The Use of Vitamins and Coenzyme Q10 for the Treatment of Vascular Occlusion Diseases Affecting the Retina
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hayreh, S.S. Ischemic optic neuropathy. Prog. Retin. Eye Res. 2009, 28, 34–62. [Google Scholar] [CrossRef] [PubMed]
- Buono, L.M.; Foroozan, R.; Sergott, R.C.; Savino, P.J. Nonarteritic anterior ischemic optic neuropathy. Curr. Opin. Ophthalmol. 2002, 13, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Varma, D.D.; Cugati, S.; Lee, A.W.; Chen, C.S. A review of central retinal artery occlusion: Clinical presentation and management. Eye 2013, 27, 688–697. [Google Scholar] [CrossRef]
- Limaye, K.; Wall, M.; Uwaydat, S.; Ali, S.; Shaban, A.; Al Kasab, S.; Adams, H., Jr. Is Management of Central Retinal Artery Occlusion the Next Frontier in Cerebrovascular Diseases? J. Stroke Cerebrovasc. Dis. 2018, 27, 2781–2791. [Google Scholar] [CrossRef]
- Hayreh, S.S. The 1994 Von Sallman Lecture. The optic nerve head circulation in health and disease. Exp. Eye Res. 1995, 61, 259–272. [Google Scholar] [CrossRef]
- Goodwin, D. Homonymous hemianopia: Challenges and solutions. Clin. Ophthalmol. 2014, 8, 1919–1927. [Google Scholar] [CrossRef]
- Eggenberger, E.R.; Pula, J.H. Neuro-ophthalmology in Medicine. In Aminoff’s Neurology and General Medicine, 5th ed.; Aminoff, M.J., Josephson, S.A., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 479–502. ISBN 978-012-407-710-2. [Google Scholar]
- Hayreh, S.S.; Zimmerman, M.B.; Podhajsky, P.; Alward, W.L.M. Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am. J. Ophthalmol. 1994, 117, 603–624. [Google Scholar] [CrossRef]
- Hayreh, S.S. Acute ischemic disorders of the optic nerve: Pathogenesis, clinical manifestations and management. Ophthalmol. Clin. N. Am. 1996, 9, 407–442. [Google Scholar]
- Hayreh, S.S. Non-arteritic anterior ischemic optic neuropathy versus cerebral ischemic stroke. Graefes Arch. Clin. Exp. Ophthalmol. 2012, 250, 1255–1260. [Google Scholar] [CrossRef][Green Version]
- Pula, J.H.; Yuen, C.A. Eyes and strike: The visual aspects of cerebrovascular disease. Stroke Vasc. Neurol. 2017, 2, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Hayreh, S.S. Blood flow in the optic nerve head and factors that may influence it. Prog. Retin. Eye Res. 2001, 20, 595–624. [Google Scholar] [CrossRef]
- Pambakian, A.; Currie, J.; Kennard, C. Rehabilitation strategies for patients with homonymous visual field defects. J. Neuroophthalmol. 2005, 25, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.A.; Bron, A.J.; Harding, J.J.; Dewar, H.M. Nutrition supplements and the eye. Eye (Lond.) 1998, 12, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Demmig-Adams, B.; Adams, R.B. Eye Nutrition in Context: Mechanisms, Implementation, and Future Directions. Nutrients 2013, 5, 2483–2501. [Google Scholar] [CrossRef] [PubMed]
- Salama, M.; Yuan, T.F.; Machado, S.; Murillo-Rodríguez, E.; Vega, J.A.; Menéndez-González, M.; Nardi, A.E.; Arias-Carrión, O. Co-enzyme Q10 to treat neurological disorders: Basic mechanisms, clinical outcomes, and future research direction. CNS Neurol. Disord. Drug Targets 2013, 12, 641–664. [Google Scholar] [CrossRef]
- Zhang, X.; Biswas, L.; Tohari, A.M.; Reilly, J.; Tiano, L.; Shu, X. Coenzyme Q10 as a therapeutic candidate for treating inherited photoreceptor degeneration. Neural Regen. Res. 2017, 12, 1979–1981. [Google Scholar] [CrossRef]
- Zhang, X.; Tohari, A.M.; Marcheggiani, F.; Zhou, X.; Reilly, J.; Tiano, L.; Shu, X. Therapeutic Potential of Co-enzyme Q10 in Retinal Diseases. Curr. Med. Chem. 2017, 24, 4329–4339. [Google Scholar] [CrossRef]
- Martucci, A.; Nucci, C. Evidence on neuroprotective properties of coenzyme Q10 in the treatment of glaucoma. Neural Regen. Res. 2019, 14, 197–200. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y.; Xu, H.; Luo, X.; Yu, J.; Liu, J.; Chang, R.C. Neuroprotection of Coenzyme Q10 in Neurodegenerative Diseases. Curr. Top. Med. Chem. 2016, 16, 856–866. [Google Scholar] [CrossRef]
- Somayajulu, M.; McCarthy, S.; Hung, M.; Sikorska, M.; Borowy-Borowski, H.; Pandey, S. Role of mitochondria in neuronal cell death induced by oxidative stress; neuroprotection by coenzyme Q10. Neurobiol. Dis. 2005, 18, 618–697. [Google Scholar] [CrossRef]
- Fernández-Vega, B.; González-Iglesias, H.; Vega, J.A.; Nicieza, J.; Fernández-Vega, A. Coenzyme Q10 treatment improved visual field after homonymous quadrantanopia caused by occipital lobe infarction. Am. J. Ophthalmol. Case Rep. 2018, 13, 70–75. [Google Scholar] [CrossRef]
- Prem Senthil, N.; Khadka, J.; Gilhotra, J.S.; Simon, S.; Fenwick, E.K.; Lamoureux, E.; Pesudovs, K. Understanding quality of life impact in people with retinal vein occlusion: A qualitative inquiry. Clin. Exp. Optom. 2019, 102, 406–411. [Google Scholar] [CrossRef]
- Kerkhoff, G. Restorative and compensatory therapy approaches in cerebral blindness—A review. Restor. Neurol. Neurosci. 1999, 15, 255–271. [Google Scholar] [PubMed]
- Augsburger, J.J.; Magargal, L.E. Visual prognosis following treatment of acute central retinal artery obstruction. Br. J. Ophthalmol. 1980, 64, 913–917. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.J.; Arnold, A.C. Current concepts in the diagnosis, pathogenesis and management of nonarteritic anterior ischaemic optic neuropathy. Eye (Lond.) 2015, 29, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Pambakian, A.L.; Kennard, C. Can visual function be restored in patients with homonymous hemianopia? Br. J. Ophthalmol. 1997, 81, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Scherer, R.W.; Feldon, S.E.; Levin, L.; Langenberg, P.; Katz, J.; Keyl, P.M.; Wilson, P.D.; Kelman, S.E.; Dickersin, K. Ischemic Optic Neuropathy Decompression Trial Research Group. Visual fields at follow-up in the Ischemic Optic Neuropathy Decompression Trial: Evaluation of change in pattern defect and severity over time. Ophthalmology 2008, 115, 1809–1817. [Google Scholar] [CrossRef] [PubMed]
- Frolov, A.; Feuerstein, J.; Subramanian, P.S. Homonymous Hemianopia and Vision. Restoration Therapy. Neurol. Clin. 2017, 35, 29–43. [Google Scholar] [CrossRef]
- Mirshahi, A.; Feltgen, N.; Hansen, L.L.; Hattenbach, L.O. Retinal vascular occlusions: An interdisciplinary challenge. Dtsch. Arztebl. Int. 2008, 105, 474–479. [Google Scholar] [CrossRef]
- Han, L.; Law-Gibson, D.; Reding, M. Key neurological impairments influence function-related group outcomes after stroke. Stroke 2002, 33, 1920–1924. [Google Scholar] [CrossRef][Green Version]
- Kedar, S.; Ghate, D.; Corbett, J.J. Visual fields in neuro-ophthalmology. Indian J. Ophthalmol. 2011, 59, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Litarru, G.P.; Tiano, L. Bioenergetic and antioxidant properties of coenzyme Q10: Recent developments. Mol. Biotechnol. 2007, 37, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Kim, K.Y.; Shim, M.S.; Kim, S.Y.; Ellisman, M.H.; Weinreb, R.N.; Ju, W.K. Coenzyme Q10 ameliorates oxidative stress and prevents mitochondrial alteration in ischemic retinal injury. Apoptosis 2014, 19, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.J.; Guo, Y.Z.; Zhang, Y.; Yang, L.; Chang, Y.; Zhang, J.W.; Jing, L.; Zhang, J.Z. Coenzyme Q10 ameliorates cerebral ischemia reperfusion injury in hyperglycemic rats. Pathol. Res. Pract. 2017, 213, 1191–1199. [Google Scholar] [CrossRef]
- Beal, M.F. Therapeutic effects of coenzyme Q10 in neurodegenerative diseases. Methods Enzymol. 2004, 382, 473–487. [Google Scholar] [CrossRef] [PubMed]
- Molyneux, A.; Florkowski, C.M.; George, P.M.; Pilbrow, A.P.; Frampton, C.M.; Lever, M.; Richards, A.M. Coenzyme Q10: An independent predictor of mortality in chronic heart failure. J. Am. Coll. Cardiol. 2008, 52, 1435–1441. [Google Scholar] [CrossRef]
- Nucci, C.; Tartaglione, R.; Cerulli, A.; Mancino, R.; Spanò, A.; Cavaliere, F.; Rombolà, L.; Bagetta, G.; Corasaniti, M.T.; Morrone, L.A. Retinal damage caused by high intraocular pressure-induced transient ischemia is prevented by coenzyme Q10 in rat. Int. Rev. Neurobiol. 2007, 82, 397–406. [Google Scholar] [CrossRef]
- Russo, R.; Cavaliere, F.; Rombolà, L.; Gliozzi, M.; Cerulli, A.; Nucci, C.; Fazzi, E.; Bagetta, G.; Corasaniti, M.T.; Morrone, L.A. Rational basis for the development of coenzyme Q10 as a neurotherapeutic agent for retinal protection. Prog. Brain Res. 2008, 173, 575–582. [Google Scholar] [CrossRef]
- Hernández-Camacho, J.D.; Bernier, M.; López-Lluch, G.; Navas, P. Coenzyme Q10 Supplementation in Aging and Disease. Front. Physiol. 2018, 9, 44. [Google Scholar] [CrossRef]
Study Population (n) | Age at Diagnosis (mean ± SD) | Current Age (mean ± SD) | Age Range | Gender (Female/Male) |
---|---|---|---|---|
NAION (18) | 61 ± 8 | 61 ± 7 | 50–81 | 8(44%)/10 |
Stroke (10) | 56 ± 21 | 63 ± 18 | 19–71 | 4(40%)/6 |
RAO (7) | 65 ± 11 | 65 ± 11 | 48–83 | 2(29%)/5 |
OC (13) | 47 ± 23 | 51 ± 22 | 15–85 | 8(61%)/5 |
Population-averaged (48) | 57 ± 16 | 60 ± 15 | 15–85 | 22(46%)/26 |
Case | Disease | Follow-Up Months | Eye | Initial VFI (%) | Final VFI (%) | Initial MD (dB) | Final MD (dB) | VFI Progression Rate (%/year) 1 |
---|---|---|---|---|---|---|---|---|
NAION01 | NAION (with secondary optic atrophy) | 91 2 | Right | 96 | 100 | −3.91 | 1.03 | −0.2 ± 0.2 |
Left | 49 | 67 | −17.91 | −10.68 | +2.0 ± 1.9 | |||
NAION02 | NAION | 29 3 | Right | 92 | 98 | −6.37 | −0.27 | +2.6 ± 2.6 |
Left | 0 | 21 | −30.82 | −23.18 | +5.0 ± 14.8 | |||
NAION03 | NAION (with homonymous hemianopia) | 37 2 | Right | 97 | 98 | −2.4 | −1.81 | +1.1 ± 8.2 |
Left | 81 | 88 | −6.79 | −2.35 | +2.4 ± 8.6 | |||
NAION04 | NAION | 5 2 | Right | 97 | 99 | −3.72 | −1.52 | +1.0 ± 1.1 |
Left | 14 | 35 | −27.39 | −21.64 | +58.1 ± 10.5 | |||
NAION05 | NAION | 10 2 | Right | 88 | 93 | −5.7 | −3.0 | +2.8 ± 5.0 |
Left | 36 | 45 | −19.22 | −15.67 | +11.8 ± 17.6 | |||
NAION06 | NAION (with inferior hemianopia) | 64 2 | Right | 63 | 88 | −16.43 | −6.62 | +5.9 ± 2.6 |
Left | 97 | 100 | −1.24 | 0.67 | −0.1 ± 0.3 | |||
NAION07 | NAION | 31 2 | Right | 52 | 67 | −17.88 | −12.38 | +6.0 ± 14.4 |
Left | 98 | 99 | −1.48 | −0.63 | +0.60 ± 0.6 | |||
NAION08 | NAION | 14 2 | Right | 46 | 79 | −16.91 | −6.68 | +19.7 ± 13.9 |
Left | 93 | 99 | −4.07 | −0.13 | +2.1 ± 2.6 | |||
NAION09 | NAION | 106 4 | Right | 20 | 55 | −23.96 | −15.03 | +2.3 ± 2.1 |
Left | 98 | 99 | −2.38 | −0.02 | +0.0 ± 0.1 | |||
NAION10 | NAION | 76 2 | Right | 99 | 99 | −1.33 | −0.28 | 0.0 ± 0.3 |
Left | 46 | 46 | −17.9 | −17.47 | +0.7 ± 4.0 | |||
NAION11 | NAION | 12 2 | Right | 97 | 99 | −0.34 | 0.39 | +0.7 ± 1.1 |
Left | 14 | 27 | −27.15 | −23.73 | +24.5 ± 6.7 | |||
NAION12 | NAION | 42 2 | Right | 78 | 94 | −7.76 | −2.15 | +1.4 ± 6.8 |
Left | 17 | 25 | −28.56 | −26.27 | +2.0 ± 4.1 | |||
NAION13 | NAION | 41 2 | Right | 98 | 98 | −0.53 | 1.69 | +0.0 ± 0.0 |
Left | 56 | 85 | −13.3 | −5.26 | +23.2 ± 14.5 | |||
NAION14 | NAION | 18 2 | Right | 4 | 20 | −29.64 | −25.05 | +14.2 ± 10.98 |
Left | 100 | 97 | −2.26 | −1.61 | +0.1 ± 6.3 | |||
NAION15 | NAION | 89 2 | Right | 67 | 80 | −11.05 | −5.96 | +0.7 ± 1.2 |
Left | 100 | 99 | −0.77 | −0.39 | −0.1 ± 0.2 | |||
NAION16 | NAION | 5 2 | Right | 98 | 99 | −0.27 | 1.3 | +0.50 ± 0.1 |
Left | 78 | 91 | −10.03 | −5.02 | +8.0 ± 6.6 | |||
NAION17 | NAION | 22 2 | Right | 89 | 95 | −8.69 | −5.45 | +1.6 ± 0.3 |
Left | 3 | 73 | −30.68 | −10.16 | +26.6 ± 16.6 | |||
NAION18 | NAION | 102 2 | Right | 52 | 62 | −17.03 | −12.1 | −0.7 ± 2.0 |
Left | 100 | 99 | −2.11 | −1.34 | +0.2 ± 0.6 |
Case | Disease | Follow-up Months | Eye | Initial VFI (%) | Final VFI (%) | Initial MD (dB) | Final MD (dB) | VFI Progression Rate (%/year) 1 |
---|---|---|---|---|---|---|---|---|
Stroke01 | Inferior homonymous hemianopia following stroke | 203 2 | Right | 55 | 73 | −16.8 | −11.43 | +0.6 ± 0.9 |
Left | 56 | 78 | −16.31 | −9.0 | +0.8 ± 0.8 | |||
Stroke02 | Left homonymous hemianopia following right retrochiasmal lesion | 6 3 | Right | 60 | 73 | −14.01 | −10.47 | +22.2 ± 51.1 |
Left | 71 | 66 | −8.65 | −9.31 | −10.5 ± 5.1 | |||
Stroke03 | Right superior homonymous hemianopia following left inferior retrochiasmal lesion | 19 4 | Right | 84 | 84 | −7.72 | −7.61 | −0.1 ± 10.1 |
Left | 78 | 80 | −10.01 | −10.54 | +0.7 ± 18.1 | |||
Stroke04 | Right hemianopia (unknown origin) | 20 5 | Right | 51 | 99 | −17.21 | −1.18 | +30.3 ± 6.4 |
Left | 99 | 100 | −2.37 | −0.58 | +2.2 ± 4.2 | |||
Stroke05 | Right inferior homonymous quadrantanopia (left superior retrochiasmal lesion) | 13 3 | Right | 77 | 81 | −11.21 | −9.94 | +2.6 ± 15.7 |
Left | 62 | 90 | −14.01 | −4.28 | +20.5 ± 14.4 | |||
Stroke06 | Right homonymous incomplete hemianopia (left occipital lobe stroke) | 27 3 | Right | 72 | 76 | −12.57 | −6.92 | +6.9 ± 8.6 |
Left | 58 | 71 | −16.09 | −12.77 | +5.6 ± 1.9 | |||
Stroke07 | Stroke (cerebrovascular ictus) with peripheral alteration | 22 6 | Right | 96 | 94 | −3.34 | −2.53 | +3.3 ± 3.8 |
Left | 90 | 88 | −5.97 | −4.31 | +4.9 ± 4.6 | |||
Stroke08 | Left inferior homonymous quadrantanopia (right superior retrochiasmal lesion) | 90 7 | Right | 88 | 91 | −5.62 | −1.55 | +2.3 ± 3.1 |
Left | 89 | 90 | −5.36 | −5.24 | +3.1 ± 3.8 | |||
Stroke09 | Right homonymous hemianopia (left retrochiasmal lesion) | 12 3 | Right | 56 | 65 | −14.34 | −10.2 | +7.7 ± 5.2 |
Left | 50 | 57 | −16.84 | −15.31 | +3.8 ± 23.8 | |||
Stroke10 | Left homonymous hemianopia (right retrochiasmal lesion) | 12 3 | Right | 27 | 48 | −22.53 | −18.96 | +33.3 ± 10.7 |
Left | 26 | 35 | −21.28 | −17.62 | +16.0 ± 4.5 |
Case | Disease | Follow-Up Months | Eye | Initial VFI (%) | Final VFI (%) | Initial MD (dB) | Final MD (dB) | VFI Progression Rate (%/year) 1 |
---|---|---|---|---|---|---|---|---|
RAO01 | CRAO | 20 2 | Right | 0 | 75 | −31.24 | −10.19 | +39.9 ± 25.6 |
Left | 98 | 99 | −1.27 | 0.94 | +1.8 ± 4.0 | |||
RAO02 | CRAO | 9 2 | Right | 0 | 46 | −31.88 | −17.3 | +49.4 ± 42.9 |
Left | 96 | 94 | −3.15 | −2.19 | +1.0 ± 10.1 | |||
RAO03 | RAO (temporal inferior with nasal superior quadrantanopia) | 4 2 | Right | 100 | 96 | 0.9 | −2.37 | −2.0 ± 1.9 |
Left | 48 | 78 | −18.55 | −8.06 | +27.5 ± 12.7 | |||
RAO04 | RAO (temporal inferior with optic nerve atrophy) | 7 2 | Right | 98 | 100 | −0.57 | 0.7 | +1.0 ± 0.8 |
Left | 62 | 78 | −10.79 | −7.04 | +12.2.5 ± 10.6 | |||
RAO05 | RAO (temporal inferior with superior hemianopia) | 15 2 | Right | 47 | 87 | −15.45 | −5.71 | +13.1 ± 16.9 |
Left | 98 | 99 | −3.17 | −1.99 | +0.2 ± 0.2 | |||
RAO06 | RAO (temporal superior) | 5 2 | Right | 56 | 61 | −14.44 | −11.09 | +8.9 ± 3.5 |
Left | 98 | 98 | −2.27 | −1.54 | +0.0 ± 0.0 | |||
RAO07 | RAO (temporal superior) | 53 2 | Right | 95 | 98 | −2.5 | −0.39 | +0.2 ± 1.1 |
Left | 51 | 61 | −18.3 | −12.68 | +3.0 ± 5.3 |
Case | Disease | Follow-Up Months | Eye | Initial VFI (%) | Final VFI (%) | Initial MD (dB) | Final MD (dB) | VFI Progression Rate (%/year) 1 |
---|---|---|---|---|---|---|---|---|
OC01 | Optic neuritis | 92 2 | Right | 87 | 97 | −9.54 | −2.61 | +0.9 ± 0.5 |
Left | 71 | 94 | −9.89 | −3.19 | −2.4 ± 0.6 | |||
OC02 | Optic neuritis causing optic nerve atrophy | 97 2 | Right | 99 | 98 | −1.44 | −2.22 | −0.4 ± 0.4 |
Left | 70 | 91 | −11.12 | −7.06 | +0.8 ± 3.5 | |||
OC03 | Bilateral optic neuritis | 16 2 | Right | 48 | 92 | −20.89 | −5.65 | +24.2 ± 28.2 |
Left | 22 | 93 | −27.32 | −3.94 | +61.7 ± 32.9 | |||
OC04 | Optic nerve atrophy (post-meningitis) | 63 2 | Right | 0 | 11 | −31.02 | −25.79 | +76.2 ± 12.3 |
Left | 2 | 91 | −30.22 | −2.4 | +257.0 ± 42.30 | |||
OC05 | Optic nerve atrophy (intracranial hypertension) | 110 2 | Right | 89 | 85 | −0.87 | −7.12 | +1.3 ± 3.8 |
Left | 89 | 88 | 1.15 | −6.72 | +0.6 ± 2.4 | |||
OC06 | Optic nerve atrophy (drug toxicity, etambutol) | 22 2 | Right | 86 | 99 | −4.58 | −0.28 | +4.2 ± 2.4 |
Left | 87 | 99 | −5.67 | −0.1 | +7.1 ± 3.0 | |||
OC07 | Neuroretinitis | 26 2 | Right | 70 | 88 | −11.47 | −2.31 | +6.8 ± 5.4 |
Left | 100 | 100 | 4.06 | 4.18 | +0.1 ± 0.4 | |||
OC08 | Tapetoretinal dystrophy (with superior hemianopia) | 34 2 | Right | 31 | 40 | −26.17 | −20.8 | +2.2 ± 2.9 |
Left | 22 | 48 | −27.64 | −18.42 | +2.5 ± 3.9 | |||
OC09 | Retinitis pigmentosa | 53 3 | Right | 12 | 49 | −27.92 | −19.46 | +0.0 ± 3.7 |
Left | 19 | 49 | −26.88 | −19.85 | +0.4 ± 2.7 | |||
OC10 | Unknown | 14 2 | Right | 5 | 80 | −28.75 | −7.54 | +15.5 ± 4.4 |
Left | 11 | 88 | −27.76 | −8.5 | +10.0 ± 4.9 | |||
OC11 | Unknown (optic nerve injury) | 68 4 | Right | 95 | 98 | −5.13 | −1.9 | +4.1 ± 24.6 |
Left | 90 | 99 | −6.4 | −0.34 | +4.6 ± 22.0 | |||
OC12 | Cone dystrophy | 103 5 | Right | 66 | 70 | −6.99 | −9.96 | +0.1 ± 1.7 |
Left | 71 | 70 | −7.39 | −10.0 | −0.6 ± 1.1 | |||
OC13 | Retinal vascular occlusion | 89 6 | Right | 99 | 99 | −0.22 | −0.51 | +0.6 ± 1.7 |
Left | 31 | 58 | −24.44 | −17.84 | +5.2 ± 2.9 |
p-Values (Wilcoxon Matched-Pairs Test) | ||
---|---|---|
Group | VFI (Initial vs. Final) (%) | MD (Initial vs. Final) (db) |
NAION | < 0.0001 | < 0.0001 |
Stroke | 0.0008 | < 0.0001 |
RAO | 0.0081 | 0.0023 |
OC | < 0.0001 | 0.0005 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Vega, B.; Nicieza, J.; Álvarez-Barrios, A.; Álvarez, L.; García, M.; Fernández-Vega, C.; Vega, J.A.; González-Iglesias, H. The Use of Vitamins and Coenzyme Q10 for the Treatment of Vascular Occlusion Diseases Affecting the Retina. Nutrients 2020, 12, 723. https://doi.org/10.3390/nu12030723
Fernández-Vega B, Nicieza J, Álvarez-Barrios A, Álvarez L, García M, Fernández-Vega C, Vega JA, González-Iglesias H. The Use of Vitamins and Coenzyme Q10 for the Treatment of Vascular Occlusion Diseases Affecting the Retina. Nutrients. 2020; 12(3):723. https://doi.org/10.3390/nu12030723
Chicago/Turabian StyleFernández-Vega, Beatriz, Javier Nicieza, Ana Álvarez-Barrios, Lydia Álvarez, Montserrat García, Carlos Fernández-Vega, José A. Vega, and Héctor González-Iglesias. 2020. "The Use of Vitamins and Coenzyme Q10 for the Treatment of Vascular Occlusion Diseases Affecting the Retina" Nutrients 12, no. 3: 723. https://doi.org/10.3390/nu12030723
APA StyleFernández-Vega, B., Nicieza, J., Álvarez-Barrios, A., Álvarez, L., García, M., Fernández-Vega, C., Vega, J. A., & González-Iglesias, H. (2020). The Use of Vitamins and Coenzyme Q10 for the Treatment of Vascular Occlusion Diseases Affecting the Retina. Nutrients, 12(3), 723. https://doi.org/10.3390/nu12030723