Carnitine Serum Levels in Frail Older Subjects
Abstract
:1. Introduction
2. Patients
- (1)
- Older than 65 years;
- (2)
- Ability to understand and complete the questionnaires;
- (3)
- Not suffering from severe mental or cognitive disorders and independence in terms of Activities of Daily Living (ADL) and Instrumental Activities of Daily Living (IADL).
- (1)
- Hematological diseases;
- (2)
- Dehydration;
- (3)
- Immunological diseases;
- (4)
- Cardiac disease;
- (5)
- Endocrinological disorders;
- (6)
- Kidney, lung, liver disease;
- (7)
- Malignancy;
- (8)
- Treatment with corticosteroids;
- (9)
- Assumption of L-carnitine and its derivates;
- (10)
- Subjects in a vegan or vegetarian diet.
3. Methods
3.1. Demographic Data Collection
3.2. Laboratory Parameters
3.3. L-Carnitine Determination
3.4. Frailty Score
- (a)
- Shrinking was defined as an unintentional weight loss ≥ 4.5 kg in the previous six months;
- (b)
- Weakness was assessed by grip strength which was measured in kg with a hand-held dynamometer;
- (c)
- Exhaustion was established based on response “no” to the question: “Do you feel full of energy?”;
- (d)
- Slowness was established with a fast gait speed test and was measured in seconds over a six-meter course;
- (e)
- How physical activity was determined by a self-reported response of “never” or “rarely” to the question: ”How often do you participate in physical activities?” [19].
- (1)
- Robust: 0 criteria;
- (2)
- Prefrail: between 1 and 2 criteria;
- (3)
- Frail: 3 or more criteria.
3.5. Neuropsychological Tests
3.6. Ethics Approval and Consent to Participate
3.7. Statistics
4. Results
- (a)
- The mean serum concentrations were lower in frail elderly subjects than those in pre-frail subjects in terms of albumin p < 0.0001, in AST p = 0.003, in CK p < 0.0001, in ALP p < 0.0001, in CRP p < 0.0001, in TCH p < 0.0001, in HDL CH p = 0.0034 and in Triacylglycerols p < 0.0001, in SPPB p < 0.0001, in 6MWT p < 0.01, in MMSE p < 0.01 and higher in glycemia p < 0.0001.
- (b)
- The mean serum concentrations were lower in frail than in robust subjects in terms of albumin (p < 0.0001), AST (p = 0.003), ALP (p < 0.0001), CK (p < 0.0001), iron (p < 0.0001), CRP (p < 0.001), in both total and HDL CH (p < 0.0001), and Triacylglycerols (p < 0.0001), in SPPB p < 0.001, in 6MWT p< 0.01, in MMSE p < 0.001. They were higher in urea (p = 0.02) and glucose (p = 0.016).
- (c)
- The mean serum concentrations in prefrail subjects compared to robust elderly subjects were lower in blood glucose (p < 0.05), albumin (p < 0.0001), ALP (p < 0.0001), CK (p < 0.0001), CRP (p < 0.0001), TCH (p < 0.0001), HDL cholesterol (p = 0.0044), Triacylglycerols (p< 0.0001), in SPPB p < 0.001, in 6MWT p < 0.001.
4.1. Plasma Carnitine
4.2. Carnitine in Urine
5. Discussion
Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Availability of Data and Materials
References
- Bieniek, J.; Wilczyński, K.; Szewieczek, J. Fried frailty phenotype assessment components as applied to geriatric inpatients. Clin. Interv. Aging 2016, 11, 453–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panza, F.; Lozupone, M.; Solfrizzi, V.; Sardone, R.; Dibello, V.; Di Lena, L.; D’Urso, F.; Stallone, R.; Petruzzi, M.; Giannelli, G.; et al. Different Cognitive Frailty Models and Health- and Cognitive-related Outcomes in Older Age: From Epidemiology to Prevention. J. Alzheimer’s Dis. 2018, 62, 993–1012. [Google Scholar] [CrossRef] [Green Version]
- Bock, J.O.; König, H.H.; Brenner, H.; Haefeli, W.E.; Quinzler, R.; Matschinger, H.; Saum, K.U.; Schöttker, B.; Heider, D. Associations of frailty with health care costs—Results of the ESTHER cohort study. BMC Health Serv. Res. 2016, 16, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rockwood, K.; Stadnyk, K.; MacKnight, C.; McDowell, I.; Hébert, R.; Hogan, D.B. A brief clinical instrument to classify frailty in elderly people. Lancet 1999, 353, 205–206. [Google Scholar] [CrossRef]
- Mocchegiani, E.; Basso, A.; Giacconi, R.; Piacenza, F.; Costarelli, L.; Pierpaoli, S.; Malavolta, M. Diet (zinc)-gene interaction related to inflammatory/immune response in ageing: Possible link with frailty syndrome? Biogerontology 2010, 11, 589–595. [Google Scholar] [CrossRef] [PubMed]
- De Vries, N.M.; Staal, J.B.; Van Ravensberg, C.D.; Hobbelen, J.S.; Rikkert, M.O.; Nijhuis-Van der Sanden, M.W. Outcome instruments to measure frailty: A systematic review. Ageing Res. Rev. 2011, 10, 104–114. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Pennisi, M.; Lanza, G.; Cantone, M.; D’Amico, E.; Fisicaro, F.; Puglisi, V.; Vinciguerra, L.; Bella, R.; Vicari, E.; Malaguarnera, G. Acetyl-L-Carnitine in Dementia and Other Cognitive Disorders: A Critical Update. Nutrients 2020, 12, 1389. [Google Scholar] [CrossRef]
- Malaguarnera, M.; Vacante, M.; Giordano, M.; Motta, M.; Bertino, G.; Pennisi, M.; Neri, S.; Malaguarnera, M.; Li Volti, G.; Galvano, F. L-carnitine supplementation improves hematological pattern in patients affected by HCV treated with Peg interferon-α 2b plus ribavirin. World J. Gastroenterol. 2011, 17, 4414–4420. [Google Scholar] [CrossRef]
- Malaguarnera, G.; Pennisi, M.; Gagliano, C.; Vacante, M.; Malaguarnera, M.; Salomone, S.; Drago, F.; Bertino, G.; Caraci, F.; Nunnari, G.; et al. Acetyl-L-Carnitine Supplementation During HCV Therapy with Pegylated Interferon-α 2b Plus Ribavirin: Effect on Work Performance; A Randomized Clinical Trial. Hepat. Mon. 2014, 14, e11608. [Google Scholar] [CrossRef] [Green Version]
- Stanley, C.A. Carnitine deficiency disorders in children. Ann. N. Y. Acad. Sci. 2004, 1033, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Malaguarnera, M.; Cauli, O. Effects of l-Carnitine in Patients with Autism Spectrum Disorders: Review of Clinical Studies. Molecules 2019, 24, 4262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens, F.B.; Constantin-Teodosiu, D.; Greenhaff, P.L. New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. J. Physiol. 2007, 581 Pt 2, 431–444. [Google Scholar] [CrossRef]
- Ribas, G.S.; Vargas, C.R.; Wajner, M. L-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders. Gene 2014, 533, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Vecchio, M.; Malaguarnera, G.; Giordano, M.; Malaguarnera, M.; Li Volti, G.; Galvano, F.; Drago, F.; Basile, F.; Malaguarnera, M. A musician’s dystonia. Lancet 2012, 379, 2116. [Google Scholar] [CrossRef]
- Malaguarnera, M. Acetyl-L-carnitine in hepatic encephalopathy. Metab. Brain Dis. 2013, 28, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Galvano, F.; Li Volti, G.; Malaguarnera, M.; Avitabile, T.; Antic, T.; Vacante, M.; Malaguarnera, M. Effects of simvastatin and carnitine versus simvastatin on lipoprotein(a) and apoprotein(a) in type 2 diabetes mellitus. Expert Opin. Pharmacother. 2009, 10, 1875–1882. [Google Scholar] [CrossRef]
- Cederblad, G.; Lindstedt, S. A method for the determination of carnitine in the picomole range. Clin. Chim. Acta 1972, 37, 235–243. [Google Scholar] [CrossRef]
- Wang, X.; Heffner, K.L.; Anthony, M.; Lin, F. Stress adaptation in older adults with and without cognitive impairment: An fMRI pattern-based similarity analysis. Aging 2019, 11, 6792–6804. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Katz, S.; Ford, A.B.; Moskowitz, R.W.; Jackson, B.A.; Jaffe, M.W. Studies of Illness in the Aged. The Index of Adl: A Standardized Measure of Biological and Psychosocial Function. JAMA 1963, 185, 914–919. [Google Scholar] [CrossRef] [PubMed]
- Lawton, M.P.; Brody, E.M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef]
- Rolland, Y.M.; Cesari, M.; Miller, M.E.; Penninx, B.W.; Atkinson, H.H.; Pahor, M. Reliability of the 400-m usual-pace walk test as an assessment of mobility limitation in older adults. J. Am. Geriatr. Soc. 2004, 52, 972–976. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Ferrucci, L.; Pieper, C.F.; Leveille, S.G.; Markides, K.S.; Ostir, G.V.; Studenski, S.; Berkman, L.F.; Wallace, R.B. Lower extremity function and subsequent disability: Consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55, M221–M231. [Google Scholar] [CrossRef] [Green Version]
- Kane, A.E.; Sinclair, D.A. Frailty biomarkers in humans and rodents: Current approaches and future advances. Mech. Ageing Dev. 2019, 180, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Conley, K.E.; Marcinek, D.J.; Villarin, J. Mitochondrial dysfunction and age. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 688–692. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.C. Mitochondrial diseases in man and mouse. Science 1999, 283, 1482–1488. [Google Scholar] [CrossRef] [Green Version]
- Binienda, Z.; Virmani, A.; Przybyla-Zawislak, B.; Schmued, L. Neuroprotective effect of L-carnitine in the 3-nitropropionic acid (3-NPA)-evoked neurotoxicity in rats. Neurosci. Lett. 2004, 367, 264–267. [Google Scholar] [CrossRef]
- Sue, C.M.; Hirano, M.; DiMauro, S.; De Vivo, D.C. Neonatal presentations of mitochondrial metabolic disorders. Semin. Perinatol. 1999, 23, 113–124. [Google Scholar] [CrossRef]
- Malaguarnera, M.; Vacante, M.; Motta, M.; Giordano, M.; Malaguarnera, G.; Bella, R.; Nunnari, G.; Rampello, L.; Pennisi, G. Acetyl-L-carnitine improves cognitive functions in severe hepatic encephalopathy: A randomized and controlled clinical trial. Metab. Brain Dis. 2011, 26, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Calvani, M.; Benatti, P.; Mancinelli, A.; D’Iddio, S.; Giordano, V.; Koverech, A.; Amato, A.; Brass, E.P. Carnitine replacement in end-stage renal disease and hemodialysis. Ann. N. Y. Acad. Sci. 2004, 1033, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Bene, J.; Szabo, A.; Komlósi, K.; Melegh, B. Mass Spectrometric Analysis of L-carnitine and its Esters: Potential Biomarkers of Disturbances in Carnitine Homeostasis. Curr. Mol. Med. 2020, 20, 336–354. [Google Scholar] [CrossRef] [PubMed]
- Koves, T.R.; Ussher, J.R.; Noland, R.C.; Slentz, D.; Mosedale, M.; Ilkayeva, O.; Bain, J.; Stevens, R.; Dyck, J.R.; Newgard, C.B.; et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008, 7, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, J.L.; Simmons, P.A.; Vehige, J.; Willcox, M.D.; Garrett, Q. Role of carnitine in disease. Nutr. Metab. 2010, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Rebouche, C.J. Kinetics, pharmacokinetics, and regulation of L-carnitine and acetyl-L-carnitine metabolism. Ann. N. Y. Acad. Sci. 2004, 1033, 30–41. [Google Scholar] [CrossRef]
- Iwamoto, J.; Honda, A.; Miyamoto, Y.; Miyazaki, T.; Murakami, M.; Saito, Y.; Ikegami, T.; Miyamoto, J.; Matsuzaki, Y. Serum carnitine as an independent biomarker of malnutrition in patients with impaired oral intake. J. Clin. Biochem. Nutr. 2014, 55, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Bene, J.; Komlósi, K.; Havasi, V.; Talián, G.; Gasztonyi, B.; Horváth, K.; Mózsik, G.; Hunyady, B.; Melegh, B.; Figler, M. Changes of plasma fasting carnitine ester profile in patients with ulcerative colitis. World J. Gastroenterol. 2006, 12, 110–113. [Google Scholar] [CrossRef]
- Malaguarnera, G.; Vacante, M.; Drago, F.; Bertino, G.; Motta, M.; Giordano, M.; Malaguarnera, M. Endozepine-4 levels are increased in hepatic coma. World J. Gastroenterol. 2015, 21, 9103–9110. [Google Scholar] [CrossRef]
- Breningstall, G.N. Carnitine deficiency syndromes. Pediatr. Neurol. 1990, 6, 75–81. [Google Scholar] [CrossRef]
- Costell, M.; O’Connor, J.E.; Grisolía, S. Age-dependent decrease of carnitine content in muscle of mice and humans. Biochem. Biophys. Res. Commun. 1989, 161, 1135–1143. [Google Scholar] [CrossRef]
- Malaguarnera, M.; Cammalleri, L.; Gargante, M.P.; Vacante, M.; Colonna, V.; Motta, M. L-Carnitine treatment reduces severity of physical and mental fatigue and increases cognitive functions in centenarians: A randomized and controlled clinical trial. Am. J. Clin. Nutr. 2007, 86, 1738–1744. [Google Scholar] [CrossRef] [PubMed]
- Hedayati, S.S. Dialysis-related carnitine disorder. Semin. Dial. 2006, 19, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Savica, V.; Calvani, M.; Benatti, P.; Santoro, D.; Monardo, P.; Mallamace, A.; Savica, R.; Bellinghieri, G. Newer aspects of carnitine metabolism in uremia. Semin. Nephrol. 2006, 26, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Bellinghieri, G.; Santoro, D.; Calvani, M.; Mallamace, A.; Savica, V. Carnitine and hemodialysis. Am. J. Kidney Dis. 2003, 41 (Suppl. 1), S116–S122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hothi, D.K.; St George-Hyslop, C.; Geary, D.; Bohn, D.; Harvey, E. Continuous renal replacement therapy (CRRT) in children using the AQUARIUS. Nephrol. Dial. Transplant. 2006, 21, 2296–2300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosca, M.G.; Lemieux, H.; Hoppel, C.L. Mitochondria in the elderly: Is acetylcarnitine a rejuvenator? Adv. Drug Deliv. Rev. 2009, 61, 1332–1342. [Google Scholar] [CrossRef] [Green Version]
- Maccari, F.; Arseni, A.; Chiodi, P.; Ramacci, M.T.; Angelucci, L. Levels of carnitines in brain and other tissues of rats of different ages: Effect of acetyl-L-carnitine administration. Exp. Gerontol. 1990, 25, 127–134. [Google Scholar] [CrossRef]
- Liu, J.; Atamna, H.; Kuratsune, H.; Ames, B.N. Delaying brain mitochondrial decay and aging with mitochondrial antioxidants and metabolites. Ann. N. Y. Acad. Sci. 2002, 959, 133–166. [Google Scholar] [CrossRef]
- Liu, J.; Killilea, D.W.; Ames, B.N. Age-associated mitochondrial oxidative decay: Improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-L- carnitine and/or R-alpha -lipoic acid. Proc. Natl. Acad. Sci. USA 2002, 99, 1876–1881. [Google Scholar] [CrossRef] [Green Version]
- Crentsil, V. Mechanistic contribution of carnitine deficiency to geriatric frailty. Ageing Res. Rev. 2010, 9, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Malaguarnera, M.; Vacante, M.; Frazzetto, P.M.; Motta, M. What is the frailty in elderly? Value and significance of the multidimensional assessments. Arch. Gerontol Geriatr. 2013, 56, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Malaguarnera, M.; Vacante, M.; Motta, M.; Malaguarnera, M.; Li Volti, G.; Galvano, F. Effect of L-carnitine on the size of low-density lipoprotein particles in type 2 diabetes mellitus patients treated with simvastatin. Metabolism 2009, 58, 1618–1623. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Mao, G.; Leng, S.X. Frailty syndrome: An overview. Clin. Interv. Aging 2014, 9, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef] [Green Version]
- Broad, E.M.; Maughan, R.J.; Galloway, S.D. Effects of exercise intensity and altered substrate availability on cardiovascular and metabolic responses to exercise after oral carnitine supplementation in athletes. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 385–397. [Google Scholar] [CrossRef] [Green Version]
- Broad, E.M.; Maughan, R.J.; Galloway, S.D. Carbohydrate, protein, and fat metabolism during exercise after oral carnitine supplementation in humans. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 567–584. [Google Scholar] [CrossRef]
(A) FRAIL | (B) Pre-FRAIL | (C) ROBUST | FRAIL vs. Pre-FRAIL (A vs. B) | FRAIL vs. ROBUST (A vs. C) | Pre-FRAIL vs. ROBUST (B vs. C) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n = 187 | n = 166 | n = 168 | |||||||||||||
F = 105 | M = 82 | F = 95 | M = 71 | F = 94 | M = 74 | ||||||||||
Mean | SD | Mean | SD | Mean | SD | 95% CI | S | p | 95% CI | S | p | 95% CI | S | p | |
Age years | 74.2 | 5.1 | 75.1 | 4.9 | 75 | 4.8 | −2.139 to 0.3385 | ns | 0.2031 | −2.035 to 0.4346 | ns | 0.2809 | −1.171 to 1.371 | ns | 0.9813 |
Body Mass Index (BMI) kg/m2 | 22.8 | 3.1 | 24.7 | 3 | 25.8 | 3.2 | −2.677 to −1.123 | **** | <0.0001 | −3.775 to −2.225 | **** | <0.0001 | −1.898 to −0.3022 | ** | 0.0036 |
Systolic Blood Pressure (SBP) mmHg | 130.2 | 13.1 | 128.2 | 14.2 | 129.1 | 15.8 | −1.600 to 5.600 | ns | 0.3926 | −2.489 to 4.689 | ns | 0.7515 | −2.033 to −0.3667 | ns | 0.8348 |
Diastolic Blood Pressure (DBP) mmHg | 77.2 | 10.1 | 75.8 | 12.4 | 77.1 | 11 | −1.398 to 4.198 | ns | 0.468 | −2.689 to 2.889 | ns | 0.9961 | −4.171 to 1.571 | ns | 0.5368 |
Heart Rate (HR) bpm | 84.1 | 9.7 | 88 | 10.2 | 87 | 10.8 | −6.463 to −1.337 | ** | 0.0011 | −5.455 to −0.3455 | * | 0.0214 | −1.630 to 3.630 | ns | 0.6445 |
(A) FRAIL | (B) Pre-FRAIL | (C) ROBUST | FRAIL vs. Pre-FRAIL (A vs. B) | FRAIL vs. ROBUST (A vs. C) | Pre-FRAIL vs. ROBUST (B vs. C) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n = 187 | n = 166 | n = 168 | |||||||||||||
n | % | n | % | n | % | 95% CI O.R. | S | p | 95% CI O.R. | S | p | 95% CI O.R. | S | p | |
No Diploma | 88 | 47.06% | 74 | 44.58% | 75 | 44.64% | 0.7320 to 1.673 | ns | 0.6694 | 0.7320 to 1.664 | ns | 0.6706 | 0.6441 to 1.544 | ns | >0.9999 |
High School Dipl. | 61 | 32.62% | 58 | 34.94% | 57 | 33.93% | 0.5847 to 1.391 | ns | 0.6536 | 0.6115 to 1.457 | ns | 0.822 | 0.6654 to 1.645 | ns | 0.9084 |
University level | 38 | 20.32% | 34 | 47.73% | 36 | 21.43% | 0.5849 to 1.641 | ns | >0.9999 | 0.5580 to 1.575 | ns | 0.896 | 0.5649 to 1.571 | ns | 0.8933 |
Smokers | 96 | 51.34% | 84 | 50.60% | 90 | 53.57% | 0.6835 to 1.552 | ns | 0.9153 | 0.6070 to 1.374 | ns | 0.7496 | 0.5751 to 1.367 | ns | 0.6614 |
Cerebrovascular diseases | 14 | 7.49% | 13 | 7.83% | 13 | 7.74% | 0.4535 to 2.044 | ns | >0.9999 | 0.4596 to 2.070 | ns | >0.9999 | 0.4618 to 2.222 | ns | >0.9999 |
Heart diseases | 12 | 6.42% | 10 | 6.02% | 11 | 6.55% | 0.4504 to 2.524 | ns | >0.9999 | 0.4065 to 2.159 | ns | >0.9999 | 0.3780 to 2.127 | ns | >0.9999 |
Joint disease | 44 | 23.53% | 40 | 24.10% | 41 | 24.40% | 0.5864 to 1.561 | ns | 0.9011 | 0.5793 to 1.550 | ns | 0.9011 | 0.6001 to 1.608 | ns | >0.9999 |
Diabetes | 10 | 5.35% | 12 | 7.23% | 10 | 5.95% | 0.3074 to 1.725 | ns | 0.5132 | 0.3602 to 2.213 | ns | 0.8219 | 0.5226 to 2.912 | ns | 0.6656 |
Hypertension | 20 | 10.70% | 18 | 10.84% | 16 | 9.52% | 0.5092 to 1.947 | ns | >0.9999 | 0.5720 to 2.207 | ns | 0.7289 | 0.5524 to 2.301 | ns | 0.7206 |
FRAIL | Pre-FRAIL | ROBUST | FRAIL vs. Pre-FRAIL | FRAIL vs. ROBUST | Pre-FRAIL vs. ROBUST | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
187 | 166 | 168 | ||||||||||
Mean | SD | Mean | SD | Mean | SD | p | S | p | S | p | S | |
Urea [mg/dL] | 43.2 | 8.7 | 41.8 | 9.2 | 40.7 | 8.9 | 0.3059 | ns | 0.0235 | * | 0.4984 | ns |
Glucose [mg/dL] | 88.1 | 10.2 | 82.5 | 9.7 | 85.2 | 9.8 | <0.0001 | **** | 0.0169 | * | 0.035 | * |
Albumin [g/dL] | 3.67 | 0.36 | 3.96 | 0.44 | 4.1 | 0.31 | <0.0001 | **** | <0.0001 | **** | 0.0019 | ** |
Creatinine [mg/dL] | 0.9 | 0.34 | 0.87 | 0.44 | 0.97 | 0.36 | 0.7405 | ns | 0.1951 | ns | 0.0441 | * |
AST [IU/L] | 38.2 | 5.1 | 36.4 | 5.4 | 37.2 | 5.2 | 0.0038 | ** | 0.1709 | ns | 0.3427 | ns |
ALT [IU/L] | 30.1 | 5.4 | 30.6 | 5.9 | 31.8 | 5.1 | 0.6678 | ns | 0.0101 | * | 0.1123 | ns |
CK [IU/L] | 33.2 | 10.1 | 39.1 | 10.4 | 44.2 | 10.7 | <0.0001 | **** | <0.0001 | **** | <0.0001 | **** |
ALP [IU/L] | 104.2 | 8.7 | 112.4 | 7.9 | 101.9 | 8.7 | <0.0001 | **** | 0.029 | * | <0.0001 | **** |
CRP [mg/dL] | 2.1 | 0.5 | 2.4 | 0.44 | 2.96 | 0.67 | <0.0001 | **** | <0.0001 | **** | <0.0001 | **** |
BT [mg/dL] | 0.94 | 0.2 | 0.9 | 0.3 | 0.91 | 0.28 | 0.3236 | ns | 0.527 | ns | 0.9349 | ns |
T CH [mg/dL] | 151.2 | 38 | 168 | 40 | 187 | 37 | 0.0001 | *** | <0.0001 | **** | <0.0001 | **** |
HDL CH [mg/dL] | 38.1 | 3.1 | 39.2 | 3.7 | 40.3 | 2.6 | 0.0034 | ** | <0.0001 | **** | 0.0044 | ** |
Triacylglycerols [mg/dL] | 138.4 | 2.7 | 149.2 | 23.8 | 167.2 | 31.2 | <0.0001 | **** | <0.0001 | **** | <0.0001 | **** |
MMSE score | 22.4 | 2.7 | 23.6 | 3.1 | 23.9 | 4.1 | 0.0023 | ** | <0.0001 | **** | 0.689 | ns |
SPPB | 7.2 | 1.4 | 8.4 | 1.2 | 9.8 | 0.6 | <0.0001 | **** | <0.0001 | **** | <0.0001 | **** |
6MWT [m] | 7.4 | 3.7 | 9.2 | 6.2 | 12.4 | 4.44 | 0.0016 | ** | <0.0001 | **** | <0.0001 | **** |
PLASMA | (A) FRAIL | (B) Pre-FRAIL | (C) ROBUST | FRAIL vs. Pre-FRAIL (A vs. B) | FRAIL vs. ROBUST (A vs. C) | Pre-FRAIL vs. ROBUST (B vs. C) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n = 187 | n = 166 | n = 168 | |||||||||||||
Mean | SD | Mean | SD | Mean | SD | 95% CI | S | p | 95% CI | S | p | 95% CI | S | p | |
TC | 36.8 | 8.4 | 40.4 | 9.1 | 44.8 | 9.7 | −5.870 to −1.330 | *** | 0.0006 | −10.26 to −5.737 | **** | <0.0001 | −6.730 to −2.070 | **** | <0.0001 |
FC | 30.4 | 7.7 | 34.8 | 8.2 | 38.1 | 9 | −6.479 to −2.321 | **** | <0.0001 | −9.773 to −5.627 | **** | <0.0001 | −5.434 to −1.166 | *** | 0.0009 |
AC | 6.4 | 2.9 | 5.6 | 3.1 | 6.8 | 3.7 | −0.01198 to 1.612 | ns | 0.0545 | −1.209 to 0.4094 | ns | 0.4768 | −2.033 to −0.3667 | ** | 0.0022 |
URINE | FRAIL | Pre-FRAIL | ROBUST | FRAIL vs. Pre-FRAIL (A vs. B) | FRAIL vs. ROBUST (A vs. C) | Pre-FRAIL vs. ROBUST (B vs. C) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n= 187 | n = 166 | n = 168 | |||||||||||||
Mean | SD | Mean | SD | Mean | SD | 95% CI | S | p | 95% CI | S | p | 95% CI | S | p | |
TC | 15.1 | 7.2 | 17.2 | 6.9 | 18.2 | 6.9 | −3.857 to −0.3431 | * | 0.0142 | −4.851 to −1.349 | *** | 0.0001 | −2.803 to 0.8030 | ns | 0.3938 |
FC | 6.2 | 5.9 | 6.7 | 6.1 | 7.8 | 6.1 | −2.011 to 1.011 | ns | 0.7169 | −3.106 to −0.09362 | * | 0.0343 | −2.651 to 0.4508 | ns | 0.2189 |
AC | 8.8 | 3.1 | 10.5 | 3.2 | 10.4 | 3.9 | −2.554 to −0.8457 | **** | <0.0001 | −2.452 to −0.7484 | **** | <0.0001 | −0.7767 to 0.9767 | ns | 0.9612 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malaguarnera, G.; Catania, V.E.; Bonfiglio, C.; Bertino, G.; Vicari, E.; Malaguarnera, M. Carnitine Serum Levels in Frail Older Subjects. Nutrients 2020, 12, 3887. https://doi.org/10.3390/nu12123887
Malaguarnera G, Catania VE, Bonfiglio C, Bertino G, Vicari E, Malaguarnera M. Carnitine Serum Levels in Frail Older Subjects. Nutrients. 2020; 12(12):3887. https://doi.org/10.3390/nu12123887
Chicago/Turabian StyleMalaguarnera, Giulia, Vito Emanuele Catania, Claudia Bonfiglio, Gaetano Bertino, Enzo Vicari, and Michele Malaguarnera. 2020. "Carnitine Serum Levels in Frail Older Subjects" Nutrients 12, no. 12: 3887. https://doi.org/10.3390/nu12123887
APA StyleMalaguarnera, G., Catania, V. E., Bonfiglio, C., Bertino, G., Vicari, E., & Malaguarnera, M. (2020). Carnitine Serum Levels in Frail Older Subjects. Nutrients, 12(12), 3887. https://doi.org/10.3390/nu12123887