Caffeinated Gel Ingestion Enhances Jump Performance, Muscle Strength, and Power in Trained Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Exercise Tests
2.3.1. Vertical Jump
2.3.2. Isokinetic Strength and Power
2.3.3. Bench Press
2.3.4. Rowing Ergometer Test
2.4. Side Effects
2.5. Assessment of Blinding
2.6. Statistical Analysis
3. Results
3.1. Exercise Tests
3.1.1. Vertical Jump
3.1.2. Lower-Body Isokinetic Strength and Power
3.1.3. Bench Press
3.1.4. Rowing Ergometer Test
3.2. Side Effects
3.3. Assessment of Blinding
4. Discussion
4.1. Mechanisms of Caffeine
4.2. Limitations
4.3. Practical Applications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mitchell, D.C.; Knight, C.A.; Hockenberry, J.; Teplansky, R.; Hartman, T.J. Beverage caffeine intakes in the U.S. Food Chem. Toxicol. 2014, 63, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Muñoz, G.; Muñoz-Guerra, J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl. Physiol. Nutr. Metab. 2011, 36, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Wickham, K.A.; Spriet, L.L. Administration of caffeine in alternate forms. Sports Med. 2018, 48, 79–91. [Google Scholar] [CrossRef]
- Grgic, J.; Grgic, I.; Pickering, C.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. Wake up and smell the coffee: Caffeine supplementation and exercise performance-an umbrella review of 21 published meta-analyses. Br. J. Sports Med. 2019. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.E. Caffeine and exercise: Metabolism, endurance and performance. Sports Med. 2001, 31, 785–807. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, A.B.; Randell, R.K.; Jeukendrup, A.E. The metabolic and performance effects of caffeine compared to coffee during endurance exercise. PLoS ONE 2013, 8, e59561. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.L.; Clarke, N.D. Effect of Coffee and Caffeine Ingestion on Resistance Exercise Performance. J. Strength Cond. Res. 2016, 30, 2892–2900. [Google Scholar] [CrossRef] [PubMed]
- Kamimori, G.H.; Karyekar, C.S.; Otterstetter, R.; Cox, D.S.; Balkin, T.J.; Belenky, G.L.; Eddington, N.D. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int. J. Pharm. 2002, 234, 159–167. [Google Scholar] [CrossRef]
- Scott, A.T.; O’Leary, T.; Walker, S.; Owen, R. Improvement of 2000-m rowing performance with caffeinated carbohydrate-gel ingestion. Int. J. Sports Physiol. Perform. 2015, 10, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.; Naclerio, F.; Allgrove, J.; Larumbe-Zabala, E. Effects of a carbohydrate and caffeine gel on intermittent sprint performance in recreationally trained males. Eur. J. Sport Sci. 2014, 14, 353–361. [Google Scholar] [CrossRef]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2018, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Pickering, C. The effects of caffeine ingestion on isokinetic muscular strength: A meta-analysis. J. Sci. Med. Sport 2019, 22, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Mikulic, P.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. The influence of caffeine supplementation on resistance exercise: A review. Sports Med. 2019, 49, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Lara, F.J.; Del Coso, J.; García, J.M.; Portillo, L.J.; Areces, F.; Abián-Vicén, J. Caffeine improves muscular performance in elite Brazilian Jiu-jitsu athletes. Eur. J. Sport Sci. 2016, 16, 1079–1086. [Google Scholar] [CrossRef]
- Mora-Rodríguez, R.; García Pallarés, J.; López-Samanes, Á.; Ortega, J.F.; Fernández-Elías, V.E. Caffeine ingestion reverses the circadian rhythm effects on neuromuscular performance in highly resistance-trained men. PLoS ONE 2012, 7, e33807. [Google Scholar]
- Mora-Rodríguez, R.; Pallarés, J.G.; López-Gullón, J.M.; López-Samanes, Á.; Fernández-Elías, V.E.; Ortega, J.F. Improvements on neuromuscular performance with caffeine ingestion depend on the time-of-day. J. Sci. Med. Sport 2015, 18, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Pallarés, J.G.; Fernández-Elías, V.E.; Ortega, J.F.; Muñoz, G.; Muñoz-Guerra, J.; Mora-Rodríguez, R. Neuromuscular responses to incremental caffeine doses: Performance and side effects. Med. Sci. Sports Exerc. 2013, 45, 2184–2192. [Google Scholar] [CrossRef]
- Venier, S.; Grgic, J.; Mikulic, P. Acute Enhancement of Jump Performance, Muscle Strength, and Power in Resistance-Trained Men After Consumption of Caffeinated Chewing Gum. Int. J. Sports Physiol. Perform. 2019. [Google Scholar] [CrossRef]
- Grgic, J.; Mikulic, P. Caffeine ingestion acutely enhances muscular strength and power but not muscular endurance in resistance-trained men. Eur. J. Sport Sci. 2017, 17, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- Bühler, E.; Lachenmeier, D.W.; Schlegel, K.; Winkler, G. Development of a tool to assess the caffeine intake among teenagers and young adults. Ernährungs Umschau 2014, 61, 58–63. [Google Scholar]
- Moir, G.L. Three different methods of calculating vertical jump height from force platform data in men and women. Meas. Phys. Educ. Exerc. Sci. 2008, 12, 207–218. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Marchante, D.; Baz-Valle, E.; Alonso-Molero, I.; Jiménez, S.L.; Muñóz-López, M. Analysis of wearable and smartphone-based technologies for the measurement of barbell velocity in different resistance training exercises. Front. Physiol. 2017, 8, 649. [Google Scholar] [CrossRef] [PubMed]
- Metikos, B.; Mikulic, P.; Sarabon, N.; Markovic, G. Peak power output test on a rowing ergometer: A methodological study. J. Strength Cond. Res. 2015, 29, 2919–2925. [Google Scholar] [CrossRef] [PubMed]
- Saunders, B.; de Oliveira, L.F.; da Silva, R.P.; de Salles Painelli, V.; Gonçalves, L.S.; Yamaguchi, G.; Mutti, T.; Maciel, E.; Roschel, H.; Artioli, G.G.; et al. Placebo in sports nutrition: A proof-of-principle study involving caffeine supplementation. Scand. J. Med. Sci. Sports 2017, 27, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical power analysis for the behavioural sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988; p. 481. [Google Scholar]
- Bloms, L.P.; Fitzgerald, J.S.; Short, M.W.; Whitehead, J.R. The effects of caffeine on vertical jump height and execution in collegiate athletes. J. Strength Cond. Res. 2015, 30, 1855–1861. [Google Scholar] [CrossRef] [PubMed]
- Warren, G.L.; Park, N.D.; Maresca, R.D.; McKibans, K.I.; Millard-Stafford, M.L. Effect of caffeine ingestion on muscular strength and endurance: A meta-analysis. Med. Sci. Sports Exerc. 2010, 42, 1375–1387. [Google Scholar] [CrossRef] [PubMed]
- Tufano, J.J.; Brown, L.E.; Haff, G.G. Theoretical and practical aspects of different cluster set structures: A systematic review. J. Strength Cond. Res. 2017, 31, 848–867. [Google Scholar] [CrossRef]
- Grgic, J. Are There Non-Responders to the Ergogenic Effects of Caffeine Ingestion on Exercise Performance? Nutrients 2018, 10, 1736. [Google Scholar] [CrossRef]
- McLellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar] [CrossRef] [Green Version]
- Doherty, M.; Smith, P.M. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: A meta-analysis. Scand. J. Med. Sci. Sports 2005, 15, 69–78. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A. Effect of caffeine on the neuromuscular system--potential as an ergogenic aid. Appl. Physiol. Nutr. Metab. 2008, 33, 1284–1289. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J. Caffeine ingestion enhances Wingate performance: A meta-analysis. Eur. J. Sport Sci. 2018, 18, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Tallis, J.; Muhammad, B.; Islam, M.; Duncan, M.J. Placebo effects of caffeine on maximal voluntary concentric force of the knee flexors and extensors. Muscle Nerve 2016, 54, 479–486. [Google Scholar] [CrossRef] [PubMed]
Exercise Test | Outcome | Average CV |
---|---|---|
Squat jump (SJ) | Jump height (cm) | 1.3% |
Countermovement jump (CMJ) | Jump height (cm) | 1.3% |
Isokinetic knee extension at 60° s−1 | Peak torque (Nm) | 2.5% |
Average power (W) | 1.7% | |
Isokinetic knee flexion at 60° s−1 | Peak torque (Nm) | 5.3% |
Average power (W) | 4.4% | |
Isokinetic knee extension at 180° s−1 | Peak torque (Nm) | 2.1% |
Average power (W) | 2.7% | |
Isokinetic knee flexion at 180° s−1 | Peak torque (Nm) | 5.9% |
Average power (W) | 5.0% | |
Bench press at 50% 1RM | Barbell velocity (m·s−1) | 1.7% |
Bench press at 75% 1RM | Barbell velocity (m·s−1) | 3.6% |
Bench press at 90% 1RM | Barbell velocity (m·s−1) | 5.1% |
Rowing ergometer test | Peak power (W) | 2.5% |
Exercise Test | Outcome | Caffeine Condition (mean ± SD) | Placebo Condition (mean ± SD) | d (95% CI) | Relative Effects (%) | p |
---|---|---|---|---|---|---|
Squat jump | Jump height (cm) | 31.9 ± 4.9 | 31.0 ± 5.5 | 0.18 (0.03, 0.32) | +2.9 | 0.039 * |
Countermovement jump | Jump height (cm) | 36.4 ± 6.5 | 35.2 ± 6.5 | 0.18 (0.05, 0.32) | +3.3 | 0.011 * |
Isokinetic knee extension at 60° s−1 | Peak torque (Nm) | 256.9 ± 44.5 | 240.3 ± 45.6 | 0.37 (0.15, 0.61) | +6.9 | 0.002 * |
Average power (W) | 193.8 ± 36.9 | 182.3 ± 36.8 | 0.31 (0.13, 0.50) | +6.3 | 0.001 * | |
Isokinetic knee flexion at 60° s−1 | Peak torque (Nm) | 147.1 ± 24.6 | 140.7 ± 28.7 | 0.24 (0.02, 0.46) | +4.6 | 0.034 * |
Average power (W) | 118.7 ± 21.0 | 111.3 ± 25.9 | 0.32 (0.01, 0.59) | +6.7 | 0.015 * | |
Isokinetic knee extension at 180° s−1 | Peak torque (Nm) | 180.2 ± 27.8 | 174.0 ± 31.9 | 0.21 (0.02, 0.40) | +3.5 | 0.031 * |
Average power (W) | 353.4 ± 57.0 | 338.1 ± 66.6 | 0.25 (0.04, 0.46) | +4.5 | 0.025 * | |
Isokinetic knee flexion at 180° s−1 | Peak torque (Nm) | 110.0 ± 18.1 | 106.8 ± 20.3 | 0.17 (−0.07, 0.40) | +3.0 | 0.168 |
Average power (W) | 212.9 ± 38.0 | 205.8 ± 46.7 | 0.17 (−0.04, 0.38) | +3.5 | 0.115 | |
Bench press at 50% 1RM | Barbell velocity (m·s−1) | 0.83 ± 0.08 | 0.80 ± 0.09 | 0.33 (0.06, 0.61) | +3.5 | 0.021 * |
Bench press at 75% 1RM | Barbell velocity (m·s−1) | 0.57 ± 0.06 | 0.54 ± 0.07 | 0.42 (0.21, 0.64) | +5.4 | < 0.001 * |
Bench press at 90% 1RM | Barbell velocity (m·s−1) | 0.39 ± 0.07 | 0.35 ± 0.07 | 0.59 (0.27, 0.89) | +12.0 | < 0.001 * |
Rowing ergometer test | Peak power (W) | 725.4 ± 133.5 | 715.4 ± 106.4 | 0.08 (−0.27, 0.43) | +1.4 | 0.647 |
Placebo | Caffeine | Placebo | Caffeine | |
---|---|---|---|---|
Immediately After Testing Session | Immediately After Testing Session | Morning After Testing Session | Morning After Testing Session | |
Muscle soreness | 0 | 0 | 0 | 0 |
Increased urine production | 0 | 6 | 0 | 6 |
Tachycardia and heart palpitations | 6 | 12 | 0 | 0 |
Increased anxiety | 0 | 18 | 0 | 0 |
Headache | 0 | 0 | 0 | 0 |
Abdominal/gut discomfort | 0 | 6 | 0 | 0 |
Insomnia | n/a | n/a | 0 | 6 |
Increased vigor/activeness | 12 | 41 | 0 | 0 |
Perception of improved performance | 6 | 35 | n/a | n/a |
Pre-Exercise | ||||
---|---|---|---|---|
Condition | Responded as Placebo | Responded as Caffeine | Responded as Do not Know | Bang’s Blinding Index (Mean and 95% CI) |
Placebo | 6 | 2 | 9 | 0.29 (−0.06, 0.65) |
Caffeine | 3 | 8 | 6 | 0.24 (−0.07, 0.54) |
Post-Exercise | ||||
Placebo | 12 | 0 | 5 | 0.70 (0.49, 0.93) |
Caffeine | 3 | 9 | 5 | 0.35 (−0.00, 0.72) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venier, S.; Grgic, J.; Mikulic, P. Caffeinated Gel Ingestion Enhances Jump Performance, Muscle Strength, and Power in Trained Men. Nutrients 2019, 11, 937. https://doi.org/10.3390/nu11040937
Venier S, Grgic J, Mikulic P. Caffeinated Gel Ingestion Enhances Jump Performance, Muscle Strength, and Power in Trained Men. Nutrients. 2019; 11(4):937. https://doi.org/10.3390/nu11040937
Chicago/Turabian StyleVenier, Sandro, Jozo Grgic, and Pavle Mikulic. 2019. "Caffeinated Gel Ingestion Enhances Jump Performance, Muscle Strength, and Power in Trained Men" Nutrients 11, no. 4: 937. https://doi.org/10.3390/nu11040937
APA StyleVenier, S., Grgic, J., & Mikulic, P. (2019). Caffeinated Gel Ingestion Enhances Jump Performance, Muscle Strength, and Power in Trained Men. Nutrients, 11(4), 937. https://doi.org/10.3390/nu11040937