Effects of Drugs and Excipients on Hydration Status
Abstract
:1. Introduction
2. Alimentary Tract and Metabolism Drugs That May Affect Hydration Status
3. Cardiovascular System Drugs That May Affect Hydration Status
4. Genito-Urinary System Drugs That May Affect Hydration Status
5. Systemic Hormonal Preparations That May Affect Hydration Status
6. Anti-Infectives for Systemic Use That May Affect Hydration Status
7. Antineoplastic and Immunomodulating Agents That May Affect Hydration Status
8. Musculoskeletal System Drugs That May Affect Hydration Status
9. Nervous System Drugs That May Affect Hydration Status
10. Respiratory System Drugs That May Affect Hydration Status
11. Excipients That May Affect Hydration Status
12. Strengths and Limitations
13. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hooper, L.; Bunn, D.; Jimoh, F.O.; Fairweather-Tait, S.J. Water-loss dehydration and aging. Mech. Ageing Dev. 2014, 136–137. [Google Scholar] [CrossRef] [PubMed]
- Serra Majem, L.; Gil, A. Conclusions of the I International and III National Hydration Congress Madrid, Spain 3rd and 4th December. Rev. Esp. Nutr. Comunit. 2014, 20, 2–12. [Google Scholar]
- Aranceta-Bartrina, J.; Gil, Á.; Marcos, A.; Pérez-Rodrigo, C.; Serra-Majem, L.; Varela-Moreiras, G.; Drewnowski, A.; Palou, A.; Anadón, A.; Murray, B.; et al. Conclusions of the II International and IV Spanish Hydration Congress. Toledo, Spain, 2nd-4th December, 2015. Nutr. Hosp. 2016, 33, 308. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.E.; Kenefick, R.W.; Castellani, J.W.; Riebe, D.; Kavouras, S.A.; Kuznicki, J.T.; Maresh, C.M. Bioimpedance spectroscopy technique: Intra-, extracellular, and total body water. Med. Sci. Sports Exerc. 1997, 29, 1657–1663. [Google Scholar] [CrossRef]
- World Health Organization. World Report of Ageing and Health; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- McKinley, M.J.; Johnson, A.K. The physiological regulation of thirst and fluid intake. News Physiol. Sci. 2004, 19, 1–6. [Google Scholar] [CrossRef]
- Schols, J.M.; De Groot, C.P.; van der Cammen, T.J.; Olde Rikkert, M.G. Preventing and treating dehydration in the elderly during periods of illness and warm weather. J. Nutr. Health Aging 2009, 13, 150–157. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies. Scientific Opinion on Dietary reference values for water. EFSA J. 2010, 8, 1459. [Google Scholar]
- Gandy, J. Water intake: Validity of population assessment and recommendations. Eur. J. Nutr. 2015, 54, 11–16. [Google Scholar] [CrossRef]
- Shires, T.G.; Shires Ill, T.G.; Lowry, S.R. Principles of Surgery, 6th ed.; Schwartz, S.E., Ed.; Mc Graw-Hill: New York, NY, USA, 1994; pp. 61–80. [Google Scholar]
- Iglesias Rosado, C.; Villarino Marín, A.L.; Martínez, J.A.; Cabrerizo, L.; Gargallo, M.; Lorenzo, H.; Quiles, J.; Planas, M.; Polanco, I.; Romero de Ávila, D.; et al. Importance of water in the hydration of the Spanish population: FESNAD 2010 document. Nutr. Hosp. 2011, 26, 27–36. [Google Scholar]
- Begg, D.P. Disturbances of thirst and fluid balance associated with aging. Physiol. Behav. 2017, 178, 28–34. [Google Scholar] [CrossRef]
- Dmitrieva, N.I.; Burg, M.B. Increased insensible water loss contributes to aging related dehydration. PLoS ONE 2011, 6. [Google Scholar] [CrossRef]
- Perrier, E.; Rondeau, P.; Poupin, M.; Le Bellego, L.; Armstrong, L.E.; Lang, F.; Stookey, J.; Tack, I.; Vergne, S.; Klein, A. Relation between urinary hydration biomarkers and total fluid intake in healthy adults. Eur. J. Clin. Nutr. 2013, 67, 939–943. [Google Scholar] [CrossRef] [Green Version]
- Perrier, E.; Vergne, S.; Klein, A.; Poupin, M.; Rondeau, P.; Le Bellego, L.; Armstrong, L.E.; Lang, F.; Stookey, J.; Tack, I. Hydration biomarkers in free-living adults with different levels of habitual fluid consumption. Br. J. Nutr. 2013, 109, 1678–1687. [Google Scholar] [CrossRef]
- Armstrong, L.E. Assessing hydration status: The elusive gold standard. J. Am. Coll. Nutr. 2007, 26, 575S–584S. [Google Scholar] [CrossRef]
- Shirreffs, S.M. Markers of hydration status. Eur. J. Clin. Nutr. 2003, 57, S6–S9. [Google Scholar] [CrossRef]
- Gandy, J.; Martinez, H.; Guelinckx, I.; Moreno, L.A.; Bardosono, S.; Salas-Salvadó, J.; Kavouras, S.A. Relevance of Assessment Methods for Fluid Intake. Ann. Nutr. Metab. 2016, 68, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Popkin, B.M.; D’Anci, K.E.; Rosenberg, I.H. Water, hydration, and health. Nutr. Rev. 2010, 68, 439–458. [Google Scholar] [CrossRef]
- Clarke, T.A.; Markarian, M.; Griswold, W.; Mendoza, S. Hypernatremic dehydration resulting from inadequate breast-feeding. Pediatrics 1979, 63, 931–932. [Google Scholar]
- D’Anci, K.E.; Rosenberg, I.H.; Constant, F. Hydration and Cognitive Function in Children. Nutr. Rev. 2006, 64, 457–464. [Google Scholar] [CrossRef]
- Jéquier, E.; Constant, F. Water as an essential nutrient: The physiological basis of hydration. Eur. J. Clin. Nutr. 2010, 64, 115–123. [Google Scholar] [CrossRef]
- Ferry, M. Strategies for ensuring good hydration in the elderly. Nutr. Rev. 2005, 63, S22–S29. [Google Scholar] [CrossRef]
- Denaro, C.P.; Brown, C.R.; Jacob, P., III; Benowitz, N.L. Effects of caffeine with repeated dosing. Eur. J. Clin. Pharmacol. 1991, 40, 273–278. [Google Scholar] [CrossRef]
- Bartoli, E.; Castello, L.; Fumo, E.; Pirisi, M. Electrolyte derangements and diuretic misuse in the elderly. Arch. Gerontol. Geriatr. 2002, 8, 43–52. [Google Scholar] [CrossRef]
- Westaway, K.; Frank, O.; Husband, A.; McClure, A.; Shute, R.; Edwards, S.; Curtis, J.; Rowett, D. Medicines can affect thermoregulation and accentuate the risk of dehydration and heat-related illness during hot weather. J. Clin. Pharm. Ther. 2015, 40, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Benelam, B.; Wyness, L. Hydration and health: A review. Nutr. Bull. 2010, 35, 3–25. [Google Scholar] [CrossRef]
- Polhuis, K.C.M.M.; Wijnen, A.H.C.; Sierksma, A.; Calame, W.; Tieland, M. The Diuretic Action of Weak and Strong Alcoholic Beverages in Elderly Men: A Randomized Diet-Controlled Crossover Trial. Nutrients 2017, 9, E660. [Google Scholar] [CrossRef]
- Hajat, S.; O’Connor, M.; Kosatsky, T. Health effects of hot weather: From awareness of risk factors to effective health protection. Lancet 2010, 375, 856–863. [Google Scholar] [CrossRef]
- Davidhizar, R.; Dunn, C.L.; Hart, A.N. A review of the literature on how important water is to the world’s elderly population. Int. Nurs. Rev. 2004, 51, 159–166. [Google Scholar] [CrossRef]
- Kalisch Ellett, L.M.; Pratt, N.L.; Le Blanc, V.T.; Westaway, K.; Roughead, E.E. Increased risk of hospital admission for dehydration or heat-related illness after initiation of medicines: A sequence symmetry analysis. J. Clin. Pharm. Ther. 2016, 41, 503–507. [Google Scholar] [CrossRef]
- Rowett, D. Medicines and heatwaves. RGH Pharmacy e-Bulletin 2013, 49, 1. [Google Scholar]
- Chassany, O.; Michaux, A.; Bergmann, J.F. Drug-induced diarrhoea. Drug Saf. 2000, 22, 53–72. [Google Scholar] [CrossRef]
- Abraham, B.P.; Sellin, J.H. Drug-induced, factitious, & idiopathic diarrhoea. Best Pract. Res. Clin. Gastroenterol. 2012, 26, 633–648. [Google Scholar]
- Ratnaike, R.N.; Jones, T.E. Mechanisms of drug-induced diarrhoea in the elderly. Drugs Aging 1998, 13, 245–253. [Google Scholar] [CrossRef]
- Puga, A.M.; Partearroyo, T.; Varela-Moreiras, G. Hydration status, drug interactions, and determinants in a Spanish elderly population: A pilot study. J. Physiol. Biochem. 2018, 74, 139–151. [Google Scholar] [CrossRef]
- Ashford, M. Biodisponibilidad: Factores fisicoquímicos y de la forma farmacéutica. In La Ciencia Del Diseño De Las Formas Farmacéuticas; Elsevier: Madrid, Spain, 2004. [Google Scholar]
- WHO Collaborating Centre for Drug Statistics Methodology. Structure and Principles. Available online: https://www.whocc.no/atc/structure_and_principles/ (accessed on 4 September 2018).
- Bouchoucha, M.; Uzzan, B.; Cohen, R. Metformin and digestive disorders. Diabetes Metab. 2011, 37, 90–96. [Google Scholar] [CrossRef]
- Chaudhury, A.; Duvoor, C.; Dendi, V.S.R.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; et al. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front Endocrinol. 2017, 8. [Google Scholar] [CrossRef]
- Cubeddu, L.X.; Bönisch, H.; Göthert, M.; Molderings, G.; Racké, K.; Ramadori, G.; Miller, K.J.; Schwörer, H. Effects of metformin on intestinal 5-hydroxytryptamine (5-HT) release and on 5-HT3 receptors. Naunyn Schmiedebergs Arch. Pharmacol. 2000, 361, 85–91. [Google Scholar] [CrossRef]
- McCreight, L.J.; Bailey, C.J.; Pearson, E.R. Metformin and the gastrointestinal tract. Diabetologia 2016, 59, 426–435. [Google Scholar] [CrossRef] [Green Version]
- Scarpello, J.H.; Hodgson, E.; Howlett, H.C. Effect of metformin on bile salt circulation and intestinal motility in type 2 diabetes mellitus. Diabet. Med. 1998, 15, 651–656. [Google Scholar] [CrossRef]
- Field, M. Intestinal ion transport and the pathophysiology of diarrhea. J. Clin. Investig. 2003, 111, 931–943. [Google Scholar] [CrossRef] [Green Version]
- Silverstein, F.E.; Graham, D.Y.; Senior, J.R.; Davies, H.W.; Struthers, B.J.; Bittman, R.M.; Geis, G.S. Misoprostol reduces serious gastrointestinal complications in patients with rheumatoid arthritis receiving nonsteroidal anti-inflammatory drugs. A randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 1995, 123, 241–249. [Google Scholar] [CrossRef]
- Herting, R.L.; Clay, G.A. Overview of clinical safety with misoprostol. Dig. Dis. Sci. 1985, 30, 185S–193S. [Google Scholar] [CrossRef]
- Graham, D.Y.; White, R.H.; Moreland, L.W.; Schubert, T.T.; Katz, R.; Jaszewski, R.; Tindall, E.; Triadafilopoulos, G.; Stromatt, S.C.; Teoh, L.S. Duodenal and gastric ulcer prevention with misoprostol in arthritis patients taking NSAIDs. Misoprostol Study Group. Ann. Intern. Med. 1993, 119, 257–262. [Google Scholar] [CrossRef]
- Lopez Morra, H.A.; Fine, S.N.; Dickstein, G. Colonic ischemia with laxative use in young adults. Am. J. Gastroenterol. 2005, 100, 2134–2136. [Google Scholar] [CrossRef]
- Parízek, A.; Simják, P.; Cerný, A.; Sestinová, A.; Zdenková, A.; Hill, M.; Dusková, M.; Vlk, R.; Kokrdová, Z.; Koucký, M.; et al. Efficacy and safety of ursodeoxycholic acid in patients with intrahepatic cholestasis of pregnancy. Ann. Hepatol. 2016, 15, 757–761. [Google Scholar]
- Keszthelyi, D.; Jansen, S.V.; Schouten, G.A.; de Kort, S.; Scholtes, B.; Engels, L.G.; Masclee, A.A. Proton pump inhibitor use is associated with an increased risk for microscopic colitis: A case-control study. Aliment. Pharmacol. Ther. 2010, 32, 1124–1128. [Google Scholar] [CrossRef]
- Beaugerie, L.; Pardi, D.S. Review article: Drug-induced microscopic colitis - proposal for a scoring system and review of the literature. Aliment. Pharmacol. Ther. 2005, 22, 277–284. [Google Scholar] [CrossRef]
- Wilcox, G.M.; Mattia, A.R. Microscopic colitis associated with omeprazole and esomeprazole exposure. J. Clin. Gastroenterol. 2009, 43, 551–553. [Google Scholar] [CrossRef]
- Verhaegh, B.P.; de Vries, F.; Masclee, A.A.; Keshavarzian, A.; de Boer, A.; Souverein, P.C.; Pierik, M.J.; Jonkers, D.M. High risk of drug-induced microscopic colitis with concomitant use of NSAIDs and proton pump inhibitors. Aliment. Pharmacol. Ther. 2016, 43, 1004–1013. [Google Scholar] [CrossRef] [Green Version]
- Masclee, G.M.; Coloma, P.M.; Kuipers, E.J.; Sturkenboom, M.C. Increased risk of microscopic colitis with use of proton pump inhibitors and non-steroidal anti-inflammatory drugs. Am. J. Gastroenterol. 2015, 110, 749–759. [Google Scholar] [CrossRef]
- Singh, A.; Cresci, G.A.; Kirby, D.F. Proton Pump Inhibitors: Risks and Rewards and Emerging Consequences to the Gut Microbiome. Nutr. Clin. Pract. 2018, 33, 614–624. [Google Scholar] [CrossRef]
- Imhann, F.; Bonder, M.J.; Vich Vila, A.; Fu, J.; Mujagic, Z.; Vork, L.; Tigchelaar, E.F.; Jankipersadsing, S.A.; Cenit, M.C.; Harmsen, H.J.; et al. Proton pump inhibitors affect the gut microbiome. Gut 2016, 65, 740–748. [Google Scholar] [CrossRef]
- Kles, K.A.; Vavricka, S.R.; Turner, J.R.; Musch, M.W.; Hanauer, S.B.; Chang, E.B. Comparative analysis of the in vitro prosecretory effects of balsalazide, sulfasalazine, olsalazine, and mesalamine in rabbit distal ileum. Inflamm. Bowel. Dis. 2005, 11, 253–257. [Google Scholar] [CrossRef]
- Vanderperren, B.; Rizzo, M.; Angenot, L.; Haufroid, V.; Jadoul, M.; Hantson, P. Acute liver failure with renal impairment related to the abuse of senna anthraquinone glycosides. Ann. Pharmacother. 2005, 39, 1353–1357. [Google Scholar] [CrossRef]
- Farraye, F.A.; Peppercorn, M.A.; Steer, M.L.; Joffe, N.; Rees, M. Acute small-bowel mucosal edema following enalapril use. JAMA 1988, 259, 3131. [Google Scholar] [CrossRef]
- Marietta, E.V.; Cartee, A.; Rishi, A.; Murray, J.A. Drug-induced enteropathy. Dig. Dis. 2015, 33, 215–220. [Google Scholar] [CrossRef]
- Tran, T.H.; Li, H. Olmesartan and drug-induced enteropathy. Pharm. Ther. 2014, 39, 47–50. [Google Scholar]
- Rubio-Tapia, A.; Herman, M.L.; Ludvigsson, J.F.; Kelly, D.G.; Mangan, T.F.; Wu, T.T.; Murray, J.A. Severe Spruelike Enteropathy Associated With Olmesartan. Mayo. Clin. Proc. 2012, 87, 732–738. [Google Scholar] [CrossRef]
- Marthey, L.; Cadiot, G.; Seksik, P.; Pouderoux, P.; Lacroute, J.; Skinazi, F.; Mesnard, B.; Chayvialle, J.A.; Savoye, G.; Druez, A.; et al. Olmesartan-associated enteropathy: Results of a national survey. Aliment. Pharmacol. Ther. 2014, 40, 1103–1109. [Google Scholar] [CrossRef]
- Padwal, R.; Lin, M.; Etminan, M.; Eurich, D.T. Comparative effectiveness of olmesartan and other angiotensin receptor blockers in diabetes mellitus: Retrospective cohort study. Hypertension 2014, 63, 977–983. [Google Scholar] [CrossRef]
- Herman, M.L.; Rubio-Tapia, A.; Wu, T.T.; Murray, J.A. A Case of Severe Sprue-Like Enteropathy Associated With Valsartan. ACG Case. Rep. J. 2015, 2, 92–94. [Google Scholar] [CrossRef] [Green Version]
- Smith, H.; Battjes, E.; Yan, S.; Kaakeh, Y. Chronic Digoxin Toxicity Precipitated by Dronedarone. Ann. Pharmacother. 2014, 48, 923–927. [Google Scholar] [CrossRef]
- Pincus, M. Management of digoxin toxicity. Aust. Prescr. 2016, 39, 18–20. [Google Scholar] [CrossRef] [Green Version]
- Vodusek, Z.; Feuerstadt, P.; Brandt, L.J. Review article: The pharmacological causes of colon ischaemia. Aliment. Pharmacol. Ther. 2019, 49, 51–63. [Google Scholar] [CrossRef]
- Nozawa, H.; Akiyama, Y.; Sunaga, S.; Tsurita, G. Ischemic colitis following colonoscopy in an elderly patient on cardiovascular medication. Endoscopy 2007, 39, E344–E345. [Google Scholar] [CrossRef]
- Pentland, B.; Pennington, C.R. Acute diarrhoea in the elderly. Age Ageing 1980, 9, 90–92. [Google Scholar] [CrossRef]
- Stöllberger, C.; Lutz, W.; Finsterer, J. Heat-related side-effects of neurological and non-neurological medication may increase heatwave fatalities. Eur. J. Neurol. 2009, 16, 879–882. [Google Scholar] [CrossRef]
- Bonderup, O.K.; Fenger-Grøn, M.; Wigh, T.; Pedersen, L.; Nielsen, G.L. Drug exposure and risk of microscopic colitis: A nationwide Danish case-control study with 5751 cases. Inflamm. Bowel. Dis. 2014, 20, 1702–1707. [Google Scholar] [CrossRef]
- Fernández-Bañares, F.; Esteve, M.; Espinós, J.C.; Rosinach, M.; Forné, M.; Salas, A.; Viver, J.M. Drug consumption and the risk of microscopic colitis. Am. J. Gastroenterol. 2007, 102, 324–330. [Google Scholar] [CrossRef]
- Lucendo, A.J. Drug Exposure and the Risk of Microscopic Colitis: A Critical Update. Drugs RD 2017, 17, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Magaz Martínez, M.; Relea Pérez, L.; Suárez Ferrer, C.; Barrios Peinado, C.; Abreu García, L. Silodosin: An overlooked cause of drug-induced diarrhea. Gastroenterol. Hepatol. 2016, 39, 526–527. [Google Scholar] [CrossRef]
- Marks, L.S.; Gittelman, M.C.; Hill, L.A.; Volinn, W.; Hoel, G. Silodosin in the treatment of the signs and symptoms of benign prostatic hyperplasia: A 9-month, open-label extension study. Urology 2009, 74, 1318–1322. [Google Scholar] [CrossRef]
- Bartlett, J.G. Clinical practice. Antibiotic-associated diarrhea. N. Engl. J. Med. 2002, 346, 334–339. [Google Scholar] [CrossRef]
- Croom, K.F.; Goa, K.L. Levofloxacin: A review of its use in the treatment of bacterial infections in the United States. Drugs 2003, 63, 2769–2802. [Google Scholar] [CrossRef]
- Dobbins, W.O., III; Herrero, B.A.; Mansbach, C.M. Morphologic alterations associated with neomycin induced malabsorption. Am. J. Med. Sci. 1968, 255, 63–77. [Google Scholar] [CrossRef]
- Easton, J.; Noble, S.; Perry, C.M. Amoxicillin/clavulanic acid: A review of its use in the management of paediatric patients with acute otitis media. Drugs 2003, 63, 311–340. [Google Scholar] [CrossRef]
- Gillies, M.; Ranakusuma, A.; Hoffmann, T.; Thorning, S.; McGuire, T.; Glasziou, P.; Del Mar, C. Common harms from amoxicillin: A systematic review and meta-analysis of randomized placebo-controlled trials for any indication. CMAJ 2015, 187, E21–E31. [Google Scholar] [CrossRef]
- Hansen, M.P.; Scott, A.M.; McCullough, A.; Thorning, S.; Aronson, J.K.; Beller, E.M.; Glasziou, P.P.; Hoffmann, T.C.; Clark, J.; Del Mar, C.B. Adverse events in people taking macrolide antibiotics versus placebo for any indication. Cochrane. Database. Syst. Rev. 2019, 1, CD011825. [Google Scholar] [CrossRef]
- Łukasik, J.; Szajewska, H. Effect of a multispecies probiotic on reducing the incidence of antibiotic-associated diarrhoea in children: A protocol for a randomised controlled trial. BMJ Open 2018, 8. [Google Scholar] [CrossRef]
- Turck, D.; Bernet, J.P.; Marx, J.; Kempf, H.; Giard, P.; Walbaum, O.; Lacombe, A.; Rembert, F.; Toursel, F.; Bernasconi, P.; et al. Incidence and risk factors of oral antibiotic-associated diarrhea in an outpatient pediatric population. J. Pediatr. Gastroenterol. Nutr. 2003, 37, 22–26. [Google Scholar] [CrossRef]
- Arslan, H.; Inci, E.K.; Azap, O.K.; Karakayali, H.; Torgay, A.; Haberal, M. Etiologic agents of diarrhea in solid organ recipients. Transpl. Infect. Dis. 2007, 9, 270–275. [Google Scholar] [CrossRef] [Green Version]
- Kamar, N.; Faure, P.; Dupuis, E.; Cointault, O.; Joseph-Hein, K.; Durand, D.; Moreau, J.; Rostaing, L. Villous atrophy induced by mycophenolate mofetil in renal-transplant patients. Transpl. Int. 2004, 17, 463–467. [Google Scholar] [CrossRef]
- Papadimitriou, J.C.; Cangro, C.B.; Lustberg, A.; Khaled, A.; Nogueira, J.; Wiland, A.; Ramos, E.; Klassen, D.K.; Drachenberg, C.B. Histologic features of mycophenolate mofetil-related colitis: A graft-versus-host disease-like pattern. Int. J. Surg. Pathol. 2003, 11, 295–302. [Google Scholar] [CrossRef]
- Ziegler, T.R.; Fernández-Estívariz, C.; Gu, L.H.; Fried, M.W.; Leader, L.M. Severe villus atrophy and chronic malabsorption induced by azathioprine. Gastroenterology 2003, 124, 1950–1957. [Google Scholar] [CrossRef]
- Iacovelli, R.; Pietrantonio, F.; Palazzo, A.; Maggi, C.; Ricchini, F.; de Braud, F.; Di Bartolomeo, M. Incidence and relative risk of grade 3 and 4 diarrhoea in patients treated with capecitabine or 5- fluorouracil: A meta-analysis of published trials. Br. J. Clin. Pharmacol. 2014, 78, 1228–1237. [Google Scholar] [CrossRef]
- Loganayagam, A.; Arenas Hernandez, M.; Corrigan, A.; Fairbanks, L.; Lewis, C.M.; Harper, P.; Maisey, N.; Ross, P.; Sanderson, J.D.; Marinaki, A.M. Pharmacogenetic variants in the DPYD, TYMS, CDA and MTHFR genes are clinically significant predictors of fluoropyrimidine toxicity. Br. J. Cancer 2013, 108, 2505–2515. [Google Scholar] [CrossRef] [Green Version]
- Schwab, M.; Zanger, U.M.; Marx, C.; Schaeffeler, E.; Klein, K.; Dippon, J.; Kerb, R.; Blievernicht, J.; Fischer, J.; Hofmann, U.; et al. Role of genetic and nongenetic factors for fluorouracil treatment-related severe toxicity: A prospective clinical trial by the German 5-FU Toxicity Study Group. J. Clin. Oncol. 2008, 26, 2131–2138. [Google Scholar] [CrossRef]
- Gibson, R.J.; Bowen, J.M.; Inglis, M.R.; Cummins, A.G.; Keefe, D.M. Irinotecan causes severe small intestinal damage, as well as colonic damage, in the rat with implanted breast cancer. J. Gastroenterol. Hepatol. 2003, 18, 1095–1100. [Google Scholar] [CrossRef]
- Sandmeier, D.; Chaubert, P.; Bouzourene, H. Irinotecan-induced colitis. Int. J. Surg. Pathol. 2005, 13, 215–218. [Google Scholar] [CrossRef]
- Kahl, B.S.; Spurgeon, S.E.; Furman, R.R.; Flinn, I.W.; Coutre, S.E.; Brown, J.R.; Benson, D.M.; Byrd, J.C.; Peterman, S.; Cho, Y.; et al. A phase 1 study of the PI3Kδ inhibitor idelalisib in patients with relapsed/refractory mantle cell lymphoma (MCL). Blood 2014, 123, 3398–3405. [Google Scholar] [CrossRef] [Green Version]
- Burger, J.A.; Okkenhaug, K. Haematological cancer: Idelalisib-targeting PI3Kδ in patients with B-cell malignancies. Nat. Rev. Clin. Oncol. 2014, 11, 184–186. [Google Scholar] [CrossRef] [PubMed]
- Coutré, S.E.; Barrientos, J.C.; Brown, J.R.; de Vos, S.; Furman, R.R.; Keating, M.J.; Li, D.; O’Brien, S.M.; Pagel, J.M.; Poleski, M.H.; et al. Management of adverse events associated with idelalisib treatment: Expert panel opinion. Leuk Lymphoma. 2015, 56, 2779–2786. [Google Scholar] [CrossRef] [PubMed]
- Furman, R.R.; Sharman, J.P.; Coutre, S.E.; Cheson, B.D.; Pagel, J.M.; Hillmen, P.; Barrientos, J.C.; Zelenetz, A.D.; Kipps, T.J.; Flinn, I.; et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 2014, 370, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- Suárez Del Olmo, D.; Corregidor Luna, L.; Hidalgo Correas, F.J.; García Benayas, E.; García Díaz, B. Grave diarrhea associated with idelalisib administration. Farm Hosp. 2016, 40, 227–229. [Google Scholar] [PubMed]
- Kuo, J.R.; Davis, A.D.; Rodriguez, E.A.; Vela, M.F.; Heigh, R.I.; Salomao, M.A.; Gurudu, S.R. Severe Diarrhea in the Setting of Immune Checkpoint Inhibitors. Case. Rep. Gastroenterol. 2018, 12, 704–708. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.Y.; Opekun, A.R.; Willingham, F.F.; Qureshi, W.A. Visible small-intestinal mucosal injury in chronic NSAID users. Clin. Gastroenterol. Hepatol. 2005, 3, 55–59. [Google Scholar] [CrossRef]
- Shin, S.J.; Noh, C.K.; Lim, S.G.; Lee, K.M.; Lee, K.J. Non-steroidal anti-inflammatory drug-induced enteropathy. Intest. Res. 2017, 15, 446–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrenfeld, M.; Levy, M.; Sharon, P.; Rachmilewitz, D.; Eliakim, M. Gastrointestinal effects of long-term colchicine therapy in patients with recurrent polyserositis (familial mediterranean fever). Dig. Dis. Sci. 1982, 27, 723–727. [Google Scholar] [CrossRef]
- Stemmermann, G.N.; Hayashi, T. Colchicine intoxication: A reappraisal of its pathology based on a study of three fatal cases. Hum. Pathol. 1971, 2, 321–332. [Google Scholar] [CrossRef]
- Verne, G.N.; Davis, R.H.; Robinson, M.E.; Gordon, J.M.; Eaker, E.Y.; Sninksy, C.A. Treatment of chronic constipation with colchicine: Randomized, double-blind, placebo-controlled, crossover trial. Am. J. Gastroenterol. 2003, 98, 1112–1116. [Google Scholar]
- Verne, G.N.; Eaker, E.Y.; Davis, R.H.; Sninsky, C.A. Colchicine is an effective treatment for patients with chronic constipation: An open-label trial. Dig. Dis. Sci. 1997, 42, 1959–1963. [Google Scholar] [CrossRef] [PubMed]
- Wallin, B.A.; McCafferty, J.P.; Fox, M.J.; Cooper, D.R.; Goldschmidt, M.S. Incidence and management of diarrhea during long term auranofin therapy. J. Rheumatol. 1988, 15, 1755–1758. [Google Scholar] [PubMed]
- Magaró, M.; Altomonte, L.; Mirone, L.; Zoli, A.; Corvino, G.; Carelli, G. Effect of oral gold salt therapy on bile acid absorption in rheumatoid arthritis patients. Clin. Rheumatol. 1990, 9, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.P.; Worm-Petersen, J.; Sidén, A.; Gordin, A.; Reinikainen, K.; Leinonen, M.; NOMESAFE Study Group. The tolerability and efficacy of entacapone over 3 years in patients with Parkinson’s disease. Eur. J. Neurol. 2003, 10, 137–146. [Google Scholar] [CrossRef]
- Rinne, U.K.; Larsen, J.P.; Siden, A.; Worm-Petersen, J. Entacapone enhances the response to levodopa in parkinsonian patients with motor fluctuations. Nomecomt Study Group. Neurology 1998, 51, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, A.; Reid, K.; Young, A.H.; Macritchie, K.; Geddes, J. Valproic acid, valproate and divalproex in the maintenance treatment of bipolar disorder. Cochrane Database Syst. Rev. 2013, 17, CD003196. [Google Scholar] [CrossRef] [PubMed]
- Sellin, J.H. The pathophysiology of diarrhea. Clin. Transplant. 2001, 15, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Mordi, N.A.; Mordi, I.R.; Singh, J.S.; Baig, F.; Choy, A.M.; McCrimmon, R.J.; Struthers, A.D.; Lang, C.C. Renal and Cardiovascular Effects of sodium–glucose cotransporter 2 (SGLT2) inhibition in combination with loop Diuretics in diabetic patients with Chronic Heart Failure (RECEDE-CHF): Protocol for a randomised controlled double-blind cross-over trial. BMJ Open 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Kimura, G. Importance of inhibiting sodium-glucose cotransporter and its compelling indication in type 2 diabetes: Pathophysiological hypothesis. J. Am. Soc. Hypertens. 2016, 10, 271–278. [Google Scholar] [CrossRef]
- D’Elia, J.A.; Segal, A.R.; Weinrauch, L.A. Metformin-SGLT2, Dehydration, and Acidosis Potential. J. Am. Geriatr. Soc. 2017, 65, e101–e102. [Google Scholar] [CrossRef]
- Khow, K.S.; Lau, S.Y.; Li, J.Y.; Yong, T.Y. Diuretic-associated electrolyte disorders in the elderly: Risk factors, impact, management and prevention. Curr. Drug Saf. 2014, 9, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Michenot, F.; Sommet, A.; Bagheri, H.; Lapeyre-Mestre, M.; Montastruc, J.L. Adverse drug reactions in patients older than 70 years during the heat wave occurred in France in summer 2003: A study from the French PharmacoVigilance Database. Pharmacoepidemiol Drug Saf. 2006, 15, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Faunt, J.D.; Wilkinson, T.J.; Aplin, P.; Henschke, P.; Webb, M.; Penhall, R.K. The effete in the heat: Heat-related hospital presentations during a ten day heat wave. Aust. N. Z. J. Med. 1995, 25, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Liamis, G.; Rodenburg, E.M.; Hofman, A.; Zietse, R.; Stricker, B.H.; Hoorn, E.J. Electrolyte disorders in community subjects: Prevalence and risk factors. Am. J. Med. 2013, 126, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.W.; Ivy, J.R.; Bailey, M.A. Glucocorticoids and renal Na+ transport: Implications for hypertension and salt sensitivity. J. Physiol. 2014, 592, 1731–1744. [Google Scholar] [CrossRef]
- Berger, S.; Bleich, M.; Schmid, W.; Cole, T.J.; Peters, J.; Watanabe, H.; Kriz, W.; Warth, R.; Greger, R.; Schütz, G. Mineralocorticoid receptor knockout mice: Pathophysiology of Na+ metabolism. Proc. Natl. Acad. Sci. USA 1998, 95, 9424–9429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberopoulos, E.N.; Alexandridis, G.H.; Christidis, D.S.; Elisaf, M.S. SIADH and hyponatremia with theophylline. Ann. Pharmacother. 2002, 36, 1180–1182. [Google Scholar] [CrossRef]
- Sakai, K.; Agassandian, K.; Morimoto, S.; Sinnayah, P.; Cassell, M.D.; Davisson, R.L.; Sigmund, C.D. Local production of angiotensin II in the subfornical organ causes elevated drinking. J. Clin. Investig. 2007, 117, 1088–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letmaier, M.; Painold, A.; Holl, A.K.; Vergin, H.; Engel, R.; Konstantinidis, A.; Kasper, S.; Grohmann, R. Hyponatraemia during psychopharmacological treatment: Results of a drug surveillance programme. Int. J. Neuropsychopharmacol. 2012, 15, 739–748. [Google Scholar] [CrossRef]
- Mittleman, G.; Rosner, A.L.; Schaub, C.L. Polydipsia and dopamine: Behavioral effects of dopamine D1 and D2 receptor agonists and antagonists. J. Pharmacol. Exp. Ther. 1994, 271, 638–650. [Google Scholar]
- Leth-Møller, K.B.; Hansen, A.H.; Torstensson, M.; Andersen, S.E.; Ødum, L.; Gislasson, G.; Torp-Pedersen, C.; Holm, E.A. Antidepressants and the risk of hyponatremia: A Danish register-based population study. BMJ Open 2016, 6, e011200. [Google Scholar] [CrossRef] [PubMed]
- De Leon, J.; Verghese, C.; Stanilla, J.K.; Lawrence, T.; Simpson, G.M. Treatment of polydipsia and hyponatremia in psychiatric patients. Can clozapine be a new option? Neuropsychopharmacology 1995, 12, 133–138. [Google Scholar] [CrossRef]
- Spears, N.M.; Leadbetter, R.A.; Shutty, M.S., Jr. Clozapine treatment in polydipsia and intermittent hyponatremia. J. Clin. Psychiatry 1996, 57, 123–128. [Google Scholar] [PubMed]
- Dreiher, J.; Porath, A. Severe hyponatremia induced by theophylline and trimethoprim. Arch. Intern. Med. 2001, 161, 291–292. [Google Scholar] [CrossRef] [PubMed]
- Flack, J.M.; Ryder, K.W.; Strickland, D.; Whang, R. Metabolic correlates of theophylline therapy: A concentration-related phenomenon. Ann. Pharmacother. 1994, 28, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Tudehope, D.; Burke, J.; Loadsman, T. Syndrome of inappropriate antidiuretic hormone (SIADH) secretion in a preterm infant who was receiving oral theophylline. Aust. Paediatr. J. 1983, 19, 55. [Google Scholar]
- Tansey, E.A.; Johnson, C.D. Recent advances in thermoregulation. Adv. Physiol. Educ. 2015, 39, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Freund, B.J.; Joyner, M.J.; Jilka, S.M.; Kalis, J.; Nittolo, J.M.; Taylor, J.A.; Peters, H.; Feese, G.; Wilmore, J.H. Thermoregulation during prolonged exercise in heat: Alterations with beta-adrenergic blockade. J. Appl. Physiol. 1985, 63, 930–936. [Google Scholar] [CrossRef]
- Martin-Latry, K.; Goumy, M.P.; Latry, P.; Gabinski, C.; Bégaud, B.; Faure, I.; Verdoux, H. Psychotropic drugs use and risk of heat-related hospitalisation. Eur. Psychiatry. 2007, 22, 335–338. [Google Scholar] [CrossRef]
- Mack, G.W.; Shannon, L.M.; Nadel, E.R. Influence of beta-adrenergic blockade on the control of sweating in humans. J. Appl. Physiol. 1986, 61, 1701–1705. [Google Scholar] [CrossRef]
- Rivas, E.; McEntire, S.J.; Herndon, D.N.; Mlcak, R.P.; Suman, O.E. β-Adrenergic blockade does not impair the skin blood flow sensitivity to local heating in burned and nonburned skin under neutral and hot environments in children. Microcirculation 2017, 24. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsdottir, H.; Aksnes, H.; Heldal, K.; Krogh, A.; Froyshov, S.; Rudberg, N.; Os, I. Metformin and antihypertensive therapy with drugs blocking the renin angiotensin system, a cause of concern? Clin. Nephrol. 2006, 66, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Stahlmann, R.; Lode, H. Safety considerations of fluoroquinolones in the elderly: An update. Drugs Aging 2010, 27, 193–209. [Google Scholar] [CrossRef]
- Mason, P. Important drug-nutrient interactions. Proc. Nutr. Soc. 2010, 69, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Jałocha, W.; Walecka-Kapica, E.; Tomaszewska-Warda, K.; Chojnacki, J.; Klupińska, G. The effect of fluoxetine and tianeptine on emotional and eating disorders in postmenopausal women. Pol. Merkur. Lekarski. 2014, 37, 35–38. [Google Scholar] [PubMed]
- Haas, L. Management of diabetes mellitus medications in the nursing home. Drugs Aging 2005, 22, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Munshi, M.N.; Florez, H.; Huang, E.S.; Kalyani, R.R.; Mupanomunda, M.; Pandya, N.; Swift, C.S.; Taveira, T.H.; WHaas, L.B. Management of Diabetes in Long-term Care and Skilled Nursing Facilities: A Position Statement of the American Diabetes Association. Diabetes Care 2016, 39, 308–318. [Google Scholar] [CrossRef] [Green Version]
- FDA Revises Warnings Regarding Use of the Diabetes Medicine Metformin in Certain Patients with Reduced Kidney Function. Available online: https://www.fda.gov/drugs/drugsafety/ucm493244.htm (accessed on 17 October 2018).
- Wadworth, A.N.; Fitton, A. Olsalazine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in inflammatory bowel disease. Drugs 1991, 41, 647–664. [Google Scholar] [CrossRef] [PubMed]
- Ahn, K. The worldwide trend of using botanical drugs and strategies for developing global drugs. BMB Rep. 2017, 50, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Di Lorenzo, C.; Ceschi, A.; Kupferschmidt, H.; Lüde, S.; De Souza Nascimento, E.; Dos Santos, A.; Colombo, F.; Frigerio, G.; Nørby, K.; Plumb, J.; et al. Adverse effects of plant food supplements and botanical preparations: A systematic review with critical evaluation of causality. Br. J. Clin. Pharmacol. 2015, 79, 578–592. [Google Scholar] [CrossRef]
- Stickel, F.; Seitz, H.K.; Hahn, E.G.; Schuppan, D. Liver toxicity of drugs of plant origin. Z. Gastroenterol. 2001, 39, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Stöllberger, C.; Finsterer, J. Did thirst-blockers like angiotensin-converting-enzyme inhibitors, sartans, serotonine-re-uptake-inhibitors, dopamine agonists/antagonists, or atypical neuroleptics contribute to the exorbitant number of fatalities during the French 2003 heat wave? Pharmacoepidemiol. Drug Saf. N. 2007, 16, 1252–1253. [Google Scholar] [CrossRef] [PubMed]
- Onteddu, N.K.; Pulivarthi, V.S.K.K.; Ginnavaram, M.; Kedika, R. Olmesartan-induced enteropathy. BMJ Case Rep. 2018. [Google Scholar] [CrossRef] [PubMed]
- Summary of Product Characteristics Sylodix. Available online: https://www.ema.europa.eu/en/documents/product-information/silodyx-epar-product-information_en.pdf (accessed on 10 January 2019).
- McFarland, L.V. Antibiotic-associated diarrhea: Epidemiology, trends and treatment. Future Microbiol. 2008, 3, 563–578. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.Q.; Yi Mei, S.L. Current issues on safety of prokinetics in critically ill patients with feed intolerance. Ther. Adv. Drug Saf. 2011, 2, 197–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badger, V.O.; Ledeboer, N.A.; Graham, M.B.; Edmiston, C.E., Jr. Clostridium difficile: Epidemiology, pathogenesis, management, and prevention of a recalcitrant healthcare-associated pathogen. JPEN J. Parenter. Enteral. Nutr. 2012, 36, 645–662. [Google Scholar] [CrossRef]
- Cain, G.D.; Reiner, E.B.; Patterson, M. Effects of neomycin on disaccharidase activity of the small bowel. Arch. Intern. Med. 1968, 122, 311–341. [Google Scholar] [CrossRef]
- Kaltenbach, G.; Heitz, D. Antibiotic-associated diarrhea in the elderly. Rev. Med. Interne. 2004, 25, 46–53. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, B.; Xu, J.; Liu, Y.; Qiu, E.; Li, Z.; Li, Z.; He, Y.; Zhou, H.; Bai, Y.; et al. Bacteroides fragilis Protects Against Antibiotic-Associated Diarrhea in Rats by Modulating Intestinal Defenses. Front Immunol. 2018, 9, 1040. [Google Scholar] [CrossRef]
- Stein, A. Chemotherapy-induced diarrhea: Pathophysiology, frequency and guideline-based management. Ther. Adv. Med. Oncol. 2010, 2, 51–63. [Google Scholar] [CrossRef]
- Andreyev, J.; Ross, P.; Donnellan, C.; Lennan, E.; Leonard, P.; Waters, C.; Wedlake, L.; Bridgewater, J.; Glynne-Jones, R.; Allum, W.; et al. Guidance on the management of diarrhoea during cancer chemotherapy. Lancet Oncol. 2014, 15, e447–e460. [Google Scholar] [CrossRef]
- Philip, N.A.; Ahmed, N.; Pitchumoni, C.S. Spectrum of Drug-induced Chronic Diarrhea. J. Clin. Gastroenterol. 2017, 51, 111–117. [Google Scholar] [CrossRef]
- Bowen, J.M. Mechanisms of TKI-induced diarrhea in cancer patients. Curr, Opin. Support Palliat. Care 2013, 7. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.S.; Lee, H.Y.; Kim, J.; Advani, S.M.; Peng, H.L.; Banfield, E.; Hawk, E.T.; Chang, S.; Frazier-Wood, A.C. Use of non-steroidal anti-inflammatory drugs in US adults: Changes over time and by demographic. Open Heart 2017, 4, e000550. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Acebo, I.; Dierssen-Sotos, T.; de Pedro, M.; Pérez-Gómez, B.; Castaño-Vinyals, G.; Fernández-Villa, T.; Palazuelos-Calderón, C.; Amiano, P.; Etxeberria, J.; Benavente, Y.; et al. Epidemiology of non-steroidal anti-inflammatory drugs consumption in Spain. The MCC-Spain study. BMC Public Health 2018, 18, 1134. [Google Scholar] [CrossRef] [PubMed]
- Jerez-Roig, J.; Medeiros, L.F.; Silva, V.A.; Bezerra, C.L.; Cavalcante, L.A.; Piuvezam, G.; Souza, D.L. Prevalence of self-medication and associated factors in an elderly population: A systematic review. Drugs Aging. 2014, 31, 883–896. [Google Scholar] [CrossRef] [PubMed]
- Morgan, G.J.; Poland, M.; DeLapp, R.E. Efficacy and safety of nabumetone versus diclofenac, naproxen, ibuprofen, and piroxicam in the elderly. Am. J. Med. 1993, 95, 19S–27S. [Google Scholar] [CrossRef]
- Fradkin, A.; Yahav, J.; Zemer, D.; Jonas, A. Colchicine-induced lactose malabsorption in patients with familial Mediterranean fever. Isr. J. Med. Sci. 1995, 31, 616–620. [Google Scholar]
- Roder, C.; Thomson, M.J. Auranofin: Repurposing an old drug for a golden new age. Drugs RD 2015, 15, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Pasricha, P.J. Treatment of disorders of bowel motility and water flux; antiemetics: Agents used in biliary and pancreatic disease. In Goodman & Gilman’s the Pharmacological Basis of Therapeutics; Brunton, L.L., Ed.; McGraw Hill: New York, NY, USA, 2006; pp. 983–1008. [Google Scholar]
- Malik, E.M.; Müller, C.E. Anthraquinones As Pharmacological Tools and Drugs. Med. Res. Rev. 2016, 36, 705–748. [Google Scholar] [CrossRef]
- Fidelix, T.S.; Soares, B.G.; Trevisani, V.F. Diacerein for osteoarthritis. Cochrane Database Syst Rev. 2006, 25. [Google Scholar]
- Fidelix, T.S.; Macedo, C.R.; Maxwell, L.J.; Fernandes Moça Trevisani, V. Diacerein for osteoarthritis. Cochrane Database Syst. Rev. 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelletier, J.P.; Martel-Pelletier, J. Diacerein-containing products: Same risk of diarrhoea? Aging Clin. Exp. Res. 2018, 30, 411–412. [Google Scholar] [CrossRef] [PubMed]
- PRAC Recommends Suspension of Diacerein-Containing Medicines. Available online: https://www.ema.europa.eu/en/news/prac-recommends-suspension-diacerein-containing-medicines (accessed on 21 January 2019).
- Brooks, D.J. Optimizing levodopa therapy for Parkinson’s disease with levodopa/carbidopa/entacapone: Implications from a clinical and patient perspective. Neuropsychiatr. Dis. Treat. 2008, 4, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Kaakkola, S. Problems with the present inhibitors and a relevance of new and improved COMT inhibitors in Parkinson’s disease. Int. Rev. Neurobiol. 2010, 95, 207–225. [Google Scholar] [PubMed]
- Kaakkola, S. Clinical pharmacology, therapeutic use and potential of COMT inhibitors in Parkinson’s disease. Drugs 2000, 59, 1233–1250. [Google Scholar] [CrossRef]
- Roehr, J.; Woods, A.; Corbett, R.; Kongsamut, S. Changes in paroxetine binding in the cerebral cortex of polydipsic rats. Eur. J. Pharmacol. 1995, 278, 75–78. [Google Scholar] [CrossRef]
- Jacob, S.; Spinler, S.A. Hyponatremia associated with selective serotonin-reuptake inhibitors in older adults. Ann. Pharmacother. 2006, 40, 1618–1622. [Google Scholar] [CrossRef]
- Langan, J.; Martin, D.; Shajahan, P.; Smith, D. Antipsychotic dose escalation as a trigger for neuroleptic malignant syndrome (NMS): Literature review and case series report. BMC Psychiatry 2012, 29, 214. [Google Scholar] [CrossRef]
- Millson, R.C.; Emes, C.E.; Glackman, W.G. Self-induced water intoxication treated with risperidone. Can. J. Psychiatry 1996, 41, 648–650. [Google Scholar] [CrossRef]
- Kawai, N.; Baba, A.; Suzuki, T. Risperidone failed to improve polydipsia-hyponatremia of the schizophrenic patients. Psychiatry Clin. Neurosci. 2002, 56, 107–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruse, D.; Pantelis, C.; Rudd, R.; Quek, J.; Herbert, P.; McKinley, M. Treatment of psychogenic polydipsia: Comparison of risperidone and olanzapine, and the effects of an adjunctive angiotensin-II receptor blocking drug (irbesartan). Aust. N. Z. J. Psychiatry 2001, 35, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.; Hama, H. Changes in vasopressin release and autonomic function induced by manipulating forebrain GABAergic signaling under euvolemia and hypovolemia in conscious rats. Endocr. J. 2011, 58, 559–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vgontzas, A.N.; Mastorakos, G.; Bixler, E.O.; Kales, A.; Gold, P.W.; Chrousos, G.P. Sleep deprivation effects on the activity of the hypothalamic-pituitary-adrenal and growth axes: Potential clinical implications. Clin. Endocrinol (Oxf) 1999, 51, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Schulze, J.D.; Ashiru, D.A.; Khela, M.K.; Evans, D.F.; Patel, R.; Parsons, G.E.; Coffin, M.D.; Basit, A.W. Impact of formulation excipients on human intestinal transit. J. Pharm. Pharmacol. 2006, 58, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.B.; Henderson, L.M.; McClain, C.J. Osmotic diarrhea induced by sugar-free theophylline solution in critically ill patients. JPEN J. Parenter. Enteral. Nutr. 1991, 15, 332–336. [Google Scholar] [CrossRef]
- Bayraktar Ekincioglu, A.; Demirkan, K. Awareness of Healthcare Professionals About Sorbitol-Related Diarrhea in Pediatrics. Yogun. Bakim. Derg 2017, 8, 14–18. [Google Scholar] [CrossRef] [Green Version]
- Adkin, D.A.; Davis, S.S.; Sparrow, R.A.; Huckle, P.D.; Phillips, A.J.; Wilding, I.R. The effect of different concentrations of mannitol in solution on small intestinal transit: Implications for drug absorption. Pharm. Res. 1995, 12, 393–396. [Google Scholar] [CrossRef]
- Hammer, H.F.; Santa Ana, C.A.; Schiller, L.R.; Fordtran, J.S. Studies of osmotic diarrhea induced in normal subjects by ingestion of polyethylene glycol and lactulose. J. Clin. Investig. 1989, 84, 1056–1062. [Google Scholar] [CrossRef]
- Dahlgren, D.; Roos, C.; Johansson, P.; Tannergren, C.; Lundqvist, A.; Langguth, P.; Sjöblom, M.; Sjögren, E.; Lennernäs, H. The effects of three absorption-modifying critical excipients on the in vivo intestinal absorption of six model compounds in rats and dogs. Int. J. Pharm. 2018, 547, 158–168. [Google Scholar] [CrossRef]
- Dahlgren, D.; Roos, C.; Lundqvist, A.; Tannergren, C.; Langguth, P.; Sjöblom, M.; Sjögren, E.; Lennernäs, H. Preclinical Effect of Absorption Modifying Excipients on Rat Intestinal Transport of Model Compounds and the Mucosal Barrier Marker 51Cr-EDTA. Mol. Pharm. 2017, 14, 4243–4251. [Google Scholar] [CrossRef] [PubMed]
- Heade, J.; Maher, S.; Bleiel, S.B.; Brayden, D.J. Labrasol® and Salts of Medium-Chain Fatty Acids Can Be Combined in Low Concentrations to Increase the Permeability of a Macromolecule Marker Across Isolated Rat Intestinal Mucosae. J. Pharm. Sci. 2018, 107, 1648–1655. [Google Scholar] [CrossRef] [PubMed]
- Varum, F.J.; Merchant, H.A.; Basit, A.W. Oral modified-release formulations in motion: The relationship between gastrointestinal transit and drug absorption. Int. J. Pharm. 2010, 395, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Schulze, J.D.; Waddington, W.A.; Eli, P.J.; Parsons, G.E.; Coffin, M.D.; Basit, A.W. Concentration-dependent effects of polyethylene glycol 400 on gastrointestinal transit and drug absorption. Pharm. Res. 2003, 20, 1984–1988. [Google Scholar] [CrossRef] [PubMed]
- Basit, A.W.; Newton, J.M.; Short, M.D.; Waddington, W.A.; Ell, P.J.; Lacey, L.F. The effect of polyethylene glycol 400 on gastrointestinal transit: Implications for the formulation of poorly-water soluble drugs. Pharm. Res. 2001, 18, 1146–1150. [Google Scholar] [CrossRef]
- Basit, A.W.; Podczeck, F.; Newton, J.M.; Waddington, W.A.; Ell, P.J.; Lacey, L.F. Influence of polyethylene glycol 400 on the gastrointestinal absorption of ranitidine. Pharm. Res. 2002, 19, 1368–1374. [Google Scholar] [CrossRef]
Mechanism of Hydration Status Alteration | Anatomical Therapeutic Chemical Group | Drug | References |
---|---|---|---|
Diarrhea | Alimentary tract and metabolism | Metformin | [39,40,41,42,43] |
Magnesium-containing antacids and laxatives | [44] | ||
Lactulose | [44] | ||
Misoprostol | [45,46,47] | ||
Bysacodyl | [48] | ||
Chenodeoxycholic acid | [33,49] | ||
Proton pump inhibitors | [50,51,52,53,54,55,56] | ||
Olsalazine | [57] | ||
Cassia acuitifolia and angustifolia | [58] | ||
Cardiovascular system | Enalapril | [59] | |
Olmesartan | [60,61,62,63,64] | ||
Irbesartan | [63,65] | ||
Valsartan | [63,65] | ||
Digoxin | [33,66,67,68,69,70] | ||
Statins | [51,53,71,72,73,74] | ||
Genito-urinary system and sex hormones | Silodosin | [75,76] | |
Anti-infectives for systemic use | Antibiotics | [77,78,79,80,81,82,83,84] | |
Antineoplastic and immunomodulating agents | Mycophenolate mofetil | [85,86,87] | |
Azathioprine | [88] | ||
Fluorouracil | [89,90,91] | ||
Capecitabine | [89] | ||
Irinotecan | [92,93] | ||
Idelalisib | [94,95,96,97,98] | ||
Ipilimumab | [99] | ||
Musculoskeletal system | Nonsteroidal anti-inflammatory | [53,100,101] | |
Colchicine | [102,103,104,105] | ||
Auranofin | [106,107] | ||
Nervous system | Levodopa combined with carbidopa or benserazide and/or tocalpone or entacapone | [108,109] | |
Selective serotonin reuptake inhibitors | [53,73,74] | ||
Lithium salts | [110] | ||
Respiratory system | Theophylline | [111] | |
Increase of urine volume | Alimentary tract and metabolism | Sodium-glucose cotransporter 2 inhibitors (empaglifozin) | [112,113,114] |
Cardiovascular system | Diuretics | [115,116,117,118] | |
Systemic hormonal preparations | Corticoids | [36,119,120] | |
Nervous system | Lithium | [110] | |
Respiratory system | Theophylline | [121] | |
Decrease of thirst sensation | Cardiovascular system | Angiotensin-converting enzyme inhibitors | [122] |
Nervous system | Selective serotonin reuptake inhibitors | [123] | |
Dopamine D1- or D2-receptor agonists | [124] | ||
Citalopram, clomipramine, duloxetine, venlafaxine and mirtazapine | [125] | ||
Clozapine | [126,127] | ||
Benzodiazepines | [118] | ||
Respiratory system | Theophylline | [121,128,129,130] | |
Central thermoregulation affectation | Cardiovascular system | Beta-blockers (propranolol and nebivolol) | [31,131,132] |
Nervous system | Antipsychotics | [133] | |
Anxiolytics | [133] | ||
Respiratory system | Anticholinergic | [133] | |
Increase of sweat production | Cardiovascular system | Beta-blockers (propranolol) | [134,135] |
Nervous system | Trihexyphenidyl, tropatepine and biperidene | [71] | |
Decrease of appetite | Alimentary tract and metabolism | Metformin | [136] |
Cardiovascular system | Digoxin | [66] | |
Anti-infectives for systemic use | Quinolones | [137] | |
Nervous system | Fluoxetine | [138,139] | |
Lithium salts | [138] |
Mechanism of Hydration Status Alteration | Excipients | References |
---|---|---|
Osmotic diarrhea | Sorbitol | [33,158,184,185] |
Mannitol | [33,158,186] | |
Xylitol | [33,158] | |
Fructose | [33,158] | |
Phosphates | [34,158] | |
Polyethylene glycol | [158,183,187,192,193,194] | |
Magnesium salts | [33,35,158] | |
Increase intestinal permeability | Chitosan | [188,189] |
Sodium lauryl sulphate | [188,189] | |
Labrasol® and its salts combined with medium-chain fatty acid | [190] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puga, A.M.; Lopez-Oliva, S.; Trives, C.; Partearroyo, T.; Varela-Moreiras, G. Effects of Drugs and Excipients on Hydration Status. Nutrients 2019, 11, 669. https://doi.org/10.3390/nu11030669
Puga AM, Lopez-Oliva S, Trives C, Partearroyo T, Varela-Moreiras G. Effects of Drugs and Excipients on Hydration Status. Nutrients. 2019; 11(3):669. https://doi.org/10.3390/nu11030669
Chicago/Turabian StylePuga, Ana M., Sara Lopez-Oliva, Carmen Trives, Teresa Partearroyo, and Gregorio Varela-Moreiras. 2019. "Effects of Drugs and Excipients on Hydration Status" Nutrients 11, no. 3: 669. https://doi.org/10.3390/nu11030669
APA StylePuga, A. M., Lopez-Oliva, S., Trives, C., Partearroyo, T., & Varela-Moreiras, G. (2019). Effects of Drugs and Excipients on Hydration Status. Nutrients, 11(3), 669. https://doi.org/10.3390/nu11030669