 ± 2.4) 65% | - | - | (1.1 ± 0.5) 21% | - | - | - |
(Engelheart and Akner [14]) | Sweden | 35 | (8 ± 2) 16% | (9 ± 3) 55% | (30 ± 9) 95% | - | - | - | - | |
(Rodríguez-Rejón et al. [36]) | Spain | 62 | (8 ± 1.73) 12% | (6.35 ± 1.81) 95% | (51.78 ± 20.16) 37% | (32.66 ± 28.66) 98% | (0.8 ± 0.2) 31% | - | - | - |
(Assis et al. [37]) | Brazil | 59 | (12.52 ± 2.38) 0.3% | (8.44 ± 2.1) 68% | (70.59 ± 18) 8% | - | - | - | - | - |
MEAN (total)) STANDARD DEVIATION (total) PERCENTAGE BELOW EAR (total) | 10.8 11.9 10% | 8.5 2.6 66% | 72 23.5 27% | 68.4 31.1 67% | 0.99 0.17 25% | - | - | - |
Nutrient | Sex | Studies (n) | Pooled (n) | Unit | EAR | Mean | SD | Percentage below EAR* | 95% CI |
---|---|---|---|---|---|---|---|---|---|
Iron | W M | 14 11 | 4710 2346 | mg/d | 5 6 | 10.5 12.9 | 5.6 9.4 | 11 13 | 10–12 12–14 |
Selenium | W M | 5 5 | 1111 1014 | μg/d | 45 45 | 57.1 73.5 | 37.7 69.4 | 49 37 | 46–52 34–40 |
Zinc | W M | 11 10 | 4038 2282 | mg/d | 6.8 9.4 | 8.8 9.6 | 5.1 6.1 | 31 49 | 30–32 47–51 |
Iodine | W M | 3 2 | 695 514 | μg/d | 95 95 | 137.5 176 | 52 64.2 | 22 10 | 39–47 7–13 |
Copper | W M | 5 5 | 1492 1250 | mg/d | 0.7 0.7 | 1 1.16 | 0.6 0.69 | 27 21 | 25–29 19–23 |
Molybdenum | W M | - - | - - | μg/d | 34 34 | - - | - - | - - | - - |
Manganese | W M | 3 3 | 712 459 | mg/d mg/d | 1.8 + 2.3 + | 2.6 2.9 | 2.9 0.8 | NA | - |
Chromium | W M | 2 2 | 483 274 | μg/d μg/d | 20 + 30 + | 55.4 59.1 | 22.9 24.1 | NA | - |
Nutrient | Sex | Studies (n) | Pooled (n) | Unit | EAR | Mean | SD | Percentage below EAR* | 95% CI |
---|---|---|---|---|---|---|---|---|---|
Iron | W M | 10 10 | 1314 572 | mg/d | 5 6 | 6.5 10.8 | 2.7 11.9 | 9 10 | 7–11 8–12 |
Selenium | W M | 4 4 | 562 236 | μg/d | 45 45 | 54.4 72 | 19.1 23.5 | 44 27 | 40–48 21–33 |
Zinc | W M | 9 9 | 1056 423 | mg/d | 6.8 9.4 | 7 8.5 | 2.2 2.6 | 50 66 | 47–53 61–71 |
Iodine | W M | 2 2 | 338 110 | μg/d | 95 95 | 57.7 68.4 | 28.3 31.1 | 78 67 | 73–82 58–76 |
Copper | W M | 2 2 | 486 170 | mg/d | 0.7 0.7 | 0.98 0.99 | 0.4 0.17 | 27 25 | 23–31 18–32 |
Molybdenum | W M | - - | - - | μg/d | 34 34 | - | - | - | - |
Manganese | W M | - | - | mg/d | 1.8 + 2.3 + | - | - | - | - |
Chromium | W M | - | - | μg/d | 20 + 34 + | - | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vural, Z.; Avery, A.; Kalogiros, D.I.; Coneyworth, L.J.; Welham, S.J.M. Trace Mineral Intake and Deficiencies in Older Adults Living in the Community and Institutions: A Systematic Review. Nutrients 2020, 12, 1072. https://doi.org/10.3390/nu12041072
Vural Z, Avery A, Kalogiros DI, Coneyworth LJ, Welham SJM. Trace Mineral Intake and Deficiencies in Older Adults Living in the Community and Institutions: A Systematic Review. Nutrients. 2020; 12(4):1072. https://doi.org/10.3390/nu12041072
Chicago/Turabian StyleVural, Zeynep, Amanda Avery, Dimitris I. Kalogiros, Lisa J. Coneyworth, and Simon J. M. Welham. 2020. "Trace Mineral Intake and Deficiencies in Older Adults Living in the Community and Institutions: A Systematic Review" Nutrients 12, no. 4: 1072. https://doi.org/10.3390/nu12041072