Dietary Omega-3 Source Effect on the Fatty Acid Profile of Intramuscular and Perimuscular Fat—Preliminary Study on a Rat Model
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sachdev, N.; Priya, V.; Rengasamy, G. Paleo Diet—A Review. Int. J. Res. Pharm. Sci. 2018, 9, 427–429. [Google Scholar]
- Simopoulos, A.P. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: Nutritional implications for chronic diseases. Biomed. Pharm. 2006, 60, 502–507. [Google Scholar] [CrossRef]
- Zárate, R.; el Jaber-Vazdekis, N.; Tejera, N.; Pérez, J.A.; Rodríguez, C. Significance of long chain polyunsaturated fatty acids in human health. Clin. Trans. Med. 2017, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Urlić, M.; Urlić, I.; Urlić, H.; Mašek, T.; Benzon, B.; Vitlov Uljević, M.; Vukojević, K.; Filipović, N. Effects of Different n6/n3 PUFAs Dietary Ratio on Cardiac Diabetic Neuropathy. Nutrients 2020, 12, 2761. [Google Scholar] [CrossRef]
- Draycott, S.A.V.; Elmes, M.J.; Muhlhausler, B.S.; Langley-Evans, S. Omega-6: Omega-3 Fatty Acid Ratio and Total Fat Content of the Maternal Diet Alter Offspring Growth and Fat Deposition in the Rat. Nutrients 2020, 12, 2505. [Google Scholar] [CrossRef]
- Ilich, J.Z.; Kelly, O.J.; Kim, Y.; Spicer, M.T. Low-grade chronic inflammation perpetuated by modern diet as a promoter of obesity and osteoporosis. Arh. Hig. Rada Toksikol. 2014, 65, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Wysoczański, T.; Sokoła-Wysoczańska, E.; Pękala, J.; Lochyński, S.; Czyż, K.; Bodkowski, R.; Herbinger, G.; Patkowska-Sokoła, B.; Librowski, T. Omega-3 fatty acids and their role in Central Nervous System—A review. Curr. Med. Chem. 2016, 23, 816–831. [Google Scholar] [CrossRef]
- Sokoła-Wysoczańska, E.; Wysoczański, T.; Wagner, J.; Czyż, K.; Bodkowski, R.; Lochyński, S.; Patkowska-Sokoła, B. Polyunsaturated Fatty Acids and Their Potential Therapeutic Role in Cardiovascular System Disorders—A Review. Nutrients 2018, 10, 1561. [Google Scholar] [CrossRef] [Green Version]
- Horman, T.; Fernandes, M.F.; Tache, M.C.; Hucik, B.; Mutch, D.M.; Leri, F. Dietary n-6/n-3 Ratio Influences Brain Fatty Acid Composition in Adult Rats. Nutrients 2020, 12, 1847. [Google Scholar] [CrossRef]
- Speer, K.; Upton, D.; Semple, S.; McKune, A. Systemic low-grade inflammation in post-traumatic stress disorder: A systematic review. J. Inflamm. Res. 2018, 11, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Guarner, V.; Rubio-Ruiz, M.E. Low-Grade Systemic Inflammation Connects Aging, Metabolic Syndrome and Cardiovascular Disease. In Aging and Health—A Systems Biology Perspective; Yashin, A.I., Jazwinski, S.M., Eds.; Karger Publishers: Basel, Switzerland, 2015; Volume 40, pp. 99–106. [Google Scholar]
- Kälsch, A.; Scharnagl, H.; Kleber, M.E.; Windpassinger, C.; Sattler, W.; Leipe, J.; Krämer, B.K.; März, W.; Malle, E. Long- and short-term association of low-grade systemic inflammation with cardiovascular mortality in the LURIC study. Clin. Res. Cardiol. 2020, 109, 358–373. [Google Scholar] [CrossRef]
- Peng, Y.; Ren, H.; Tao, H.; He, C.; Li, P.; Wan, J.B.; Su, H. Metabolomics study of the anti-inflammatory effects of endogenous omega-3 polyunsaturated fatty acids. RSC Adv. 2019, 9, 41903. [Google Scholar] [CrossRef] [Green Version]
- Cândido, F.G.; Valente, F.X.; Grześkowiak, Ł.M.; Boroni Moreira, A.P.; Prado Rocha, D.M.U.; de Cássia Gonçalves Alfenas, R. Impact of dietary fat on gut microbiota and low-grade systemic inflammation: Mechanisms and clinical implications on obesity. Int. J. Food Sci. Nutr. 2018, 69, 125–143. [Google Scholar] [CrossRef] [PubMed]
- DiNicolantonio, J.J.; O’Keefe, J.H. Importance of maintaining a low omega–6/omega–3 ratio for reducing inflammation. Open Heart 2018, 5, e000946. [Google Scholar] [CrossRef]
- Bekhit, A.E.D.A.; Shavandi, A.; Jodjaja, T.; Birch, J.; Teh, S.; Ahmed, I.A.M.A.; Al-Juhaimi, F.Y.; Saeedi, P.; Bekhit, A.A. Flaxseed: Composition, detoxification, utilization, and opportunities. Biocatal. Agric. Biotechnol. 2018, 13, 129–152. [Google Scholar] [CrossRef]
- Shadyro, O.I.; Sosnovskaya, A.A.; Edimecheva, I.P. Flaxseed oil stabilization using natural and synthetic antioxidants. Eur. J. Lipid Sci. Technol. 2017, 119, 1700079. [Google Scholar] [CrossRef]
- Elimam, H.; Ramadan, B.K. Comparative Study of the Possible Prophylactic and Curative Effects of Flaxseed Oil on the Lipid Profile and Antioxidant Status of Hyperlipidaemic Rats. J. Appl. Pharm. 2018, 10, 257. [Google Scholar]
- Yashodhara, B.M.; Umakanth, S.; Pappachan, J.M.; Bhat, S.K.; Kamath, R.; Choo, B.H. Omega-3 fatty acids: A comprehensive review of their role in health and disease. Postgrad Med. J. 2009, 85, 84–90. [Google Scholar] [CrossRef]
- Bays, H. Clinical overview of Omacor: A concentrated formulation of omega-3 polyunsaturated fatty acids. Am. J. Cardiol. 2006, 98, 71–76. [Google Scholar] [CrossRef]
- Myhre, A.M.; Carlsen, M.H.; Bøhn, S.K.; Wold, H.L.; Laake, P.; Blomhoff, R. Water-miscible, emulsified, and solid forms of retinol supplements are more toxic than oil-based preparations. Am. J. Clin. Nutr. 2003, 78, 1152–1159. [Google Scholar] [CrossRef] [Green Version]
- Kołodziej, H.; Vogt, A.; Strzelecki, S.; Steinmetz, G. Method of Manufacturing the Ethyl or Methyl Esters of Higher Fatty Acids and the Installation to Execute this Method. Polish Patent PL211325, 31 May 2012. [Google Scholar]
- Sokoła-Wysoczańska, E.; Wysoczański, T.; Czyż, K.; Vogt, A.; Patkowska-Sokoła, B.; Sokoła, K.; Bodkowski, R.; Wyrostek, A.; Roman, K. Characteristics of polyunsaturated fatty acids ethyl esters from of high alpha-linolenic acid content as a component of biologically active health promoting supplements. Przem. Chem. 2014, 93, 1923–1927. [Google Scholar]
- Kroger, J.; Zietemann, V.; Enzenbach, C.; Weikert, C.; Jansen, E.H.; Doring, F.; Joost, H.G.; Boeing, H.; Schulze, M.B. Erythrocyte membrane phospholipid fatty acids, desaturase activity, and dietary fatty acids in relation to risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)–Potsdam Study. Am. J. Clin. Nutr. 2011, 93, 127–142. [Google Scholar] [CrossRef] [Green Version]
- Prescha, A.; Swiedrych, A.; Biernat, J.; Szopa, J. Increase in lipid content in potato tubers modified by 14-3-3 gene overexpression. J. Agric. Food Chem. 2001, 49, 3638–3643. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- De Lorenzo, A.; Petroni, M.L.; De Luca, P.P.; Andreoli, A.; Morini, P.; Iacopino, L.; Innocente, I.; Perriello, G. Use of quality control indices in moderately hypocaloric Mediterranean diet for treatment of obesity. Diabetes Nutr. Metab. 2001, 14, 181–188. [Google Scholar]
- Wyness, L. The role of red meat in the diet: Nutrition and health benefits. Proc. Nutr. Soc. 2016, 75, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Salter, A.M. Dietary fatty acids and cardiovascular disease. Animal 2013, 7, 163–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.; Xiong, Y.L. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat Sci. 2016, 120, 107–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Campo, M.M.; Muela, E.; Resconi, V.C.; Barahona, M.; Sañudo, C. Influence of commercial cut on proximate composition and fatty acid profile of Rasa Aragonesa light lamb. J. Food Compos. Anal. 2016, 53, 7–12. [Google Scholar] [CrossRef]
- Fievez, V.; Vlaeminck, B.; Jenkins, T.; Enjalbert, F.; Doreau, M. Assessing rumen biohydrogenation and its manipulation in vivo, in vitro and in situ. Eur. J. Lipid Sci. Technol. 2007, 109, 740–756. [Google Scholar] [CrossRef]
- Bessa, R.J.B.; Alves, S.P.; Santos-Silva, J. Constraints and potentials for the nutritional modulation of the fatty acid composition of ruminant meat. Eur. J. Lipid Sci. Technol. 2015, 117, 1325–1344. [Google Scholar] [CrossRef]
- Nudda, A.; Battacone, G.; Neto, O.B.; Cannas, A.; Helena, A.; Francesconi, D.; Pulina, G. Feeding strategies to design the fatty acid profile of sheep milk and cheese: Invited review. Rev. Bras. Zoot. 2014, 43, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Kerr, B.J.; Kellner, T.A.; Shurson, G.C. Characteristics of lipids and their feeding value in swine diets. J. Anim. Sci. Biotechnol. 2015, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Chikwanhaa, O.C.; Vahmanib, P.; Muchenjec, V.; Duganb, M.E.R.; Mapiyea, C. Nutritional enhancement of sheep meat fatty acid profile for human health and wellbeing. Food Res. Int. 2018, 104, 25–38. [Google Scholar] [CrossRef]
- Shingfield, K.J.; Wallace, R.J. Synthesis of conjugated linoleic acid in ruminants and humans. In The Royal Society of Chemistry, 19th ed.; Sels, B., Philippaerts, A., Eds.; The Royal Society of Chemistry: London, UK, 2014; pp. 1–65. [Google Scholar]
- Hur, S.J.; Kim, H.S.; Bahk, Y.Y.; Park, Y. Overview of conjugated linoleic acid formation and accumulation in animal products. Livest. Sci. 2017, 195, 105–111. [Google Scholar] [CrossRef]
- Patkowska-Sokoła, B.; Czyż, K.; Sokoła-Wysoczańska, E.; Wysoczański, T.; Bodkowski, R.; Vogt, A. The use of polyunsaturated fatty acids ethyl esters from omega-3 group as raw material for fodder industry. Przem. Chem. 2014, 93, 799–802. [Google Scholar]
- Candyrine, S.; Jahromi, M.; Ebrahimi, M.; Chen, W.L.; Rezaei, S.; Goh, Y.M.; Abdullah, N.; Liang, J.B. Oil supplementation improved growth and diet digestibility in goats and sheep fed fattening diet. Asian-Australas. J. Anim. Sci. 2019, 32, 533–540. [Google Scholar] [CrossRef]
- Khoshniat, M.T.; Towhidi, A.; Rezayazdi, K.; Zhandi, M.; Rostami, F.; Davachi, N.D.; Khalooee, F.; Kastelic, J. Dietary omega-3 fatty acids from linseed oil improve quality of post-thaw but not fresh sperm in Holstein bulls. Cryobiology 2020, 93, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Stoffel, W.; Holz, B.; Jenke, B.; Binczek, E.; Günter, R.H.; Kiss, C.; Karakesisoglou, I.; Thevis, M.; Weber, A.A.; Arnhold, S.; et al. Δ6-Desaturase (FADS2) deficiency unveils the role of ω3- and ω6-polyunsaturated fatty acids. EMBO J. 2008, 27, 2281–2292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stroud, C.K.; Nara, T.Y.; Roqueta-Rivera, M.; Radlowski, E.C.; Lawrence, P.; Zhang, Y.; Cho, B.H.; Segre, M.; Hess, R.A.; Brenna, J.T.; et al. Disruption of FADS2 gene in mice impairs male reproduction and causes dermal and intestinal ulceration. J. Lipid Res. 2009, 50, 1870–1880. [Google Scholar] [CrossRef] [Green Version]
- Wathes, D.C.; Abayasekara, D.R.E.; Aitken, R.J. Polyunsaturated fatty acids in male and female reproduction. Biol. Reprod. 2007, 77, 190–201. [Google Scholar] [CrossRef]
- Connor, W.E.; Lin, D.S.; Wolf, D.P.; Alexander, M. Uneven distribution of desmosterol and docosahexaenoic acid in the heads and tails of monkey sperm. J. Lipid Res. 1998, 39, 1404–1411. [Google Scholar]
- Gholami, H.; Chamani, M.; Towhidi, A.; Fazeli, M.H. Effect of feeding a docosahexaenoic acid-enriched nutriceutical on the quality of fresh and frozen-thawed semen in Holstein bulls. Theriogenology 2010, 74, 1548–1558. [Google Scholar] [CrossRef]
- Moallem, U.; Neta, N.; Zeron, Y.; Zachut, M.; Roth, Z. Dietary α-linolenic acid from flaxseed oil or eicosapentaenoic and docosahexaenoic acids from fish oil differentially alter fatty acid composition and characteristics of fresh and frozen-thawed bull semen. Theriogenology 2015, 83, 1110–1120. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Tavilani, H.; Doosti, M.; Nourmohammadi, I.; Mahjub, H.; Vaisiraygani, A.; Salimi, S.; Hosseinipanah, S.M. Lipid composition of spermatozoa in normozoospermic and asthenozoospermic males. Prostaglandins Leukot. Essent. Fatty Acids 2007, 77, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Samadian, F.; Towhidi, A.; Rezayazdi, K.; Bahreini, M. Effects of dietary n-3 fatty acids on characteristics and lipid composition of ovine sperm. Animal 2010, 4, 2017–2022. [Google Scholar] [CrossRef] [Green Version]
- Nordoy, A.; Barstad, L.; Connor, W.E.; Hatcher, L. Absorption of the n-3 eicosapentaenoic and docosahexaenoic acids as ethyl esters and triglycerides by humans. Am. J. Clin. Nutr. 1991, 53, 1185–1190. [Google Scholar] [CrossRef]
Acid | LO | EE | FO |
---|---|---|---|
C16:0 | 4.37 | 4.44 | 11.36 |
C18:0 | 3.79 | 3.43 | 2.68 |
C18:1 | 16.41 | 16.73 | 23.95 |
C18:2 | 16.24 | 16.68 | 1.43 |
C18:3 | 56.29 | 58.71 | − |
C20:5 | − | − | 8.13 |
C22:6 | − | − | 9.87 |
Parameter | Group C | Group LO | Group EE | Group FO | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Initial body weight | 376.94 | 12.10 | 382.45 | 19.05 | 379.51 | 12.60 | 384.30 | 14.25 |
Final body weight | 557.16 | 24.68 | 578.71 | 15.49 | 569.38 | 26.40 | 593.64 | 30.13 |
Body weight gains | 180.23 | 24.00 | 196.23 | 16.41 | 189.87 | 33.27 | 209.34 | 42.27 |
Fatty Acid | Group C | Group LO | Group EE | Group FO | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Saturated fatty acids | ||||||||
C12:0 | 0.48 | 0.03 | 0.55 | 0.06 | 0.54 | 0.10 | 0.62 | 0.23 |
C14:0 | 2.98 | 0.05 | 2.71 a | 0.25 | 2.80 a | 0.14 | 3.22 b | 0.31 |
C16:0 | 26.50 a | 0.12 | 24.55 b | 0.76 | 25.32 | 0.93 | 26.13 a,c | 0.60 |
C17:0 | 0.31 | 0.02 | 0.35 | 0.05 | 0.35 | 0.04 | 0.34 | 0.01 |
C18:0 | 4.17 | 0.82 | 5.01 | 1.09 | 5.05 | 0.78 | 4.62 | 0.77 |
C20:0 | 0.07 | 0.01 | 0.07 | 0.03 | 0.07 | 0.01 | 0.07 | 0.02 |
C24:0 | 0.08 a | 0.01 | 0.23 b | 0.04 | 0.22 b | 0.05 | 0.51 c | 0.10 |
Unsaturated fatty acids | ||||||||
C16:1 | 8.73 a | 1.36 | 4.24 b | 0.60 | 4.45 b | 1.09 | 5.95 | 0.63 |
C17:1 | 0.35 a | 0.01 | 0.28 b | 0.04 | 0.29 b | 0.02 | 0.34 a,c | 0.02 |
C18:1n9c | 35.81 | 0.68 | 35.75 | 1.71 | 35.06 | 1.81 | 36.04 | 1.68 |
C18:2n6c | 14.15 a | 0.28 | 16.70 b | 1.23 | 16.98 b | 0.96 | 14.74 a,c | 0.74 |
C18:3n6 | 0.06 | 0.01 | 0.06 | 0.03 | 0.06 | 0.02 | 0.05 | 0.01 |
C18:3n3 | 0.98 a | 0.08 | 5.39 b | 0.76 | 4.57 b,d | 0.65 | 1.19 a,c,d | 0.14 |
C20:1n9 | 0.25 a | 0.05 | 0.26 a | 0.03 | 0.26 a | 0.02 | 1.08 b | 0.17 |
C20:2 | 0.12 | 0.01 | 0.13 | 0.02 | 0.13 | 0.01 | 0.16 | 0.03 |
C20:4n6 | 2.53 a | 0.61 | 1.68 | 0.63 | 1.69 | 0.45 | 1.36 b | 0.29 |
C20:5n3 | 0.06 | 0.01 | 0.06 | 0.04 | 0.05 | 0.02 | 0.07 | 0.02 |
C22:6n3 | 1.16 a | 0.21 | 1.26 a | 0.35 | 1.50 b | 0.40 | 2.85 c | 0.49 |
other | 1.21 a | 0.48 | 0.85 b | 0.78 | 0.61 b | 0.06 | 0.65 b | 0.15 |
Group C | Group LO | Group EE | Group FO | |||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Total SFA | 34.60 | 0.90 | 33.46 a | 0.95 | 34.36 | 1.09 | 35.52 b | 1.52 |
Total UFA | 65.40 | 0.90 | 66.67 a | 0.86 | 65.64 | 1.09 | 64.48 b | 1.52 |
Total MUFA | 45.14 a | 1.82 | 40.54 b | 1.61 | 40.05 b | 2.48 | 43.41 | 1.93 |
Total PUFA | 20.27 a | 1.16 | 26.13 b | 1.46 | 25.59 b | 1.67 | 21.07 a,c | 1.11 |
PUFA/MUFA | 0.45 a | 0.04 | 0.65 b | 0.06 | 0.64 b | 0.08 | 0.49 a,c | 0.04 |
PUFA/UFA | 0.31 a | 0.02 | 0.39 b | 0.02 | 0.39 b | 0.03 | 0.33 a,c | 0.02 |
UFA/SFA | 1.89 | 0.09 | 2.00 a | 0.08 | 1.91 | 0.10 | 1.82 b | 0.13 |
Total n-3 | 2.19 a | 0.22 | 6.71 b | 0.64 | 6.12 b,d | 0.64 | 4.11 a,c,d | 0.55 |
Total n-6 | 16.74 a | 0.85 | 18.44 b | 1.50 | 18.74 b | 1.28 | 16.15 a,c | 0.70 |
Total n-9 | 36.06 | 0.65 | 36.02 | 1.71 | 35.32 | 1.82 | 37.12 | 1.71 |
n-6/n-3 ratio | 7.69 a | 0.55 | 2.77 b | 0.36 | 3.09 b,d | 0.31 | 3.98 a,c,d | 0.50 |
AI | 0.60 a | 0.01 | 0.54 b | 0.03 | 0.56 b,d | 0.02 | 0.61 a,c,d | 0.04 |
TI | 0.90 a | 0.04 | 0.65 b | 0.03 | 0.69 b,d | 0.03 | 0.80 a,c,d | 0.04 |
Fatty Acid | Group C | Group LO | Group EE | Group FO | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Saturated fatty acids | ||||||||
C12:0 | 0.48 | 0.03 | 0.51 | 0.05 | 0.56 | 0.05 | 0.55 | 0.07 |
C14:0 | 2.90 | 0.16 | 2.70 a | 0.25 | 2.95 | 0.18 | 3.17 b | 0.26 |
C16:0 | 27.01 a | 0.75 | 24.87 b | 1.00 | 25.25 b | 0.38 | 26.62 a,c | 0.57 |
C17:0 | 0.29 a | 0.02 | 0.35 b | 0.03 | 0.35 b | 0.01 | 0.36 b | 0.02 |
C18:0 | 3.42 a | 0.14 | 4.45 b | 0.48 | 4.05 b | 0.15 | 4.16 b | 0.38 |
C20:0 | 0.12 a | 0.05 | 0.06 | 0.01 | 0.07 | 0.02 | 0.06 b | 0.01 |
C24:0 | 0.08 a | 0.05 | 0.09 a | 0.01 | 0.15 | 0.09 | 0.28 b | 0.05 |
Unsaturated fatty acids | ||||||||
C16:1 | 6.86 a | 0.59 | 3.23 b | 0.98 | 4.21 b,c | 0.36 | 4.77 | 0.44 |
C17:1 | 0.31 a | 0.01 | 0.24 b | 0.03 | 0.26 b | 0.01 | 0.28 | 0.01 |
C18:1n9c | 39.57 | 0.25 | 39.73 | 0.92 | 38.38 | 0.94 | 39.63 | 1.00 |
C18:2n6c | 16.15 | 0.85 | 17.18 | 1.44 | 17.35 | 0.79 | 15.71 | 1.05 |
C18:3n6 | 0.10 a | 0.05 | 0.04 b | 0.01 | 0.06 | 0.02 | 0.06 | 0.03 |
C18:3n3 | 1.13 a | 0.09 | 5.32 b | 0.76 | 4.38 b,d | 0.61 | 1.37 a,c,d | 0.20 |
C20:1n9 | 0.26 a | 0.02 | 0.26 a | 0.04 | 0.33 a | 0.13 | 1.12 b | 0.13 |
C20:2 | 0.14 a | 0.02 | 0.10 b | 0.02 | 0.12 | 0.01 | 0.14 a,c | 0.02 |
C20:4n6 | 0.33 a | 0.03 | 0.24 b | 0.03 | 0.26 b | 0.03 | 0.26 | 0.07 |
C20:5n3 | 0.05 a | 0.02 | 0.04 a | 0.01 | 0.05 | 0.01 | 0.07 b | 0.01 |
C22:6n3 | 0.10 a | 0.02 | 0.16 a,b | 0.04 | 0.58 c | 0.14 | 0.90 d | 0.16 |
other | 0.72 | 0.39 | 0.45 | 0.09 | 0.64 | 0.21 | 0.51 | 0.15 |
Group C | Group LO | Group EE | Group FO | |||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Total SFA | 34.29 | 0.73 | 33.03 a | 1.36 | 33.38 a | 0.44 | 35.19 b | 0.99 |
Total UFA | 65.71 | 0.73 | 66.97 a | 1.36 | 66.62 a | 0.44 | 64.81 b | 0.99 |
Total MUFA | 47.00 a | 0.44 | 43.45 b | 1.21 | 43.18 b | 1.10 | 45.80 | 1.23 |
Total PUFA | 18.71 a | 1.06 | 25.52 b | 1.72 | 23.44 b | 1.20 | 19.01 a,c | 1.14 |
PUFA/MUFA | 0.40 a | 0.03 | 0.54 b | 0.05 | 0.54 b | 0.04 | 0.42 a,c | 0.03 |
PUFA/UFA | 0.29 a | 0.01 | 0.35 b | 0.02 | 0.35 b | 0.02 | 0.29 a,c | 0.02 |
UFA/SFA | 1.92 | 0.06 | 2.03 a | 0.12 | 2.00 a | 0.40 | 1.84 b | 0.08 |
Total n-3 | 1.27 a | 0.10 | 5.52 b | 0.79 | 5.01 b,d | 0.61 | 2.34 a,c,d | 0.33 |
Total n-6 | 16.58 | 0.91 | 17.46 | 1.44 | 17.67 a | 0.80 | 16.03 b | 1.05 |
Total n-9 | 39.83 | 0.25 | 39.99 | 0.93 | 38.71 a | 0.96 | 40.75 b | 1.00 |
n-6/n-3 ratio | 13.13 a | 0.94 | 3.21 b | 0.48 | 3.56 b,d | 0.38 | 6.95 a,c,d | 0.87 |
AI | 0.60 a,c,d | 0.02 | 0.54 b,d | 0.04 | 0.56 d | 0.02 | 0.61 c | 0.03 |
TI | 0.94 a | 0.03 | 0.68 b | 0.06 | 0.71 b | 0.03 | 0.89 a,c | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czyż, K.; Sokoła-Wysoczańska, E.; Bodkowski, R.; Cholewińska, P.; Wyrostek, A. Dietary Omega-3 Source Effect on the Fatty Acid Profile of Intramuscular and Perimuscular Fat—Preliminary Study on a Rat Model. Nutrients 2020, 12, 3382. https://doi.org/10.3390/nu12113382
Czyż K, Sokoła-Wysoczańska E, Bodkowski R, Cholewińska P, Wyrostek A. Dietary Omega-3 Source Effect on the Fatty Acid Profile of Intramuscular and Perimuscular Fat—Preliminary Study on a Rat Model. Nutrients. 2020; 12(11):3382. https://doi.org/10.3390/nu12113382
Chicago/Turabian StyleCzyż, Katarzyna, Ewa Sokoła-Wysoczańska, Robert Bodkowski, Paulina Cholewińska, and Anna Wyrostek. 2020. "Dietary Omega-3 Source Effect on the Fatty Acid Profile of Intramuscular and Perimuscular Fat—Preliminary Study on a Rat Model" Nutrients 12, no. 11: 3382. https://doi.org/10.3390/nu12113382
APA StyleCzyż, K., Sokoła-Wysoczańska, E., Bodkowski, R., Cholewińska, P., & Wyrostek, A. (2020). Dietary Omega-3 Source Effect on the Fatty Acid Profile of Intramuscular and Perimuscular Fat—Preliminary Study on a Rat Model. Nutrients, 12(11), 3382. https://doi.org/10.3390/nu12113382