The Relationship between Nutrient Patterns and Bone Mineral Density in Postmenopausal Women
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Anthropometric and Body Composition Measurements of the Participants
2.3. Dietary Intake Assessment
2.4. Physical Activity Questionnaire
- Walking MET-minutes/week at work = 3.3 × walking minutes × walking days at work.
- Moderate MET-minutes/week at work = 4.0 × moderate-intensity activity minutes × moderate intensity days at work.
- Vigorous MET-minutes/week at work = 8.0 × vigorous-intensity activity minutes × vigorous intensity days at work Total Work MET-minutes/week = sum of Walking + Moderate + Vigorous MET-minutes/week scores at work.
- Total PA MET-minutes/week = sum of walking + moderate + vigorous MET-minutes/week scores.
2.5. Nutrient Pattern Identification
2.6. Data Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karamati, M.; Yousefian-Sanni, M.; Shariati-Bafghi, S.-E.; Rashidkhani, B. Major nutrient patterns and bone mineral density among postmenopausal Iranian women. Calcif. Tissue Int. 2014, 94, 648–658. [Google Scholar] [CrossRef] [PubMed]
- Melaku, Y.A.; Gill, T.K.; Taylor, A.W.; Adams, R.; Shi, Z. Association between nutrient patterns and bone mineral density among ageing adults. Clin. Nutr. ESPEN 2017, 22, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Cosso, R.; Falchetti, A. Vitamin K and bone metabolism: The myth and the truth. Expert Rev. Precis. Med. Drug Dev. 2016, 1, 301–317. [Google Scholar] [CrossRef]
- Metz, J.A.; Anderson, J.; Gallagher, P. Intakes of calcium, phosphorus, and protein, and physical-activity level are related to radial bone mass in young adult women. Am. J. Clin. Nutr. 1993, 58, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Denova-Gutiérrez, E.; Méndez-Sánchez, L.; Muñoz-Aguirre, P.; Tucker, K.; Clark, P. Dietary patterns, bone mineral density, and risk of fractures: A systematic review and meta-analysis. Nutrients 2018, 10, 1922. [Google Scholar] [CrossRef] [PubMed]
- Gunn, C.A.; Weber, J.L.; Kruger, M.C. Midlife women, bone health, vegetables, herbs and fruit study. The Scarborough Fair study protocol. BMC Public Health 2013, 13, 23. [Google Scholar] [CrossRef] [PubMed]
- Manios, Y.; Moschonis, G.; Trovas, G.; Lyritis, G.P. Changes in biochemical indexes of bone metabolism and bone mineral density after a 12-mo dietary intervention program: The Postmenopausal Health Study. Am. J. Clin. Nutr. 2007, 86, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Moschonis, G.; Katsaroli, I.; Lyritis, G.P.; Manios, Y. The effects of a 30-month dietary intervention on bone mineral density: The Postmenopausal Health Study. Br. J. Nutr. 2010, 104, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Munger, R.G.; Cerhan, J.R.; Chiu, B.C. Prospective study of dietary protein intake and risk of hip fracture in postmenopausal women. Am. J. Clin. Nutr. 1999, 69, 147–152. [Google Scholar] [CrossRef]
- Zhang, H.; Tao, X.; Wu, J. Association of homocysteine, vitamin B12, and folate with bone mineral density in postmenopausal women: A meta-analysis. Arch. Gynecol. Obstet. 2014, 289, 1003–1009. [Google Scholar] [CrossRef]
- Ahmadieh, H.; Arabi, A. Vitamins and bone health: Beyond calcium and vitamin D. Nutr. Rev. 2011, 69, 584–598. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, H.M.; New, S.A.; Golden, M.H.; Campbell, M.K.; Reid, D.M. Nutritional associations with bone loss during the menopausal transition: Evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am. J. Clin. Nutr. 2004, 79, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Michaëlsson, K.; Holmberg, L.; Mallmin, H.; Wolk, A.; Bergström, R.; Ljunghall, S. Diet, bone mass, and osteocalcin: A cross-sectional study. Calcif. Tissue Int. 1995, 57, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.; Atkinson, E.; Hensrud, D.; Wahner, H.; O’fallon, W.; Riggs, B.; Melton, L. Dietary protein intake and bone mass in women. Calcif. Tissue Int. 1996, 58, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Frassetto, L.; Banerjee, T.; Powe, N.; Sebastian, A. Acid Balance, Dietary Acid Load, and Bone Effects—A Controversial Subject. Nutrients 2018, 10, 517. [Google Scholar] [CrossRef] [PubMed]
- Lanham-New, S.A. The balance of bone health: Tipping the scales in favor of potassium-rich, bicarbonate-rich foods. J. Nutr. 2008, 138, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Carnauba, R.; Baptistella, A.; Paschoal, V.; Hübscher, G. Diet-Induced low-grade metabolic acidosis and clinical outcomes: A review. Nutrients 2017, 9, 538. [Google Scholar] [CrossRef]
- World Health Organization. WHO Scientific Group on the Assessment of Osteoporosis at Primary Health Care Level. 2011; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Biro, G.; Hulshof, K.; Ovesen, L.; Cruz, J.A. Selection of methodology to assess food intake. Eur. J. Clin. Nutr. 2002, 56, S25. [Google Scholar] [CrossRef] [PubMed]
- McLean, G.; Tobias, M. The New Zealand Physical Activity Questionnaires: Report on the Validation and Use of the NZPAQ-LF and NZPAQ-SF Self-Report Physical Activity Survey Instruments; SPARC: Richmond, VA, USA, 2004. [Google Scholar]
- Boon, R.M.; Hamlin, M.J.; Steel, G.D.; Ross, J.J. Validation of the New Zealand physical activity questionnaire (NZPAQ-LF) and the international physical activity questionnaire (IPAQ-LF) with accelerometry. Br. J. Sports Med. 2010. [Google Scholar] [CrossRef]
- IPAQ, R.C. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)-Short and Long Forms. 2005. Available online: http://www. ipaq. ki. se/scoring. pdf (accessed on 23 March 2019).
- Palacios, C. The role of nutrients in bone health, from A to Z. Crit. Rev. Food Sci. Nutr. 2006, 46, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Powers, H.J. Riboflavin (vitamin B-2) and health. Am. J. Clin. Nutr. 2003, 77, 1352–1360. [Google Scholar] [CrossRef]
- Clarke, M.; Ward, M.; Strain, J.; Hoey, L.; Dickey, W.; McNulty, H. B-vitamins and bone in health and disease: The current evidence. Proc. Nutr. Soc. 2014, 73, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Fratoni, V.; Brandi, M. B vitamins, homocysteine and bone health. Nutrients 2015, 7, 2176–2192. [Google Scholar] [CrossRef] [PubMed]
- Lubec, B.; Fang-Kircher, S.; Lubec, T.; Blom, H.; Boers, G. Evidence for McKusick’s hypothesis of deficient collagen cross-linking in patients with homocystinuria. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 1996, 1315, 159–162. [Google Scholar] [CrossRef]
- Saito, M.; Fujii, K.; Marumo, K. Degree of mineralization-related collagen crosslinking in the femoral neck cancellous bone in cases of hip fracture and controls. Calcif. Tissue Int. 2006, 79, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Shono, N.; Kugino, K.; Yoshida, S.; Nakayama, M.; Ueno, H.; Nishizumi, M. Bone Mineral Density by Ultrasonic Measurement in Pre-and Postmenopausal Women Relationship with Sex Hormones and Nutritional States. Nippon Eiseigaku Zasshi (Jpn. J. Hyg.) 1997, 51, 755–762. [Google Scholar] [CrossRef]
- Sasaki, S.; Yanagibori, R. Association between current nutrient intakes and bone mineral density at calcaneus in pre-and postmenopausal Japanese women. J. Nutr. Sci. Vitaminol. 2001, 47, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Givens, M.H. Studies in Calcium and Magnesium Metabolism III. The Effect of Fat and Fatty Acid Derivatives. J. Biol. Chem. 1917, 31, 441–444. [Google Scholar]
- Fujita, K.; Iwasaki, M.; Ochi, H.; Fukuda, T.; Ma, C.; Miyamoto, T.; Takitani, K.; Negishi-Koga, T.; Sunamura, S.; Kodama, T. Vitamin E decreases bone mass by stimulating osteoclast fusion. Nat. Med. 2012, 18, 589. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, N.; Luke, D.A.; Shuid, A.N.; Mohamed, N.; Soelaiman, I.-N. Two different isomers of vitamin e prevent bone loss in postmenopausal osteoporosis rat model. Evid.-Based Complement. Altern. Med. 2012, 2012. [Google Scholar] [CrossRef]
- de Sousa Carvalho, R.; de Souza, C.M.; de Souza Neves, J.C.; Holanda-Pinto, S.A.; Pinto, L.M.S.; Brito, G.A.C.; de Andrade, G.M. Vitamin E does not prevent bone loss and induced anxiety in rats with ligature-induced periodontitis. Arch. Oral Biol. 2013, 58, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Naina Mohamed, I.; Borhanuddin, B.; Shuid, A.N.; Fozi, M.; Farhana, N. Vitamin E and bone structural changes: An evidence-based review. Evid.-Based Complement. Altern. Med. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
Mean ± SD | Range | ||
---|---|---|---|
Parameters | (n = 101) | Min | Max |
Age (years) | 62.9 ± 4.4 | 54 | 81 |
BMI (kg/m2) | 26.3 ± 4.2 | 17.9 | 44.0 |
Waist-Hip ratio | 0.8 ± 0.1 | 0.7 | 1.1 |
Spine (L1-L4) BMD (g/cm2) | 0.9 ± 0.2 | 0.5 | 1.3 |
Spine (L1-L4) T-score | −1.0 ± 1.4 | −4.6 | 2.6 |
Femoral neck BMD (g/cm2) | 0.7 ± 0.1 | 0.5 | 1.0 |
Total hip BMD (g/cm2) | 0.9 ± 0.1 | 0.6 | 1.2 |
Total hip T-score | −0.7 ± 1.0 | −2.5 | 2.1 |
WB BMD (g/cm2) | 1.1 ± 0.1 | 0.9 | 1.5 |
Energy Intake (kJ) | 8109.8 ± 1727.5 | 4939.7 | 13,843.4 |
Protein (g) | 85.6 ± 21.5 | 42.4 | 155.7 |
Total fat (g) | 79.5 ± 22.4 | 33.2 | 128.9 |
Carbohydrate (g) | 192.0 ± 64.4 | 61.8 | 394.6 |
Saturated fat (g) | 30.5 ± 11.8 | 8.3 | 66.4 |
Polyunsaturated fat (g) | 12.1 ± 6.0 | 3.4 | 48.8 |
Monounsaturated fat (g) | 27.2 ± 8.7 | 11.0 | 51.3 |
Cholesterol (mg) | 295.0 ± 146.1 | 18.2 | 753.5 |
Sugars (g) | 96.1 ± 38.5 | 29.6 | 183.3 |
Starch (g) | 95.8 ± 37.4 | 24.4 | 215.6 |
Dietary fibre (g) | 27.2 ± 9.0 | 9.9 | 53.0 |
Vitamin C (mg) | 118.2 ± 69.4 | 13.6 | 387.1 |
Vitamin D (µg) | 6.3 ± 6.5 | 0.3 | 33.2 |
Vitamin E (mg) | 10.6 ± 4.0 | 2.6 | 20.3 |
Vitamin B6 (mg) | 2.4 ± 1.1 | 0.8 | 8.1 |
Vitamin B12 (µg) | 4.2 ± 3.8 | 1.1 | 31.0 |
Vitamin K (µg) | 19.9 ± 19.0 | 0.0 | 90.7 |
Vitamin A (µg) | 1038.4 ± 860.5 | 291.1 | 8085.9 |
Riboflavin (mg) | 2.1 ± 0.8 | 0.9 | 4.7 |
Alpha tocopherol (mg) | 8.3 ± 3.2 | 2.4 | 17.2 |
Niacin equivalent (mg) | 37.7 ± 10.5 | 16.7 | 66.6 |
Calcium (mg) | 929.3 ± 358.9 | 336.7 | 2170.3 |
Sodium (mg) | 2058.4 ± 816.7 | 616.2 | 5073.2 |
Phosphorus (mg) | 1520.4 ± 383.1 | 810.2 | 2639.3 |
Iron (mg) | 12.4 ± 5.3 | 4.7 | 48.2 |
Zinc (mg) | 10.3 ± 3.2 | 4.9 | 20.6 |
Magnesium (mg) | 372.2 ± 97.6 | 211.6 | 592.1 |
Potassium (mg) | 3613.6 ± 933.2 | 1930.0 | 6448.8 |
Phytosterols (mg) | 21.0 ± 42.6 | 0.0 | 218.2 |
Caffeine (mg) | 251.0 ± 218.9 | 0.0 | 1834.1 |
Nutrient Pattern * Factor Loadings | |||
---|---|---|---|
NP1 | NP2 | NP3 | |
Riboflavin_mg | 0.829 | ||
Phosphorus_mg | 0.798 | 0.106 | 0.346 |
Calcium_mg | 0.777 | ||
Sugars_g | 0.774 | ||
Potassium_mg | 0.765 | 0.218 | |
Vitamin B6_mg | 0.759 | ||
Carbohydrate_g | 0.755 | 0.110 | |
Magnesium_mg | 0.700 | 0.450 | 0.229 |
Thiamin_mg | 0.538 | −0.241 | |
Sodium_mg | 0.529 | 0.165 | |
Iron_mg | 0.524 | 0.259 | 0.164 |
Iodine_µg | 0.417 | 0.130 | |
Niacin equivalent_mg | 0.392 | 0.140 | |
Vitamin B12_µg | 0.346 | 0.101 | |
Retinol_µg | |||
Polyunsaturated fat_g | 0.811 | 0.264 | |
Vitamin E_mg | 0.103 | 0.807 | 0.163 |
Alpha tocopherol_mg | 0.114 | 0.779 | 0.116 |
Linoleic acid_g | 0.686 | 0.178 | |
Beta carotene_µg | 0.291 | 0.576 | −0.410 |
Alpha linolenic_ALA_g | 0.535 | 0.138 | |
Alpha_carotene_µg | 0.361 | 0.516 | −0.350 |
Eicosapentaenoic_EPA_g | 0.483 | ||
Docosahexaenoic_DHA_g | −0.168 | 0.470 | |
Vitamin A_µg | 0.185 | 0.255 | −0.171 |
Total fat_g | 0.194 | 0.373 | 0.776 |
Monounsaturated fat_g | 0.499 | 0.708 | |
Oleic acid_g | 0.114 | 0.449 | 0.707 |
Saturated fat_g | 0.285 | −0.113 | 0.681 |
Protein_g | 0.520 | 0.588 | |
Zinc_mg | 0.432 | 0.125 | 0.558 |
Cholesterol_mg | 0.548 | ||
Biotin_µg | 0.121 | 0.524 | |
Pantothenic acid_mg | 0.227 | 0.374 | |
Vitamin C_mg | 0.279 | 0.202 | −0.339 |
Erucic acid_g | 0.133 |
Bivariate Correlations | ||||
---|---|---|---|---|
Nutrient Pattern | Spine BMD | FN BMD | Hip BMD | WB BMD |
NP1 | 0.197 * | 0.213 * | 0.103 | 0.194 * |
NP2 | −0.030 | −0.175 | −0.215 * | −0.115 |
NP3 | 0.112 | 0.103 | 0.172 | 0.168 |
Partial correlations adjusting for age | ||||
NP1 | 0.198 * | 0.186 | 0.073 | 0.177 |
NP2 | −0.030 | −0.193 | −0.233 * | −0.124 |
NP3 | 0.112 | 0.107 | 0.178 | 0.171 |
Partial correlations adjusting for age and BMI | ||||
NP1 | 0.261 ** | 0.240 * | 0.133 | 0.199 * |
NP2 | 0.062 | −0.127 | −0.158 | −0.089 |
NP3 | −0.061 | −0.048 | −0.009 | 0.107 |
Partial correlations adjusting for age, BMI and MET | ||||
NP1 | 0.211 * | 0.213 * | 0.111 | 0.184 |
NP2 | 0.100 | −0.111 | −0.147 | −0.079 |
NP3 | −0.059 | −0.046 | −0.007 | 0.109 |
Bivariate Correlations | ||||
---|---|---|---|---|
Spine BMD | FN BMD | Hip BMD | WB BMD | |
Calcium intake | 0.294 ** | 0.206 * | 0.148 | 0.239 * |
Phosphorus intake | 0.189 | 0.147 | 0.076 | 0.219 * |
Ca/P ratio | 0.257 * | 0.160 | 0.154 | 0.165 |
Protein intake | 0.246 * | 0.182 | 0.178 | 0.241 * |
Riboflavin intake | 0.232 * | 0.194 | 0.143 | 0.193 |
Niacin eq. intake | 0.256 ** | 0.305 ** | 0.257 ** | 0.299 ** |
Partial correlations adjusting for age | ||||
Calcium intake | 0.295 ** | 0.187 | 0.127 | 0.226 * |
Phosphorus intake | 0.189 | 0.125 | 0.052 | 0.206 * |
Ca/P ratio | 0.257 * | 0.146 | 0.140 | 0.155 |
Protein | 0.246 * | 0.181 | 0.177 | 0.239 * |
Riboflavin intake | 0.233 * | 0.167 | 0.113 | 0.175 |
Niacin eq. intake | 0.256 * | 0.294 ** | 0.244* | 0.290 ** |
Partial correlations adjusting for age and BMI | ||||
Calcium intake | 0.309 ** | 0.188 | 0.127 | 0.224 * |
Phosphorus intake | 0.184 | 0.114 | 0.030 | 0.200 * |
Ca/P ratio | 0.282 ** | 0.157 | 0.158 | 0.158 |
Protein | 0.153 | 0.089 | 0.059 | 0.199 * |
Riboflavin intake | 0.300 ** | 0.219 * | 0.179 | 0.198 * |
Niacin eq. intake | 0.211 * | 0.256 * | 0.194 | 0.268 ** |
Partial correlations adjusting for age, BMI and MET-minutes | ||||
Calcium intake | 0.251 * | 0.152 | 0.099 | 0.207 * |
Phosphorus intake | 0.117 | 0.076 | 0.000 | 0.183 |
Ca/P ratio | 0.259 * | 0.140 | 0.145 | 0.148 |
Protein | 0.131 | 0.075 | 0.048 | 0.192 |
Riboflavin intake | 0.244 * | 0.187 | 0.155 | 0.180 |
Niacin eq. intake | 0.212 * | 0.254 * | 0.192 | 0.267 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilesanmi-Oyelere, B.L.; Brough, L.; Coad, J.; Roy, N.; Kruger, M.C. The Relationship between Nutrient Patterns and Bone Mineral Density in Postmenopausal Women. Nutrients 2019, 11, 1262. https://doi.org/10.3390/nu11061262
Ilesanmi-Oyelere BL, Brough L, Coad J, Roy N, Kruger MC. The Relationship between Nutrient Patterns and Bone Mineral Density in Postmenopausal Women. Nutrients. 2019; 11(6):1262. https://doi.org/10.3390/nu11061262
Chicago/Turabian StyleIlesanmi-Oyelere, Bolaji Lilian, Louise Brough, Jane Coad, Nicole Roy, and Marlena Cathorina Kruger. 2019. "The Relationship between Nutrient Patterns and Bone Mineral Density in Postmenopausal Women" Nutrients 11, no. 6: 1262. https://doi.org/10.3390/nu11061262
APA StyleIlesanmi-Oyelere, B. L., Brough, L., Coad, J., Roy, N., & Kruger, M. C. (2019). The Relationship between Nutrient Patterns and Bone Mineral Density in Postmenopausal Women. Nutrients, 11(6), 1262. https://doi.org/10.3390/nu11061262