Maternal and Early Life Iron Intake and Risk of Childhood Type 1 Diabetes: A Danish Case-Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Study Design
2.2. Study Sample and Identification of T1D
2.3. Exposure Assessment
2.3.1. Maternal Iron Supplementation
2.3.2. Infant Iron Supplementation
2.3.3. Other Variables
2.4. Statistical Approach
2.5. Ethics
3. Results
3.1. Basic Characteristics
3.2. Maternal Iron Supplementation
3.3. Infant Iron Supplementation
3.4. Sensitivity Analyses
4. Discussion
4.1. Comparison with Other Studies
4.1.1. Studies Regarding Maternal Iron Intake and Later Risk of Childhood T1D
4.1.2. Iron Supplementation Guidelines in Denmark and Norway during the Recruitment Period
4.1.3. Studies Regarding Infant Iron Intake and Later Risk of Childhood T1D
4.2. Strengths and Weaknesses
4.3. Implications and Future Perspective
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Atkinson, M.A.; Eisenbarth, G.S.; Michels, A.W. Type 1 diabetes. Lancet 2014, 383, 69–82. [Google Scholar] [CrossRef]
- Eizirik, D.L.; Colli, M.L.; Ortis, F. The role of inflammation in insulitis and β-cell loss in type 1 diabetes. Nat. Rev. Endocrinol. 2009, 5, 219–226. [Google Scholar] [CrossRef]
- Pociot, F.; Lernmark, Å. Genetic risk factors for type 1 diabetes. Lancet 2016, 387, 2331–2339. [Google Scholar] [CrossRef]
- Rewers, M.; Ludvigsson, J. Environmental risk factors for type 1 diabetes. Lancet 2016, 387, 2340–2348. [Google Scholar] [CrossRef] [Green Version]
- Svensson, J.; Lyngaae-Jørgensen, A.; Carstensen, B.; Simonsen, L.B.; Mortensen, H.B. Long-term trends in the incidence of type 1 diabetes in Denmark: The seasonal variation changes over time. Pediatr. Diabetes 2009, 10, 248–254. [Google Scholar] [CrossRef]
- Patterson, C.C.; Dahlquist, G.G.; Gyürüs, E.; Green, A.; Soltész, G. Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: A multicentre prospective registration study. Lancet 2009, 373, 2027–2033. [Google Scholar] [CrossRef]
- Das, I.; Saha, K.; Mukhopadhyay, D.; Roy, S.; Raychaudhuri, G.; Chatterjee, M.; Mitra, P.K. Impact of iron deficiency anemia on cell-mediated and humoral immunity in children: A case control study. J. Nat. Sci. Biol. Med. 2014, 5, 158–163. [Google Scholar]
- Attia, M.A.; Essa, S.A.; Nosair, N.A.; Amin, A.M.; El-Agamy, O.A. Effect of iron deficiency anemia and its treatment on cell mediated immunity. Indian J. Hematol. Blood Transfus. 2009, 25, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, A.F.S.; Silva, M.; Dornas, W.C.; Costa, D.C.; Silva, M.E.; dos Santos, R.C.; de Lima, W.G.; Pedrosa, M.L. Iron toxicity mediated by oxidative stress enhances tissue damage in an animal model of diabetes. Biometals 2014, 27, 349–361. [Google Scholar] [CrossRef]
- Backe, M.B.; Moen, I.W.; Ellervik, C.; Hansen, J.B.; Mandrup-Poulsen, T. Iron Regulation of Pancreatic Beta-Cell Functions and Oxidative Stress. Annu. Rev. Nutr. 2016, 36, 241–273. [Google Scholar] [CrossRef]
- Tiedge, M.; Lortz, S.; Drinkgern, J.; Lenzen, S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 1997, 46, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Lenzen, S. Oxidative stress: The vulnerable beta-cell. Biochem. Soc. Trans. 2008, 36, 343–347. [Google Scholar] [CrossRef]
- Lee, A.I.; Okam, M.M. Anemia in pregnancy. Hematol. Oncol. Clin. North Am. 2011, 25, 241–259. [Google Scholar] [CrossRef]
- Milman, N. Iron in pregnancy: How do we secure an appropriate iron status in the mother and child? Ann. Nutr. Metab. 2011, 59, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Van der Merwe, L.F.; Eussen, S.R. Iron status of young children in Europe. Am. J. Clin. Nutr. 2017, 106, 1663S–1671S. [Google Scholar] [CrossRef]
- Knudsen, V.K.; Hansen, H.S.; Ovesen, L.; Mikkelsen, T.B.; Olsen, S.F. Iron supplement use among Danish pregnant women. Public Health Nutr. 2007, 10, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- Nordic Council of Ministers Nordic Nutrition Recommendations 2012: Integrating Nutrition and Physical Activity, 5th ed.; Nordic Council of Ministers: Copenhagen, Denmark, 2014.
- European Food Safety Authority (Ed.) Tolerable Upper Intake Levels for Vitamins and Minerals; European Food Safety Authority: Parma, Italy, 2006; ISBN 978-92-9199-014-6.
- Shao, J.; Lou, J.; Rao, R.; Georgieff, M.K.; Kaciroti, N.; Felt, B.T.; Zhao, Z.-Y.; Lozoff, B. Maternal Serum Ferritin Concentration Is Positively Associated with Newborn Iron Stores in Women with Low Ferritin Status in Late Pregnancy. J. Nutr. 2012, 142, 2004–2009. [Google Scholar] [CrossRef] [Green Version]
- Türkay, S.; Tanzer, F.; Gültekin, A.; Bakici, M.Z. The influence of maternal iron deficiency anaemia on the haemoglobin concentration of the infant. J. Trop. Pediatr. 1995, 41, 369–371. [Google Scholar] [CrossRef]
- Balesaria, S.; Hanif, R.; Salama, M.F.; Raja, K.; Bayele, H.K.; McArdle, H.; Srai, S.K.S. Fetal iron levels are regulated by maternal and fetal Hfe genotype and dietary iron. Haematologica 2012, 97, 661–669. [Google Scholar] [CrossRef]
- Saffery, R.; Novakovic, B. Epigenetics as the mediator of fetal programming of adult onset disease: What is the evidence? Acta Obs. Gynecol. Scand. 2014, 93, 1090–1098. [Google Scholar] [CrossRef]
- Størdal, K.; McArdle, H.J.; Hayes, H.; Tapia, G.; Viken, M.K.; Lund-Blix, N.A.; Haugen, M.; Joner, G.; Skrivarhaug, T.; Mårild, K.; et al. Prenatal iron exposure and childhood type 1 diabetes. Sci. Rep. 2018, 8, 9067. [Google Scholar] [CrossRef]
- Søgaard, K.L.; Ellervik, C.; Svensson, J.; Thorsen, S.U. The Role of Iron in Type 1 Diabetes Etiology: A Systematic Review of New Evidence on a Long-Standing Mystery. Rev. Diabet. Stud. 2017, 14, 269–278. [Google Scholar] [CrossRef]
- Kyvsgaard, J.N.; Overgaard, A.J.; Thorsen, S.U.; Hansen, T.H.; Pipper, C.B.; Mortensen, H.B.; Pociot, F.; Svensson, J. High Neonatal Blood Iron Content Is Associated with the Risk of Childhood Type 1 Diabetes Mellitus. Nutrients 2017, 9, 1221. [Google Scholar] [CrossRef] [PubMed]
- Olsen, J.; Melbye, M.; Olsen, S.F.; Sorensen, T.I.A.; Aaby, P.; Andersen, A.-M.N.; Taxbol, D.; Hansen, K.D.; Juhl, M.; Schow, T.B.; et al. The Danish National Birth Cohort—Its background, structure and aim. Scand. J. Public Health 2001, 29, 300–307. [Google Scholar] [CrossRef]
- Svensson, J.; Cerqueira, C.; Kjærsgaard, P.; Lyngsøe, L.; Hertel, N.T.; Madsen, M.; Mortensen, H.B.; Johannesen, J. Danish Registry of Childhood and Adolescent Diabetes. Clin. Epidemiol. 2016, 8, 679. [Google Scholar] [CrossRef]
- Sundhedsstyrelsen (National Board of Health). Svangreomsorg: Retningslinier og Redegørelse; Guidelines for Prenatal Care; Sundhedsstyrelsen: Copenhagen, Denmark, 1998. [Google Scholar]
- Samuelsson, U.; Oikarinen, S.; Hyöty, H.; Ludvigsson, J. Low zinc in drinking water is associated with the risk of type 1 diabetes in children. Pediatr. Diabetes 2011, 12, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Winkler, C.; Mollenhauer, U.; Hummel, S.; Bonifacio, E.; Ziegler, A.-G. Exposure to environmental factors in drinking water: Risk of islet autoimmunity and type 1 diabetes—The BABYDIAB study. Horm. Metab. Res. 2008, 40, 566–571. [Google Scholar] [CrossRef]
- Zhao, H.X.; Mold, M.D.; Stenhouse, E.A.; Bird, S.C.; Wright, D.E.; Demaine, A.G.; Millward, B.A. Drinking water composition and childhood-onset Type 1 diabetes mellitus in Devon and Cornwall, England. Diabet. Med. 2001, 18, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, A.P.; Eason, N.B.; Kabagambe, E.K.; Haritha, J.; Meleth, S.; McCormick, K.L. Dietary iron intake in the first 4 months of infancy and the development of type 1 diabetes: A pilot study. Diabetol. Metab. Syndr. 2010, 2, 58. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Panel on Micronutrients Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001; ISBN 978-0-309-07279-3.
- Rothman, K.; Greenland, S.L.T. Modern Epidemiology, 3rd ed.; Lippincott Publishers: Philadelphia, PA, USA, 2008. [Google Scholar]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef] [PubMed]
- Stoffel, N.U.; Cercamondi, C.I.; Brittenham, G.; Zeder, C.; Geurts-Moespot, A.J.; Swinkels, D.W.; Moretti, D.; Zimmermann, M.B. Iron absorption from oral iron supplements given on consecutive versus alternate days and as single morning doses versus twice-daily split dosing in iron-depleted women: Two open-label, randomised controlled trials. Lancet Haematol. 2017, 4, e524–e533. [Google Scholar] [CrossRef]
- Anderson, G.J.; Frazer, D.M. Current understanding of iron homeostasis. Am. J. Clin. Nutr. 2017, 106, 1559S–1566S. [Google Scholar] [CrossRef] [Green Version]
- Gambling, L.; Lang, C.; McArdle, H.J. Fetal regulation of iron transport during pregnancy. Am. J. Clin. Nutr. 2011, 94, 1903S–1907S. [Google Scholar] [CrossRef]
- Milman, N.; Agger, A.O.; Nielsen, O.J. Iron supplementation during pregnancy. Effect on iron status markers, serum erythropoietin and human placental lactogen. A placebo controlled study in 207 Danish women. Dan. Med. Bull. 1991, 38, 471–476. [Google Scholar]
- Hay, G.; Refsum, H.; Whitelaw, A.; Melbye, E.L.; Haug, E.; Borch-Iohnsen, B. Predictors of serum ferritin and serum soluble transferrin receptor in newborns and their associations with iron status during the first 2 y of life. Am. J. Clin. Nutr. 2007, 86, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Casgrain, A.; Collings, R.; Harvey, L.J.; Hooper, L.; Fairweather-Tait, S.J. Effect of iron intake on iron status: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2012, 96, 768–780. [Google Scholar] [CrossRef]
- Athe, R.; Rao, M.V.V.; Nair, K.M. Impact of iron-fortified foods on Hb concentration in children (<10 years): A systematic review and meta-analysis of randomized controlled trials. Public Health Nutr. 2014, 17, 579–586. [Google Scholar]
- Nohr, E.A.; Frydenberg, M.; Henriksen, T.B.; Olsen, J. Does low participation in cohort studies induce bias? Epidemiology 2006, 17, 413–418. [Google Scholar] [CrossRef]
- Fischer Walker, C.; Kordas, K.; Stoltzfus, R.J.; Black, R.E. Interactive effects of iron and zinc on biochemical and functional outcomes in supplementation trials. Am. J. Clin. Nutr. 2005, 82, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Uusitalo, L.; Kenward, M.G.; Virtanen, S.M.; Uusitalo, U.; Nevalainen, J.; Niinistö, S.; Kronberg-Kippilä, C.; Ovaskainen, M.-L.; Marjamäki, L.; Simell, O.; et al. Intake of antioxidant vitamins and trace elements during pregnancy and risk of advanced beta cell autoimmunity in the child. Am. J. Clin. Nutr. 2008, 88, 458–464. [Google Scholar] [CrossRef]
- Kyvsgaard, J.N.; Overgaard, A.J.; Jacobsen, L.D.; Thorsen, S.U.; Pipper, C.B.; Hansen, T.H.; Husted, S.; Mortensen, H.B.; Pociot, F.; Svensson, J. Low perinatal zinc status is not associated with the risk of type 1 diabetes in children. Pediatr. Diabetes 2017, 18, 637–642. [Google Scholar] [CrossRef] [PubMed]
All | Maternal Use of Iron Supplements | Offspring Use of Iron Droplets | ||||
---|---|---|---|---|---|---|
No Use (n = 15,071) | Early Use (n = 11,092) | Late Use (n = 48,318) | No (n = 24,281) | Yes (n = 27,595) | ||
Maternal age (years) | 30.4 (4.2) | 30.7 (4.4) | 30.7 (4.2) | 30.3 (4.1) | 30.5 (4.2) | 30.6 (4.1) |
Pre-pregnancy BMI (kg/m2) | ||||||
% underweight (<18.5) | 4.3% | 4.1% | 5.4% | 4.2% | 3.9% | 4.2% |
% normal weight (18.5–25) | 68.2% | 66.1% | 70.5% | 68.8% | 66.4% | 69.7% |
% overweight (25–30) | 19.6% | 20.6% | 17.8% | 19.4% | 20.9% | 18.8% |
% obese (>30) | 7.9% | 9.2% | 6.4% | 7.6% | 8.8% | 7.3% |
Maternal Smoking, % | 24.5% | 27.2% | 25.5% | 23.4% | 26.0% | 21.5% |
Nulliparous, % | 48.4% | 39.5% | 41.3% | 51.5% | 45.5% | 49.8% |
Socio-economic status | ||||||
High, % | 55.3% | 52.7% | 54.9% | 56.3% | 52.6% | 58.9% |
Medium, % | 27.2% | 27.9% | 28.0% | 27.1% | 29.8% | 25.4% |
Low, % | 12.2% | 14.3% | 12.7% | 11.3% | 13.0% | 10.3% |
Students, % | 5.3% | 5.1% | 4.5% | 5.3% | 4.6% | 5.3% |
Breastfeeding, % | ||||||
No | 11.1% | 11.6% | 11.1% | 10.8% | 13.2% | 6.3% |
1–6 months | 28.4% | 28.9% | 28.8% | 28.1% | 33.3% | 17.5% |
6+ months | 60.6% | 59.5% | 60.1% | 61.1% | 53.5% | 76.2% |
Gestational age at delivery (days) | 280.2 (12.4) | 280.8 (11.5) | 280.9 (21.9) | 280.8 (11.2) | 281.1 (10.8) | 279.8 (13.0) |
Cesarean section, % | 15.3% | 14.1% | 13.8% | 15.2% | 15.1% | 15.1% |
Maternal celiac disease (n,%) | 172, 0.25% | 36, 0.24% | 45, 0.41% | 122, 0.25% | 57, 0.23% | 64, 0.24% |
Maternal type 1 diabetes (n,%) | 332, 0.49% | 77, 0.51% | 44, 0.40% | 232, 0.48% | 114, 0.47% | 137, 0.53% |
Maternal anemia (n,%) | 1916, 3.5% | 427, 3.6% | 606, 7.0% | 1374, 3.5% | 732, 3.6% | 804, 3.5% |
No. Cases (%)/N | Unadjusted | Adjusted 1 1 | Adjusted 2 2 | |
---|---|---|---|---|
Any use of pure iron supplements (n = 63,931) | ||||
No | 48 (0.36%)/13,196 | 1.00 (reference) | 1.00 (reference) | 1.00 (reference) |
Yes | 190 (0.37%)/50,735 | 1.06 (0.77, 1.46) | 1.05 (0.76, 1.45) | 1.05 (0.77, 1.45) |
Early use of pure iron supplements in gestational week 1 to 19 (n = 63,931) | ||||
No | 203 (0.38%)/52,834 | 1.00 (reference) | 1.00 (reference) | 1.00 (reference) |
Yes–early | 35 (0.32%)/11,097 | 0.81 (0.57, 1.16) | 0.82 (0.57, 1.17) | 0.81 (0.57, 1.16) |
Late use of pure iron supplements in gestational week 20 to 40 (n = 63,931) | ||||
No | 54 (0.35%)/15,613 | 1.00 (reference) | 1.00 (reference) | 1.00 (reference) |
Yes–late | 184 (0.38%)/48,318 | 1.14 (0.84, 1.54) | 1.13 (0.83, 1.53) | 1.13 (0.83, 1.54) |
Total supplemental iron intake as reported in week 25 of gestation (n = 68,240) | ||||
0 mg/day | 29 (0.42%)/6880 | 1.00 (reference) | 1.00 (reference) | 1.00 (reference) |
>0–20 mg/day | 12 (0.28%)/4308 | 0.66 (0.34, 1.29) | 0.67 (0.34, 1.32) | 0.66 (0.34, 1.31) |
>20–40 mg/day | 51 (0.34%)/14,934 | 0.81 (0.51, 1.27) | 0.80 (0.50, 1.26) | 0.79 (0.50, 1.25) |
>40–60 mg/day | 117 (0.40%)/29,539 | 0.95 (0.63, 1.43) | 0.94 (0.62, 1.43) | 0.94 (0.86, 1.41) |
>60–80 mg/day | 37 (0.39%)/9431 | 0.94 (0.58, 1.53) | 0.94 (0.58, 1.53) | 0.93 (0.57 1.52) |
>80 mg/day | 11 (0.35%)/3148 | 0.81 (0.41, 1.63) | 0.81 (41, 1.63) | 0.80 (0.40, 1.60) |
p-value for trend | 0.80 | 0.82 | 0.84 |
No. Cases (%)/N | Unadjusted | Adjusted 1 1 | Adjusted 2 2 | |
---|---|---|---|---|
Offspring use of iron droplets reported at 18 months (n = 51,859) | ||||
No | 104 (0.43%)/24,272 | 1.00 (reference) | 1.00 (reference) | 1.00 (reference) |
Yes | 87 (0.32%)/27,587 | 0.73 (0.55, 0.97) | 0.74 (0.55, 1.00) | 0.73 (0.55, 0.99) |
No | 104 (0.43%)/24,272 | 1.00 (reference) | 1.00 (reference) | 1.00 (reference) |
1–6 months | 82 (0.32%)/25,483 | 0.75 (0.56, 1.00) | 0.76 (0.56, 1.02) | 0.75 (0.55, 1.01) |
>6 months | 5 (0.24%)/2104 | 0.56 (0.28, 1.37) | 0.55 (0.23, 1.35) | 0.56 (0.23, 1.36) |
p-value for trend 3 | 0.03 | 0.03 | 0.03 | |
p-value for effect 4 | 0.08 | 0.10 | 0.09 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thorsen, S.U.; Halldorsson, T.I.; Bjerregaard, A.A.; Olsen, S.F.; Svensson, J. Maternal and Early Life Iron Intake and Risk of Childhood Type 1 Diabetes: A Danish Case-Cohort Study. Nutrients 2019, 11, 734. https://doi.org/10.3390/nu11040734
Thorsen SU, Halldorsson TI, Bjerregaard AA, Olsen SF, Svensson J. Maternal and Early Life Iron Intake and Risk of Childhood Type 1 Diabetes: A Danish Case-Cohort Study. Nutrients. 2019; 11(4):734. https://doi.org/10.3390/nu11040734
Chicago/Turabian StyleThorsen, Steffen Ullitz, Thorhallur I. Halldorsson, Anne A. Bjerregaard, Sjurdur F. Olsen, and Jannet Svensson. 2019. "Maternal and Early Life Iron Intake and Risk of Childhood Type 1 Diabetes: A Danish Case-Cohort Study" Nutrients 11, no. 4: 734. https://doi.org/10.3390/nu11040734
APA StyleThorsen, S. U., Halldorsson, T. I., Bjerregaard, A. A., Olsen, S. F., & Svensson, J. (2019). Maternal and Early Life Iron Intake and Risk of Childhood Type 1 Diabetes: A Danish Case-Cohort Study. Nutrients, 11(4), 734. https://doi.org/10.3390/nu11040734