1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Habitual Caffeine Intake Assessment
2.3. Experimental Design
2.4. Familiarization Session and One Repetition Maximum Test
2.5. Experimental Protocol
- T-REP—total number of repetitions [n];
- TUTCON—time under tension of concentric contractions [s];
- PP—peak concentric power [W];
- MP—mean concentric power [W];
- PV—peak concentric velocity [m/s];
- MV—mean concentric velocity [m/s].
2.6. Side Effects
2.7. Statistical Analysis
3. Results
Side Effects
4. Discussion
Practical Applications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burke, L.M. Caffeine and sports performance. Appl. Physiol. Nutr. Metab. 2008, 33, 1319–1334. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.; Krzysztofik, M.; Maszczyk, A.; Chycki, J.; Zajac, A. The acute effects of caffeine intake on time under tension and power generated during the bench press movement. J. Int. Soc. Sports Nutr. 2019, 16, 8. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Mikulic, P. Caffeine ingestion acutely enhances muscular strength and power but not muscular endurance in resistance-trained men. Eur. J. Sport Sci. 2017, 17, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.; Jacobs, P.L.; Whitehurst, M.; Penhollow, T.; Antonio, J. Caffeine enhances upper body strength in resistance-trained women. J. Int. Soc. Sports Nutr. 2010. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.; Filip, A.; Krzysztofik, M.; Maszczyk, A.; Zajac, A. The acute effect of various doses of caffeine on power output and velocity during the bench press exercise among athletes habitually using caffeine. Nutrients 2019, 11, 1465. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Grgic, I.; Pickering, C.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. Wake up and smell the coffee: Caffeine supplementation and exercise performance—An umbrella review of 21 published meta-analyses. Br. J. Sports Med. 2019. [Google Scholar] [CrossRef] [PubMed]
- Daly, J.W.; Shi, D.; Nikodijevic, O.; Jacobson, K.A. The role of adenosine receptors in the central action of caffeine. Pharmacopsychoecologia 1994, 7, 201–213. [Google Scholar] [PubMed]
- Davis, J.M.; Zhao, Z.; Stock, H.S.; Mehl, K.A.; Buggy, J.; Hand, G.A. Central nervous system effects of caffeine and adenosine on fatigue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R399–R404. [Google Scholar] [CrossRef] [PubMed]
- Ferré, S. Mechanisms of the psychostimulant effects of caffeine: Implications for substance use disorders. Psychopharmacology (Berl.) 2016, 233, 1963–1979. [Google Scholar] [CrossRef]
- Behrens, M.; Mau-Moeller, A.; Weippert, M.; Fuhrmann, J.; Wegner, K.; Skripitz, R.; Bader, R.; Bruhn, S. Caffeine-induced increase in voluntary activation and strength of the quadriceps muscle during isometric, concentric and eccentric contractions. Sci. Rep. 2015, 5, 102–109. [Google Scholar] [CrossRef]
- Southward, K.; Rutherfurd-Markwick, K.; Badenhorst, C.; Ali, A. The role of genetics in moderating the inter-individual differences in the ergogenicity of caffeine. Nutrients 2018, 10, 1352. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.J.; Oxford, S.W. The effect of caffeine ingestion on mood state and bench press performance to failure. J. Strength Cond. Res. 2011, 25, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Lara, F.J.; Del Coso, J.; García, J.M.; Portillo, L.J.; Areces, F.; Abián-Vicén, J. Caffeine improves muscular performance in elite Brazilian Jiu-jitsu athletes. Eur. J. Sport Sci. 2016, 16, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Beck, T.W.; Housh, T.J.; Schmidt, R.J.; Johnson, G.O.; Housh, D.J.; Coburn, J.W.; Malek, M.H. The acute effects of a caffeine-containing supplement on strength, muscular endurance, and anaerobic capabilities. J. Strength Cond. Res. 2006, 20, 506–510. [Google Scholar] [PubMed]
- Green, J.M.; Wickwire, P.J.; McLester, J.R.; Gendle, S.; Hudson, G.; Pritchett, R.C.; Laurent, C.M. Effects of caffeine on repetitions to failure and ratings of perceived exertion during resistance training. Int. J. Sports Physiol. Perform. 2007, 2, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Astorino, T.A.; Rohmann, R.L.; Firth, K. Effect of caffeine ingestion on one-repetition maximum muscular strength. Eur. J. Appl. Physiol. 2008, 102, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.; Golas, A.; Stastny, P.; Nawrocka, M.; Krzysztofik, M.; Zajac, A. Does tempo of resistance exercise impact training volume? J. Hum. Kinet. 2018, 62, 241–250. [Google Scholar] [CrossRef]
- Burd, N.A.; Andrews, R.J.; West, D.W.D.; Little, J.P.; Cochran, A.J.R.; Hector, A.J.; Cashaback, J.G.A.; Gibala, M.J.; Potvin, J.R.; Baker, S.K.; et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J. Physiol. (Lond.) 2012, 590, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Muñoz, G.; Muñoz-Guerra, J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl. Physiol. Nutr. Metab. 2011, 36, 555–561. [Google Scholar] [CrossRef]
- Desbrow, B.; Leveritt, M. Awareness and use of caffeine by athletes competing at the 2005 Ironman Triathlon World Championships. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 545–558. [Google Scholar] [CrossRef]
- Aguilar-Navarro, M.; Muñoz, G.; Salinero, J.; Muñoz-Guerra, J.; Fernández-Álvarez, M.; Plata, M.; Del Coso, J. Urine caffeine concentration in doping control samples from 2004 to 2015. Nutrients 2019, 11, 286. [Google Scholar] [CrossRef] [PubMed]
- Svenningsson, P.; Nomikos, G.G.; Fredholm, B.B. The stimulatory action and the development of tolerance to caffeine is associated with alterations in gene expression in specific brain regions. J. Neurosci. 1999, 19, 4011–4022. [Google Scholar] [CrossRef] [PubMed]
- Fredholm, B.B.; Bättig, K.; Holmén, J.; Nehlig, A.; Zvartau, E.E. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 1999, 51, 83–133. [Google Scholar] [PubMed]
- Sökmen, B.; Armstrong, L.E.; Kraemer, W.J.; Casa, D.J.; Dias, J.C.; Judelson, D.A.; Maresh, C.M. Caffeine use in sports: Considerations for the athlete. J. Strength Cond. Res. 2008, 22, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Dodd, S.L.; Brooks, E.; Powers, S.K.; Tulley, R. The effects of caffeine on graded exercise performance in caffeine naive versus habituated subjects. Eur. J. Appl. Physiol. Occup. Physiol. 1991, 62, 424–429. [Google Scholar] [CrossRef] [PubMed]
- de Souza Gonçalves, L.; de Salles Painelli, V.; Yamaguchi, G.; de Oliveira, L.F.; Saunders, B.; da Silva, R.P.; Maciel, E.; Artioli, G.G.; Roschel, H.; Gualano, B. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J. Appl. Physiol. 2017, 123, 213–220. [Google Scholar]
- Lara, B.; Ruiz-Moreno, C.; Salinero, J.J.; Del Coso, J. Time course of tolerance to the performance benefits of caffeine. PLoS ONE 2019, 14, e0210275. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, R.; Cordery, P.; Funnell, M.; Mears, S.; James, L.; Watson, P. Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine. J. Sports Sci. 2017, 35, 1920–1927. [Google Scholar] [CrossRef]
- Bühler, E.; Lachenmeier, D.W.; Schlegel, K.; Winkler, G. Development of a tool to assess the caffeine intake among teenagers and young adults. Ernahrungs Umschau. 2014, 61, 58–63. [Google Scholar]
- Frankowski, M.; Kowalski, A.; Ociepa, A.; Siepak, J.; Niedzielski, P. Caffeine levels in various caffeine—Rich and decaffeinated coffee grades and coffee extracts marketed in Poland. Bromat. Chem. Toksykol. 2008, 1, 21–27. [Google Scholar]
- Self Nutrition Data. Available online: https://nutritiondata.self.com/ (accessed on 2 April 2019).
- Teixeira, V.; Voci, S.M.; Mendes-Netto, R.S.; da Silva, D.G. The relative validity of a food record using the smartphone application MyFitnessPal. Nutr. Diet 2018, 75, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Wilk, M.; Golas, A.; Krzysztofik, M.; Nawrocka, M.; Zajac, A. The effects of eccentric cadence on power and velocity of the bar during the concentric phase of the bench press movement. J. Sports Sci. Med. 2019, 18, 191–197. [Google Scholar] [PubMed]
- Brown, L.E.; Weir, J.P. ASEP procedures recommendation I: Accurate assessment of muscular strength and power. J Exerc. Physiol. Online 2001, 4, 1–21. [Google Scholar]
- García-Ramos, A.; Haff, G.G.; Padial, P.; Feriche, B. Reliability and validity assessment of a linear position transducer. Sports Biomech. 2018, 17, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, J.A.; Trepeck, C.; Halle, J.L.; Mendez, K.M.; Klemp, A.; Cooke, D.M.; Haischer, M.H.; Byrnes, R.K.; Zoeller, R.F.; Whitehurst, M.; et al. Validity of the open barbell and tendo weightlifting analyzer systems versus the optotrak certus 3D motion-capture system for barbell velocity. Int. J. Sports Physiol. Perform. 2019, 14, 540–543. [Google Scholar] [CrossRef] [PubMed]
- Pallarés, J.G.; Fernández-Elías, V.E.; Ortega, J.F.; Muñoz, G.; Muñoz-Guerra, J.; Mora-Rodríguez, R. Neuromuscular responses to incremental caffeine doses: Performance and side effects. Med. Sci. Sports Exerc. 2013, 45, 2184–2192. [Google Scholar] [CrossRef] [PubMed]
- Childs, E.; de Wit, H. Subjective, behavioral, and physiological effects of acute caffeine in light, nondependent caffeine users. Psychopharmacology (Berl.) 2006, 185, 514–523. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 2013. [Google Scholar]
- Pickering, C.; Kiely, J. Are the current guidelines on caffeine use in sport optimal for everyone? Inter-individual variation in caffeine ergogenicity, and a move towards personalised sports nutrition. Sports Med. 2018, 48, 7–16. [Google Scholar] [CrossRef]
- Duncan, M.J.; Thake, C.D.; Downs, P.J. Effect of caffeine ingestion on torque and muscle activity during resistance exercise in men. Muscle Nerve. 2014, 50, 523–527. [Google Scholar] [CrossRef]
- Park, N.D.; Maresca, R.D.; McKibans, K.I.; Morgan, D.R.; Allen, T.S.; Warren, G.L. Caffeine enhancement of maximal voluntary strength and activation in uninjured but not injured muscle. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 639–652. [Google Scholar] [CrossRef]
- Irwin, C.; Desbrow, B.; Ellis, A.; O’Keeffe, B.; Grant, G.; Leveritt, M. Caffeine withdrawal and high-intensity endurance cycling performance. J. Sports Sci. 2011, 29, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Bogdanis, G.C. Effects of physical activity and inactivity on muscle fatigue. Front. Physiol. 2012, 3, 142. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Sabol, F.; Venier, S.; Tallis, J.; Schoenfeld, B.J.; Del Coso, J.; Mikulic, P. Caffeine supplementation for powerlifting competitions: An evidence-based approach. J. Hum. Kinet. 2019, 68, 131–142. [Google Scholar]
- Pasman, W.J.; van Baak, M.A.; Jeukendrup, A.E.; de Haan, A. The effect of different dosages of caffeine on endurance performance time. Int. J. Sports Med. 1995, 16, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Salinero, J.J.; Lara, B.; Abian-Vicen, J.; Gonzalez-Millán, C.; Areces, F.; Gallo-Salazar, C.; Ruiz-Vicente, D.; Del Coso, J. The use of energy drinks in sport: Perceived ergogenicity and side effects in male and female athletes. Br. J. Nutr. 2014, 112, 1494–1502. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.J.; Gore, C.J.; Dawson, B. Induced alkalosis and caffeine supplementation: Effects on 2000-m rowing performance. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.; O’Connor, H.; Orr, R.; Ruell, P.; Cheng, H.L.; Chow, C.M. Combined caffeine and carbohydrate ingestion: Effects on nocturnal sleep and exercise performance in athletes. Eur. J. Appl. Physiol. 2014, 114, 2529–2537. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Lara, B.; Ruiz-Moreno, C.; Salinero, J. Challenging the myth of non-response to the ergogenic effects of caffeine ingestion on exercise performance. Nutrients 2019, 11, 732. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, M.C.; El-Sohemy, A.; Campos, H. Genetic polymorphism of the adenosine A2A receptor is associated with habitual caffeine consumption. Am. J. Clin. Nutr. 2007, 86, 240–244. [Google Scholar] [CrossRef]
- Alsene, K.; Deckert, J.; Sand, P.; de Wit, H. Association between A2A receptor gene polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology 2003, 28, 1694–1702. [Google Scholar] [CrossRef]
- Chtourou, H.; Souissi, N. The effect of training at a specific time of day: A review. J. Strength Cond. Res. 2012, 26, 1984–2005. [Google Scholar] [CrossRef] [PubMed]
Variable | Placebo (95% CI) | CAF-9 (95% CI) | CAF-11 (95% CI) | F | p |
---|---|---|---|---|---|
1RM [kg] | 118.3 ± 14.5 (109.4–125.5) | 122.3 ± 15.3 (115.7–132.5) | 124.2 ± 11.4 (116.3–135.2) | 0.24 | 0.78 |
T-REP [n] | 25.1 ± 3.2 (23.3–26.8) | 25.0 ± 4.9 (22.4–27.6) | 25.6 ± 3.3 (23.8–27.3) | 0.09 | 0.90 |
TUTCON [s] | 17.1 ± 3.29 (15.3–18.8) | 19.1 ± 3.29 (17.3–20.8) | 16.9 ± 3.39 (15.1–18.8) | 2.01 | 0.14 |
MP [W] | 348 ± 79 (305–390) | 333 ± 72 (294–372) | 318 ± 78 (276–360) | 0.61 | 0.54 |
PP [W] | 798 ± 164 (710–886) | 766 ± 134 (694–837) | 731 ± 186 (632–831) | 0.61 | 0.51 |
MV [m/s] | 0.71 ± 0.10 (0.66–0.76) | 0.67 ± 0.08 (0.63–0.72) | 0.70 ± 0.07 (0.66–0.74) | 0.8 | 0.45 |
PV [m/s] | 1.39 ± 0.16 (1.31–1.48) | 1.37 ± 0.15 (1.29–1.45) | 1.25 ± 0.17 (1.16–1.34) | 3.43 | 0.04 * |
Variable | Comparison | p | Effect Size (Cohen d) | Relative Effects [%] |
---|---|---|---|---|
1RM [kg] | Placebo vs CAF-9 | 0.82 | 0.26—small | 3.3 ± 4.1 |
Placebo vs CAF-11 | 0.74 | 0.45—small | 4.7 ± 5.1 | |
T-REP [n] | Placebo vs CAF-9 | 0.99 | −0.02—negative effects | 0.4 ± 12.1 |
Placebo vs CAF-11 | 0.93 | 0.15—small | 2.0 ± 11.2 | |
TUTCON [s] | Placebo vs CAF-9 | 0.22 | 0.6—moderate | 10.5 ± 15.5 |
Placebo vs CAF-11 | 0.99 | −0.05—negative effects | −6.2 ± 21.5 | |
MP [W] | Placebo vs CAF-9 | 0.85 | −0.19—negative effects | −1.5 ± 7.6 |
Placebo vs CAF-11 | 0.51 | −0.38—negative effects | −9.4 ± 10.5 | |
PP [W] | Placebo vs CAF-9 | 0.84 | −0.21—negative effects | −4.2 ± 8.3 |
Placebo vs CAF-11 | 0.48 | −0.38—negative effects | −9.2 ± 11.6 | |
MV [m/s] | Placebo vs CAF-9 | 0.43 | −0.44—negative effects | −6.0 ± 11.8 |
Placebo vs CAF-11 | 0.91 | −0.11—negative effects | −1.4 ± 6.6 | |
PV [m/s] | Placebo vs CAF-9 | 0.90 | −0.12—negative effects | −1.5 ± 10.2 |
Placebo vs CAF-11 | 0.04 * | −0.84—negative effects | −11.2 ± 10.7 |
Side Effects | Occurrence of Side Effects in Particular Groups | |||||
---|---|---|---|---|---|---|
PLAC | CAF-9 | CAF-11 | ||||
+0 h | +24 h | +0 h | +24 h | +0 h | +24 h | |
Muscle soreness | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Increased urine output | 1 (6%) | 1 (6%) | 10 (63%) | 9 (57%) | 10 (63%) | 10 (63%) |
Tachycardia and heart palpitations | 3 (19%) | 1 (6%) | 12 (76%) | 11 (69%) | 15 (92%) | 13 (81%) |
Anxiety or nervousness | 1 (6%) | 2 (13%) | 11 (69%) | 4 (25%) | 14 (88%) | 13 (81%) |
Headache | 2 (13%) | 1 (6%) | 3(19%) | 6 (37%) | 8(50%) | 8 (50%) |
Gastrointestinal problems | 0 (0%) | 1 (6%) | 6 (38%) | 10(63%) | 6 (38%) | 13 (81%) |
Perception of performance improvement | 2 (13%) | 0 (0%) | 14 (88%) | 0 (0%) | 6 (38%) | 0 (0%) |
Increased vigor/activeness | 2 (13%) | 1 (6%) | 13(81%) | 8 (50%) | 6 (38%) | 6 (38%) |
Insomnia | 0 (0%) | 0 (0%) | 0 (0%) | 4 (25%) | 0 (0%) | 6 (38%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).