Association between Body Mass Index and Sensory Processing in Childhood: InProS Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Participants, and Procedure
2.2. Study Variables
2.2.1. Sensory Processing
2.2.2. Body Mass Index
2.2.3. Other Variables
2.3. Statistical Analysis
3. Results
3.1. General Characteristics of Study Participants
3.2. Association between Child’s Body Mass Index and Prevalence of Atypical Sensory Performance
3.3. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miller, L.J.; Nielsen, D.M.; Schoen, S.A.; Brett-Green, B.A. Perspectives on sensory processing disorder: A call for translational research. Front. Integr. Neurosci. 2009, 3, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorquera-Cabrera, S.; Romero-Ayuso, D.; Rodriguez-Gil, G.; Triviño-Juárez, J.-M. Assessment of Sensory Processing Characteristics in Children between 3 and 11 Years Old: A Systematic Review. Front. Pediatr. 2017, 5, 57. [Google Scholar] [CrossRef] [Green Version]
- Navarrete-Muñoz, E.-M.; Fernández-Pires, P.; Navarro-Amat, S.; Hurtado-Pomares, M.; Peral-Gómez, P.; Juárez-Leal, I.; Espinosa-Sempere, C.; Sánchez-Pérez, A.; Valera-Gran, D. Association between Adherence to the Antioxidant-Rich Mediterranean Diet and Sensory Processing Profile in School-Aged Children: The Spanish Cross-Sectional InProS Project. Nutrients 2019, 11, 1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, M.; Moreno, M.A. Sensory Processing in Children. JAMA Pediatr. 2018, 172, 1208. [Google Scholar] [CrossRef] [PubMed]
- Critz, C.; Blake, K.; Nogueira, E. Sensory Processing Challenges in Children. J. Nurse Pract. 2015, 11, 710–716. [Google Scholar] [CrossRef]
- Fernández-Pires, P.; Valera-Gran, D.; Sánchez-Pérez, A.; Hurtado-Pomares, M.; Peral-Gómez, P.; Espinosa-Sempere, C.; Juárez-Leal, I.; Navarrete-Muñoz, E.-M. The Infancia y Procesamiento Sensorial (InProS-Childhood and Sensory Processing) Project: Study Protocol for a Cross-Sectional Analysis of Parental and Children’s Sociodemographic and Lifestyle Features and Children’s Sensory Processing. Int. J. Environ. Res. Public Health 2020, 17, 1447. [Google Scholar] [CrossRef] [Green Version]
- Moding, K.J.; Bellows, L.L.; Grimm, K.J.; Johnson, S.L. A longitudinal examination of the role of sensory exploratory behaviors in young children’s acceptance of new foods. Physiol. Behav. 2020, 218, 112821. [Google Scholar] [CrossRef] [PubMed]
- Coulthard, H.; Palfreyman, Z.; Morizet, D. Sensory evaluation of a novel vegetable in school age children. Appetite 2016, 100, 64–69. [Google Scholar] [CrossRef]
- Coulthard, H.; Blissett, J. Fruit and vegetable consumption in children and their mothers. Moderating effects of child sensory sensitivity. Appetite 2009, 52, 410–415. [Google Scholar] [CrossRef]
- Coulthard, H.; Harris, G.; Fogel, A. Association between tactile over-responsivity and vegetable consumption early in the introduction of solid foods and its variation with age. Matern. Child. Nutr 2016, 12, 848–859. [Google Scholar] [CrossRef]
- Suarez, M.A. Laboratory Food Acceptance in Children With Autism Spectrum Disorder Compared With Children With Typical Development. Am. J. Occup. Ther. 2017, 71, 7106220020. [Google Scholar] [CrossRef] [PubMed]
- Naish, K.R.; Harris, G. Food intake is influenced by sensory sensitivity. PLoS ONE 2012, 7, e43622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.R. How to approach feeding difficulties in young children. Korean J. Pediatr 2017, 60, 379–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Tadeo, A.; Patiño Villena, B.; Urquidez-Romero, R.; Vidaña-Gaytán, M.E.; Periago Caston, M.J.; Ros Berruezo, G.; González Martinez-Lacuesta, E. Food neophobia: Impact on food habits and acceptance of healthy foods in schoolchildren. Nutr. Hosp. 2014, 31, 260–268. [Google Scholar] [CrossRef]
- Faith, M.S.; Heo, M.; Keller, K.L.; Pietrobelli, A. Child food neophobia is heritable, associated with less compliant eating, and moderates familial resemblance for BMI. Obesity 2013, 21, 1650–1655. [Google Scholar] [CrossRef] [Green Version]
- Russell, C.G.; Worsley, A. A population-based study of preschoolers’ food neophobia and its associations with food preferences. J. Nutr. Educ. Behav. 2008, 40, 11–19. [Google Scholar] [CrossRef]
- Rodriguez-Tadeo, A.; Patiño-Villena, B.; González Martínez-La Cuesta, E.; Urquídez-Romero, R.; Ros-Berruezo, G. Food neophobia, Mediterranean diet adherence and acceptance of healthy foods prepared in gastronomic workshops by Spanish students. Nutr. Hosp. 2018, 35, 642–649. [Google Scholar] [CrossRef]
- Oliveira, A.; Jones, L.; de Lauzon-Guillain, B.; Emmett, P.; Moreira, P.; Charles, M.A.; Lopes, C. Early problematic eating behaviours are associated with lower fruit and vegetable intake and less dietary variety at 4–5 years of age. A prospective analysis of three European birth cohorts. Br. J. Nutr. 2015, 114, 763–771. [Google Scholar] [CrossRef] [Green Version]
- Zonneveld, K.L.M.; Neidert, P.L.; Dozier, C.L.; Gureghian, D.L.; Bayles, M.W. Assessing factors that influence young children’s food preferences and choices. J. Appl. Behav. Anal. 2019, 52, 240–257. [Google Scholar] [CrossRef]
- Singhal, A. The Global Epidemic of Noncommunicable Disease: The Role of Early-Life Factors. In Proceedings of the 78th Nestlé Nutrition Institute Workshop, Muscat, Oman, 19–22 March 2013; Volume 78, pp. 123–132, ISBN 978-3-318-02530-9. [Google Scholar]
- Agostoni, C.; Braegger, C.; Decsi, T.; Kolacek, S.; Koletzko, B.; Mihatsch, W.; Moreno, L.A.; Puntis, J.; Shamir, R.; Szajewska, H.; et al. Role of Dietary Factors and Food Habits in the Development of Childhood Obesity: A Commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2011, 52, 662–669. [Google Scholar] [CrossRef] [Green Version]
- Han, J.C.; Lawlor, D.A.; Kimm, S.Y.S. Childhood obesity. Lancet 2010, 375, 1737–1748. [Google Scholar] [CrossRef]
- Kumar, S.; Kelly, A.S. Review of Childhood Obesity: From Epidemiology, Etiology, and Comorbidities to Clinical Assessment and Treatment. Mayo Clin. Proc. 2017, 92, 251–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Childhood Overweight and Obesity. Available online: http://www.who.int/dietphysicalactivity/childhood/en/ (accessed on 4 June 2020).
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [Green Version]
- BMI Data Visualisations. NCD-RisC. Available online: http://ncdrisc.org/data-visualisations-adiposity-ado.html (accessed on 5 June 2020).
- Notario-Barandiaran, L.; Valera-Gran, D.; Gonzalez-Palacios, S.; Garcia-de-la-Hera, M.; Fernández-Barrés, S.; Pereda-Pereda, E.; Fernández-Somoano, A.; Guxens, M.; Iñiguez, C.; Romaguera, D.; et al. High adherence to a Mediterranean diet at age 4 reduces overweight, obesity and abdominal obesity incidence in children at the age of 8. Int. J. Obes. 2020, 44, 1906–1917. [Google Scholar] [CrossRef] [PubMed]
- Beaudry-Bellefeuille, I.; Lane, S.J. Cultural Adaptation for Spain of the Spanish version of the short sensory profile using cognitive interviews. Austin J. Autism Relat. Disabil. 2015, 1, 1002. [Google Scholar]
- Román-Oyola, R.; Reynolds, S.E. Validating the Response Process of the Spanish Version of the Short Sensory Profile: A Pilot Study Using Cognitive Interviews. J. Occup. Ther. Sch. Early. Interv. 2010, 3, 197–206. [Google Scholar] [CrossRef]
- Dunn, W. The Short Sensory Profile; The Psychological Corporation: New York, NY, USA, 1999. [Google Scholar]
- World Health Organization. BMI-For-Age (0–5 years). Available online: https://www.who.int/childgrowth/standards/bmi_for_age/en/ (accessed on 22 June 2020).
- De Onis, M. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- World Health Organization. BMI-For-Age (5–19 years). Available online: http://www.who.int/growthref/who2007_bmi_for_age/en/ (accessed on 22 June 2020).
- Espelt, A.; Marí-Dell’Olmo, M.; Penelo, E.; Bosque-Prous, M. Applied Prevalence Ratio estimation with different Regression models: An example from a cross-national study on substance use research. Adicciones 2016, 29, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Barros, A.J.D.; Hirakata, V.N. Alternatives for logistic regression in cross-sectional studies: An empirical comparison of models that directly estimate the prevalence ratio. BMC Med. Res. Methodol. 2003, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Deddens, J.A.; Petersen, M.R. Approaches for estimating prevalence ratios. Occup. Environ. Med. 2008, 65, 501–506. [Google Scholar] [CrossRef]
- Mickey, R.M.; Greenland, S. The impact of confounder selection criteria on effect estimation. Am. J. Epidemiol. 1989, 129, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Bawaked, R.A.; Fernández-Barrés, S.; Navarrete-Muñoz, E.M.; González-Palacios, S.; Guxens, M.; Irizar, A.; Lertxundi, A.; Sunyer, J.; Vioque, J.; Schröder, H.; et al. Impact of lifestyle behaviors in early childhood on obesity and cardiometabolic risk in children: Results from the Spanish INMA birth cohort study. Pediatr. Obes. 2020, 15, e12590. [Google Scholar] [CrossRef] [PubMed]
- Marmeleira, J.; Veiga, G.; Cansado, H.; Raimundo, A. Relationship between motor proficiency and body composition in 6- to 10-year-old children. J. Paediatr. Child. Health 2017, 53, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Schröder, H.; Bawaked, R.A.; Ribas-Barba, L.; Izquierdo-Pulido, M.; Roman-Viñas, B.; Fíto, M.; Serra-Majem, L. Cumulative Effect of Obesogenic Behaviours on Adiposity in Spanish Children and Adolescents. Obes. Facts 2017, 10, 584–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoder, R.M.; Taube, J.S. The vestibular contribution to the head direction signal and navigation. Front. Integr. Neurosci. 2014, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Hondt, E.; Deforche, B.; De Bourdeaudhuij, I.; Gentier, I.; Tanghe, A.; Shultz, S.; Lenoir, M. Postural balance under normal and altered sensory conditions in normal-weight and overweight children. Clin Biomech. 2011, 26, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Goulardins, J.B.; Rigoli, D.; Piek, J.P.; Kane, R.; Palácio, S.G.; Casella, E.B.; Nascimento, R.O.; Hasue, R.H.; Oliveira, J.A. The relationship between motor skills, ADHD symptoms, and childhood body weight. Res. Dev. Disabil. 2016, 55, 279–286. [Google Scholar] [CrossRef]
- Lawson, L.M.; Foster, L. Sensory Patterns, Obesity, and Physical Activity Participation of Children With Autism Spectrum Disorder. Am. J. Occup. Ther. 2016, 70, 7005180070. [Google Scholar] [CrossRef]
Total | Body Mass Index 1 | ||||
---|---|---|---|---|---|
Normal Weight (n = 304) | Overweight (n = 82) | Obesity (n = 59) | p3 | ||
Maternal characteristics | |||||
Age (years), median (IR) | 38 (35; 41) | 38 (35; 42) | 38 (35; 41) | 37 (35; 40) | 0.369 |
Country of birth (Spanish), % | 85.6 | 88.2 | 82.9 | 76.3 | 0.044 |
Education (University studies), % | 44.5 | 46.1 | 46.3 | 33.9 | 0.269 |
Working situation (yes), % | 70.6 | 73.0 | 65.9 | 64.4 | 0.241 |
BMI, median (IR) | 22.8 (20.7; 25.4) | 22.5 (20.4; 25.0) | 22.7 (21.0; 25.7) | 24.5 (21.6; 26.5) | 0.010 |
Paternal characteristics 2 | |||||
Age (years), median (IR) | 39.0 (37.0; 43.0) | 39.0 (37.0; 43.0) | 40.0 (37.5; 43.0) | 40.0 (37.5; 42.0) | 0.584 |
Country of birth (Spanish), % | 84.3 | 86.4 | 85.1 | 72.5 | 0.050 |
Education (University studies), % | 35.5 | 35.8 | 37.3 | 31.4 | 0.429 |
Working situation (yes), % | 90.3 | 91.7 | 88.1 | 86.3 | 0.382 |
BMI, median (IR) | 25.6 (23.8; 27.7) | 25.6 (23.5; 27.5) | 25.3 (24.3; 27.7) | 25.9 (24.3; 29.2) | 0.346 |
Child characteristics | |||||
Age (years), median (IR) | 5 (4; 6) | 5 (4; 6) | 5 (4; 6) | 6 (5; 6) | 0.581 |
Sex (female), % | 47.6 | 49.3 | 48.8 | 37.3 | 0.231 |
Adherence to MD, median (IR) | 8 (6; 9) | 8 (7; 9) | 7 (6; 9) | 7 (6; 9) | 0.473 |
Sleep (<10h/day), % | 27.0 | 25.0 | 24.4 | 40.7 | 0.013 |
Sleep quality (poor); % | 9.4 | 9.5 | 7.3 | 11.9 | 0.656 |
TV (h/day), median (IR) | 2.0 (1.3; 2.6) | 2.0 (1.3; 2.6) | 1.9 (1.3; 2.3) | 2.3 (1.4; 2.6) | 0.210 |
Physical activity (very active/active), % | 59.9 | 58.9 | 57.3 | 67.8 | 0.389 |
Normal Weight (n = 304) | Overweight (n = 82) | Obesity (n = 59) | P-Trend 1 | One-Point Increase | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Atypical Sensory Performance | n | n | PR 2 (95% CI) | P | N | PR 2 (95% CI) | P | n | PR 2 (95% CI) | p | |
SSP total score (<155 points) | 90 | 21 | 0.84 (0.56; 1.27) | 0.415 | 20 | 1.01 (0.68; 1.48) | 0.974 | 0.815 | 131 | 1.03 (1.00; 1.07) | 0.072 |
Tactile sensitivity (<30 points) | 29 | 13 | 1.52 (0.82; 2.84) | 0.187 | 10 | 1.40 (0.70; 2.81) | 0.340 | 0.528 | 52 | 1.07 (1.02; 1.12) | 0.004 |
Taste/smell sensitivity (<15 points) | 47 | 9 | 0.66 (0.34; 1.29) | 0.228 | 9 | 0.81 (0.43; 1.52) | 0.517 | 0.575 | 65 | 1.02 (0.95; 1.09) | 0.666 |
Movement sensitivity (<13 points) | 58 | 20 | 1.20 (0.76; 1.88) | 0.433 | 16 | 1.27 (0.79; 2.04) | 0.330 | 0.276 | 94 | 1.05 (1.00; 1.10) | 0.073 |
Under-responsive/seeks sensation (<26 points) | 141 | 37 | 0.96 (0.73; 1.26) | 0.775 | 33 | 1.12 (0.86; 1.46) | 0.398 | 0.698 | 211 | 1.02 (0.99; 1.05) | 0.267 |
Auditory filtering (<23 points) | 127 | 30 | 0.86 (0.63; 1.19) | 0.372 | 27 | 1.02 (0.75; 1.39) | 0.907 | 0.863 | 184 | 1.02 (0.98; 1.05) | 0.366 |
Low energy/weak (<26 points) | 42 | 6 | 0.52 (0.22; 1.23) | 0.134 | 9 | 0.93 (0.50; 1.73) | 0.812 | 0.756 | 57 | 1.01 (0.93; 1.09) | 0.795 |
Visual/auditory sensitivity (<19 points) | 84 | 22 | 0.93 (0.62; 1.40) | 0.742 | 15 | 0.79 (0.51; 1.23) | 0.294 | 0.436 | 121 | 0.99 (0.95; 1.04) | 0.742 |
Body Mass Index (One-Point Increase) | |||||||||
---|---|---|---|---|---|---|---|---|---|
SSP Total Score (<155 Points) | Tactile Sensitivity (<30 Points) | Movement Sensitivity (<13 Points) | |||||||
Cases/Total | PR (95% CI) | P | Cases/Total | PR (95% CI) | P | Cases/Total | PR (95% CI) | p | |
Complete model 1 | 131/445 | 1.03 (1.00; 1.07) | 0.072 | 52/445 | 1.07 (1.02; 1.12) | 0.004 | 94/445 | 1.05 (1.00; 1.10) | 0.073 |
Adjusted by father’s body mass index | 110/383 | 1.03 (0.99; 1.07) | 0.149 | 45/383 | 1.06 (1.01; 1.12) | 0.031 | 80/383 | 1.06 (1.00; 1.12) | 0.035 |
Only boys | 83/233 | 1.03 (0.99; 1.07) | 0.157 | 33/233 | 1.06 (1.01; 1.12) | 0.017 | 56/233 | 1.03 (0.97; 1.10) | 0.353 |
Only girls | 48/212 | 1.04 (0.97; 1.12) | 0.263 | 19/212 | 1.06 (0.94; 1.19) | 0.345 | 38/212 | 1.06 (0.97; 1.17) | 0.214 |
Only children aged 3–4 | 48/134 | 1.02 (0.93; 1.12) | 0.663 | 23/134 | 1.09 (0.92; 1.28) | 0.311 | 26/134 | 1.01 (0.84; 1.21) | 0.940 |
Only children aged 5 | 42/151 | 1.10 (1.01; 1.20) | 0.030 | 17/151 | 1.08 (0.95; 1.24) | 0.247 | 31/151 | 1.05 (0.95; 1.16) | 0.366 |
Only children aged 6–7 | 41/161 | 1.03 (0.98; 1.08) | 0.317 | 12/161 | 1.09 (1.03; 1.17) | 0.007 | 37/161 | 1.05 (0.98; 1.12) | 0.202 |
Excluding preterm | 102/356 | 1.04 (0.99; 1.09) | 0.090 | 44/356 | 1.06 (0.98; 1.15) | 0.168 | 76/356 | 1.08 (1.02; 1.14) | 0.013 |
Excluding low birthweight | 112/382 | 1.04 (0.99; 1.09) | 0.097 | 45/382 | 1.08 (1.00; 1.17) | 0.049 | 84/382 | 1.06 (1.00; 1.13) | 0.038 |
Excluding children with some medical conditions | 115/407 | 1.04 (1.00; 1.07) | 0.043 | 48/407 | 1.08 (1.02; 1.13) | 0.005 | 83/407 | 1.05 (0.99; 1.11) | 0.087 |
Excluding children sleeping <10 h/day | 91/325 | 1.03 (0.96; 1.10) | 0.432 | 37/325 | 1.07 (0.96; 1.18) | 0.221 | 68/325 | 1.03 (0.96; 1.11) | 0.391 |
Excluding children watching TV >2 h/day | 63/258 | 1.03 (0.95; 1.12) | 0.517 | 23/258 | 1.05 (0.93; 1.18) | 0.465 | 43/258 | 1.00 (0.91; 1.10) | 0.999 |
Excluding children with low adherence to MD | 56/224 | 1.09 (1.01; 1.17) | 0.020 | 17/224 | 1.01 (0.85; 1.19) | 0.937 | 41/224 | 1.06 (0.97; 1.17) | 0.200 |
Excluding children with probable atypical SP | 55/369 | 1.03 (0.99; 1.07) | 0.145 | 27/420 | 1.08 (1.02; 1.15) | 0.008 | 46/397 | 1.08 (1.01; 1.15) | 0.024 |
Excluding children with definite atypical SP | 76/390 | 1.04 (0.97; 1.12) | 0.299 | 25/418 | 1.06 (0.95; 1.17) | 0.319 | 48/399 | 1.02 (0.94; 1.10) | 0.679 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarrete-Muñoz, E.-M.; Fernández-Pires, P.; Mubarak-García, C.; Espinosa-Sempere, C.; Peral-Gómez, P.; Juárez-Leal, I.; Sánchez-Pérez, A.; Pérez-Vázquez, M.-T.; Hurtado-Pomares, M.; Valera-Gran, D. Association between Body Mass Index and Sensory Processing in Childhood: InProS Study. Nutrients 2020, 12, 3684. https://doi.org/10.3390/nu12123684
Navarrete-Muñoz E-M, Fernández-Pires P, Mubarak-García C, Espinosa-Sempere C, Peral-Gómez P, Juárez-Leal I, Sánchez-Pérez A, Pérez-Vázquez M-T, Hurtado-Pomares M, Valera-Gran D. Association between Body Mass Index and Sensory Processing in Childhood: InProS Study. Nutrients. 2020; 12(12):3684. https://doi.org/10.3390/nu12123684
Chicago/Turabian StyleNavarrete-Muñoz, Eva-María, Paula Fernández-Pires, Carmela Mubarak-García, Cristina Espinosa-Sempere, Paula Peral-Gómez, Iris Juárez-Leal, Alicia Sánchez-Pérez, María-Teresa Pérez-Vázquez, Miriam Hurtado-Pomares, and Desirée Valera-Gran. 2020. "Association between Body Mass Index and Sensory Processing in Childhood: InProS Study" Nutrients 12, no. 12: 3684. https://doi.org/10.3390/nu12123684